
Vision, Video and Graphics (2005)
E. Trucco, M. Chantler (Editors)

Realistic Real-Time Hair Simulation and Rendering

Yvonne Jung, Alexander Rettig, Oliver Klar, Timo Lehr

Fraunhofer IGD, Darmstadt, Germany

Abstract
We present a method for realistic rendering and simulation of human hair in real-time, which is suitable for the
use in complex virtual reality applications. Neighbouring hairs are combined into wisps and animated with our
cantilever beam based simulation system, which runs numerically stable and with interactive update rates. The
rendering algorithm utilizes latest graphics hardware features and can even handle light coloured hair by including
anisotropic reflection and internal transmission.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Three-Dimensional Graphics and Realism]:
Animation; Color, shading, shadowing, and texture; Virtual reality

1. Introduction

The simulation of human hair is still an open area of re-
search in computer graphics, for that reason alone, that a
person usually has more than 100,000 hairs. The problem
is getting by far more complex, if hair simulation is only one
aspect of the dynamic behavior of virtual characters, which
also have to show natural movements, gestures, face expres-
sions, and speech within their virtual environment. Addition-
ally besides the dynamic simulation of hair the realistic ren-
dering of cloth, skin, eyes and certainly hairs is required (in
Figure 1 some frames from our simulation are shown). Even
with recent CPUs and programmable graphics boards many
simplifications have to be made to be able to perform all
these tasks together in real-time.

The demands of information rich dynamic virtual envi-
ronments in general, like moving cameras, light sources and
avatars, raise a lot of new problems with respect to both ren-
dering and simulation: shaders have to be aware of moving
light sources, back to front sorting depends on the camera
position, collision detection has to deal with moving body
parts. Thus for the use in real-time applications the large
number of hairs and the many types of interdependencies
like hair-body, hair-hair and hair-air interaction call for sim-
plifying solutions.

Many simulation methods are based on mass spring
damper systems, in which hair strands are modeled as line
segments connecting some mass points, and the animation
is done by iteratively computing the forces acting on them.

The arising differential equations can be solved with ex-
plicit ODE solvers, which don’t demand much computa-
tional power, but tend to blow off when forces become too
strong. Implicit methods on the other hand like the backward
Euler method are stable, but they are based on the computa-
tional expensive evaluation of big matrices, and constraints
resulting from collisions make things even worse. Besides
taking care of numerical stability there also is the problem
of an adequate parameterization, otherwise the hair move-
ment might resemble rubber bands or look like in an under
water scenario.

Insofar we propose a wisp hair model based on quad
strips, which is animated by a modified cantilever beam
simulation. Rendering is done with GLSL (OpenGL Shad-
ing Language) shaders and includes amongst other things
anisotropic reflection and a second specular highlight, which
is characteristic for light colored hair.

Section 2 reviews previous approaches. Because we are
focusing on simulation and rendering, the modeling aspect
will only be covered shortly in part 3. In section 4 we will
describe our cantilever beam based simulation system, and
section 5 deals with rendering aspects like geometry sorting
and lighting models. In chapter 6 some results are shown,
which finally are discussed in section 7.

2. Related Work

In order to create convincing human hair there are basically
four problems to solve: modeling and styling, hair dynam-

c© The Eurographics Association 2005.

Y. Jung et al. / Hair Simulation and Rendering

Figure 1: Frames taken from an interactive hair simulation (body approximated with four spheres)

ics, collision detection and response, and finally hair ren-
dering [DMTKT93, NTSP02]. Presently a seamless transi-
tion between these categories is still problematic because the
fewest hair simulation systems are self contained and they all
differ in their geometrical representations, animation meth-
ods, and lighting models. Furthermore many approaches fo-
cus on special hair styles like fur or short hair [Gol97,GZ02].

Although the focus doesn’t lie on modeling, a short re-
view of common hair models is necessary, because not ev-
ery hair model is suitable for every animation and render-
ing method. Thalmann et al. [NTSP02] classify hair models
into several categories. The first one contains explicit mod-
els, which are relatively intuitive but computationally expen-
sive, because every single hair strand is considered individu-
ally [AUK92, DMTKT93]. The next category are the cluster
models, which utilize the fact that neighbouring hairs have
similiar properties and tend to group together. They can be
further divided up into hierarchical and flat models.

Ward et al. [WL03] propose a hierarchical level of de-
tail representation, in which the hairs are either represented
as precomputed strips, clusters or strands respectively. Sim-
ulation is done via a set of base skeletons and collision is
handled with swept sphere volumes. More common are non-
hierarchical schemes in which hair clusters are represented
by generalized cylinders [KN02], trigonal prisms and poly-
gon strips, which are rendered by using parametric surfaces
in the method suggested by Koh and Huang [KH01].

Particle systems, especially the loosely connected parti-
cles method proposed in [BCN03], can be seen as an exten-
sion to clusters. Here the particles serve as sampling points
for tracking hair dynamics in order to overcome the tight
cluster structures during lateral motion. Volumetric textures
are primarily used for very short hair [KK89]. The latest cat-
egory regards hair as a fluid [HMT01]. Hair shape model-
ing is done by placing some ideal flow elements whereby
collisions are implicitly avoided by the use of streamlines.
In [Yu01] a method is suggested for adding curliness by
modulating the hair strands with offset functions.

Animation can be done via key-framing or vertex pertur-

bations on the one hand and numerical simulations on the
other hand, reaching from mass spring systems over free
form deformation and rigid multi-body chains up to vector
fields [HMT01], based on the underlying hair model. A com-
putationally cheap animation method also based on differ-
ential equations is the cantilever beam simulation originally
proposed by Anjyo et al. [AUK92] for computing the hair
bending of smooth hairstyles during the hair shape modeling
process. The main drawback of most simulation methods is
the fact, that depending on a hair style’s complexity the sim-
ulators often can’t guarantee for the hair style’s preservation
and for simplicity they mostly neglect the existence of head
and body movement in collision detection.

But collision detection and response are a fundamental
part of hair animation. Hair-hair collision for interactive
applications is mostly ignored or quite coarsely approxi-
mated by bounding volume hierarchies, by density distri-
butions [KLY02], by inserting some extra spring forces be-
tween neighbouring strips [KH01] or by generating auxil-
iary triangle strips between horizontally neighboured guide
hairs against which collision is tested, and whose links can
be broken or recovered dynamically based on their dis-
tance [CJY02]. Absolutely inevitable is the treatment of
hair-head collision. Whilst geometry traversal, hierarchical
or grid based schemes, and vector fields offer more pre-
cision, for real time applications a head can be approx-
imated sufficiently with the help of spheres or ellipsoids
[AUK92, KH01].

Last but not least rendering itself covers the full range
from drawing single-coloured polylines [HR04] and alpha-
textured polygonal patches [KH01] over heuristic local
lighting models for anisotropic materials [Sch04] up to
physically and physiologically correct illumination solutions
[MJC∗03]. Based on measurements of hair fibers the latter
explains the existence of a second specular highlight vis-
ible by light hair by means of light paths described by a
transmission- reflection- transmission- term TRT and simu-
lates lighting with expensive ray tracing. In contrast the first
two rendering methods are quite fast but not very convinc-
ing, because they don’t take anisotropic reflection and self

c© The Eurographics Association 2005.

Y. Jung et al. / Hair Simulation and Rendering

shadowing into account, which are regarded as the most im-
portant lighting effects of hair by Koster et al. [KHS04]

An often referred reflectance model for dark hair, which
exhibits higher reflectance than transmission and almost no
self-shadowing, can be found in [KK89], and was extended
for backlighting effects in [Gol97]. Based on Marschners et
al.’s [MJC∗03] results, Scheuermann [Sch04] recently ex-
tended this lighting model for the use in hardware shaders
by perturbing the hair tangent for shifting both highlights.

Antialiasing of line drawing as a special case and al-
pha blending in general needs correct visibility ordering.
In [Sch04] the blending problem is solved by drawing the
appropriately pre-sorted hair patches in several passes. Kim
and Neumann [KN02] suggest an ordering algorithm in
which each line segment belongs to a slab perpendicular to
the viewing vector subdividing the hair volume’s bounding
box in order to simplify the process of back to front ren-
dering. In a similar manner opacity maps [KHS04], which
discretely approximate a light intensity attenuation function
for encoding a fragment’s opacity value, are created from a
light source’s point of view, mostly in a preprocessing step.

In summary, all these models deal with certain aspects of
hair modeling, simulation and rendering, but none of them
is simply adoptable to our needs in that a stable, fast and
convincing simulation method as well as realistic real-time
shading for the use in complex virtual environments are
taken into account.

3. Modeling

In order to reduce the geometric complexity and to avoid
rendering problems we model hair wisps as relatively small
quad strips instead of generating every single strand (see Fig-
ure 2): although polylines seem to be the natural representa-
tion of hairs at a first glance, they not only increase the load
of the vertex processor, because a lot of lines are needed for
a volumetric appearance, but also have to deal with aliasing
artifacts due to the long thin nature of a hair which usually
when projected is thinner than a pixel’s size. Because of our
fast simulation algorithm (see next section) we can model
each hair strip from many small segments. Therefore we
don’t need smoother parametric representations like NURBS
patches [KH01] and can take advantage of directly using the
OpenGL support for rendering polygonal primitives.

The quad strips are appropriately layered on top of the
scalp mesh for providing an impression of volumetric qual-
ities. They can consist of a variable number of segments
along the direction of hair growth, which is specified by the
position of the hair root and an initial hair tangent vector.
The hair distribution is defined by selecting some surface
polygons on the scalp mesh. After having specified all other
necessary parameters like width, height and number of seg-
ments as well as hair density the hair style is generated con-
ferring to these parameters.

Figure 2: Quad strip based hair model

4. Dynamic Simulation

4.1. Structure

Our hair simulation is derived from the cantilever beam
method [AUK92], which originally was intended for hair
modeling only but not for its dynamics simulation. Com-
pared to mass spring approaches, it provides a numerically
simpler and - at least for smooth hair styles - visually more
convincing way to simulate hair.

As already mentioned, mass spring systems are used for
hair dynamics frequently. Mathematically these can be seen
as damped oscillators which can be calculated with the help
of differential equations by equating Newton’s second law
of motion (F = ma = ms̈) and Hook’s law (F = ks), which
relates the force F exerted by a spring with spring constant
k and rest length l to its deflection s = l′− l.

Explicit numerical methods for solving these differential
equations do not necessarily converge if forces are too strong
and the size of the time step ∆t lies above a certain thresh-
old [BW98]. Whereas Anjyo et al. also used differential
equations for computing the iteration steps during anima-
tion, our cantilever beam method works without them, which
results in much higher simulation speed making it applicable
for real time dynamics.

The most important difference of kinematic models like
the cantilever beam model compared to an ordinary mass
spring system is that the initial distance l between connected
vertices can be fully conserved. Because neighbouring ele-
ments don’t interact by means of spring forces, oscillations
can’t occur. Thus a kinematic simulation system keeps stable
even with much bigger time steps.

Our modified cantilever beam algorithm internally works
on a kinematic multibody chain, as illustrated in Figure 3.
The nodes of the multibody chain are defined by the vertices
of the original geometry and can be seen as joints connect-
ing the edges between them. Two different types are distin-
guished, anchors and freemoving vertices. Anchors, resem-
bling the hair roots, are connected to the scalp and serve as
the attachment point of the chain, whereas all the other ver-
tices in the chain are freemoving.

Freemoving vertices are moved only due to external

c© The Eurographics Association 2005.

Y. Jung et al. / Hair Simulation and Rendering

Figure 3: Cantilever beam simulation

forces like gravity, the bending forces caused by their con-
nected neighbour vertices and by applying the length conser-
vation constraint. An external force F , e.g. gravity, which is
acting on a chain link, results in a bending moment M, that
causes a deflection of the actual segment along the direction
of F . The calculation of the effect of this force is simplified
by means of a heuristic approach: instead of calculating the
torques, all forces, which are acting on the succeeding seg-
ments of a cantilever beam, are expressed by adding some
offset vectors. Then length conservation is achieved by sim-
ply scaling the resulting vector back to the rest length l.

This method yields another advantage. During motion of
the head, i.e. a coordinate transformation T of the head’s
frame of reference, it’s not necessary to derive forces from
T and feed them into the simulation to move the hair roots.
It is sufficient to transform the hair root A directly accord-
ingly to the new position (A′ = T ·A), because the transfor-
mation is then propagated through the chain intrinsicly keep-
ing the hair length constant. While gaining a noticeable im-
provement in performance this way furthermore there are no
stretching artifacts even when abrupt motions happen. Ad-
ditionally to represent the inner tension of hair the angle be-
tween the bent hair segment and the direction of the previous
hair segment is scaled down by a bend factor smaller than 1.
This leads to very realistic looking hair motions.

For stabilizing the orientation of a hair wisp and aligning
the beginning of the chain during movement according to the
direction of hair growth a virtual vertex fixed to the scalp is
introduced as predecessor of the anchor point (as shown in
Figure 2). Together with the anchor it defines the growth di-
rection during simulation. This way the hair strip’s binormal
B can be aligned horizontally to the head.

4.2. Collision Detection and Response

As has been stated earlier, besides a convincing simulation
method a natural behavior in case of collisions is also re-
quired. Concerning hair, collision detection can be divided
up into two types of interdependencies: hair-body and hair-
hair interaction. Because of the large amount of hair the

r

s

P

α

β

Head

Figure 4: Collision handling

trade-off between quality and speed of the collision detec-
tion has to be taken into account.

Collisions with head or body are a hard constraint and
must be treated explicitly. Tests have shown that because
of the high self-occlusion of hair, users usually take no no-
tice of a relatively low accuracy in collision detection be-
tween hair and head. Thus for approximation of the head we
use parametric collision objects like spheres, ellipsoids and
planes, for which intersection tests can be handled quite effi-
ciently. If a freemoving vertex moves into a collision object,
a penalty force is determined that projects the vertex back
onto the surface.

Hair-hair collision can’t be handled easily in real-time.
Thus the interpenetration of hair wisps is avoided with a
trick. On the one hand, hair strips are arranged on top of the
scalp in different layers, each within a different distance to
the head. For keeping this up during dynamics, each vertex
P, depending on its position, is assigned a virtual collision
sphere with a different radius rP, in order to parameterize
the distance to the head individually. On the other hand the
problem is alleviated by using a slightly different bending
factor for every chain, based on the position of its respec-
tive anchor. This layered collision avoidance structure is il-
lustrated in Figure 4. As can be seen, hairs from lower lev-
els aren’t bent as much as those from higher levels. Besides
this the vertices which are located nearer to the hair tip or
which belong to hair wisps layered on top of the head are as-
signed bigger collision spheres than those from the bottom
hair. This also has the nice side effect that implicitly colli-
sions of hair segments s with the head are handled too, albeit
with lower accuracy, although the algorithm explicitly only
regards the vertices P.

4.3. Algorithm

As aforementioned the hair simulation is calculated on a
skeleton, defined by one longitudinal edge of the quad strip.
In order to re-transform the chain structure into a polygonal
structure, every joint Pi has an associated point Qi, which
belongs to the second longitudinal edge. The vertices Qi are
calculated by adding the binormal vector B (the blue one in
Figure 3) scaled by the initial strip width to the vertex Pi.

c© The Eurographics Association 2005.

Y. Jung et al. / Hair Simulation and Rendering

Normal, tangent and binormal are not only needed dur-
ing rendering (see next section) but also for the simulation,
which is done iteratively and consists of the following steps
for the current time interval ∆t:

1. For a simulation speed independent from the frame rate,
scale the force offset vectors with an averaged time interval
∆tavg.

2. Transform all anchor points A, virtual points V and col-
lision objects k to the new world coordinates.

3. ∀ anchors A calculate associated point Q, Tavg (differ-
ence vector between the last joint of a chain and A), tangent
T , binormal B, and normal N:

T = A−V ; B = T ×Tavg; N = T ×B

4. ∀ joints Pi of every anchor A: (i) add offset vectors de-
rived from forces; (ii) ∀ collision objects k with radius rk: if
P′

i is inside k then project P′
i back onto the surface at dis-

tance r = rk + rpi; (iii) add bending offset vector to P′
i ; (iv)

calculate vectors Ti and Ni:

Ti = P′
i −P′

i−1; Ni = Ti ×B

(v) keep initial segment length li:

P′′
i = P′

i +Ti(
li
|Ti|

−1)

5. Rendering

5.1. Sorting

In order to avoid aliasing and to overcome the rectangu-
lar structure during rendering, alpha blending, with disabled
depth buffer write, is used in combination with usual RGBA
textures, which are mapped onto the hair patches. In this
way, an impression of thin, semi-transparent hair is created.
Alpha blending only works if the hair geometry is rendered
last and sorted back to front along the viewing vector, oth-
erwise the edges of the underlying geometry, like the head,
would be visible. Because neither the viewpoint nor the vir-
tual character can be assumed to be immobile, sorting has to
be done dynamically.

It is obvious that a naive per quad sorting must fail, be-
cause the hair patches are very densely neighboured. Besides
this, the algorithm can not always guarantee that there is no
self pervasion. Insofar no unique sorting sequence can be
given, which takes the connection of the segments of a hair
patch into consideration. A simple solution to this problem
is to sort the primitives at the next level of hierarchy.

Back to front sorting of the quad strips solves the latter
problem but arises another artifact, caused by the relatively
large extension of the surface compared to one single ref-
erence point chosen for sorting purposes. Then the roots of
wisps, which are lying nearer to the camera, seem to be lay-
ered on top of hair wisps being further away, although in

Figure 5: Tangent based lighting model

reality the hair position is view-independent. This can be al-
leviated by sorting the uppermost strips along the head’s up-
vector in a second step. To our experience an empirically de-
termined factor of about fifteen percent of all non-occluded
hair strips produces quite satisfactory results.

5.2. Lighting Model and Shading

5.2.1. Reflection Properties of Human Hair

The long thin nature of hairs, which usually are aligned
in one predominant direction and microscopically consist
of steplike seceding segments, can be regarded as the mi-
crostructure of a hair style. It therefore contributes to the
hair’s anisotropic reflection properties, because the normal
distribution along the hair fibres is different from the distri-
bution across them.

The first impressive results for hair rendering already have
been achieved by Kajiya and Kay [KK89], who also sug-
gested a very common phenomenologically motivated local
lighting model, which still constitutes the basis for many
modern rendering approaches concerning hairs. The demand
for photorealism however calls for a shift from phenomeno-
logically based lighting models to physically correct lighting
simulations.

Despite the great advances in the field of graphics hard-
ware, there still remains a trade-off between visual qual-
ity and rendering speed. Because anisotropic reflection can
not be evaluated with standard OpenGL, nowadays render-
ing is often directly done on the GPU by using hardware
shaders, with which nearly photo-realistic realtime effects
can be reached.

Hair fibers can be regarded as cylinders which are nearly
infinitesimal small in diameter. Unlike it’s the case with sur-
faces for a given point P on the hair fibre there exists an
infinite number of normals lying in a plane orthogonal to the
fiber’s tangent T . A normal N suitable for lighting calcula-
tions is the normal which is coplanar with the half vector
H = L+V

|L+V |
and the tangent T (see Figure 5).

This normal vector doesn’t need to be computed explic-
itly for calculating the intensity of the specular highlight, de-

c© The Eurographics Association 2005.

Y. Jung et al. / Hair Simulation and Rendering

R TRT

T

TT

TR t’’

t

n
L

t’

Figure 6: Transmission and Reflection

scribed by (H •N)s in the Blinn-Phong illumination model,
when making use of an orthogonal decomposition of the half
vector H = HN + HT . Then the specular term can be calcu-
lated solely in terms of H and T (both being of unit length)
as follows:

H •N = |HN | =
√

1−|HT |2 =
√

1− (H •T)2

5.2.2. Specular Highlights

The rendering of long, light colored hair is by far much more
complex than of short, dark hair. Thus due to the translu-
cency characteristics of hair fibres the additional consider-
ation of transmission, dispersion and self shadowing is re-
quired. As described in Marschner et al. [MJC∗03], in case
of direct lighting, there are two different specular highlights.
The first highlight results from direct reflection R at the sur-
face of a hair fibre. Caused by the thin tilted squamous struc-
ture it steps somewhat shifted up along the tangent towards
the hair root.

The second highlight T RT , which does not arise with
black hair, results from internal reflection (Figure 6). The
incident light passes through the interior of the fibre and
is reflected at the opposite side of the cylindric shape. Be-
cause of refraction the light‘s direction changes when pass-
ing through two media with different densities, so the sec-
ondary peak appears enervated and shifted towards the hair
tip. The highlight is more like a glint and because of its
way through the medium it gets colored by the pigments of
the hair. Likewise only with lighter hair the transmission-
transmission term T T produces backlighting effects.

A physically correct treatment exceeds the capacities of
a real time application. Nevertheless, in order to calculate
the different peaks described above (second highlight shown
exaggerated in green in Figure 7 on the left), after Scheuer-
mann [Sch04], two tangents T ′ and T ′′ are needed, which
are shifted in opposite directions. This can be achieved by
adding a scaled normal onto the original tangent T (dia-
grammed in Figure 6). The observed dispersion of light,
caused by scattering in the interior of the medium, is sim-
ulated by a noise function which for efficency reasons is
stored in a texture and can easily be accessed by a simple
texture look-up in the fragmentshader.

To achieve best results, the rendering equation is calcu-

Figure 7: Highlights and Shadows

1 vec4 hairTexCol = texture2D(hairTex, gl_TexCoord[0].st);
2 if (hairTexCol.a <= 0.1) discard;
3 else {
4 float shiftTex = texture2D(noise, gl_TexCoord[0].st);
5 float wrapDiffuse = max(0, (dot(vL, vN)

+ scattering) / (1 + scattering));
6 vec3 diffuse = wrapDiffuse * diffuseColor;
7 vec3 ambient = ambientColor * vC;
8 vec3 specular1 = specularColor1 * calcHighlight(

vT, vN, vH, shininess1, shiftValue1 + shiftTex);
9 vec3 specular2 = specularColor2 *

shiftTex * calcHighlight(vT, vN, vH,
shininess2, shiftValue2 + shiftTex);

10 vec3 color = (specular1 + specular2 +
diffuse + ambient) * hairTexCol.rgb;

11 gl_FragColor = vec4(color, hairTexCol.a);
12 }

Algorithm 1: Fragmentshader code snippet

lated per fragment on the GPU. The vertex shader computes
all necessary vectors and passes them to the fragment unit.
In Algorithm 1, variables with the prefix v indicate (GLSL
specific) varying parameters, which are passed over from
the vertex to the fragment processor. The pixel shader cal-
culates the diffuse and specular term for the lighting model
and another term for describing the ambient light that has
been scattered around for several times.

With help of the fragment processor’s discard command
(line 2 of Algorithm 1), fragments which satisfy the condi-
tion α < ε with a certain ε > 0 are thrown away. Defining ar-
eas in the alpha map which shall be ignored in further light-
ing calculations not only saves computation time but also has
another advantage. With simple alpha blending and no spe-
cial shadow pass materials, shadows which are cast from the
hair patches onto the character’s head would be shaped like a
whole patch instead of single hairs, because transparency is
disregarded in depth mapping. By discarding certain pixels,
good shadowing results are achieved even with simple depth
maps (Figure 7, right).

5.2.3. Ambient and Diffuse Lighting

Scattered light, which leaves the backfacing side of a hair
fibre (see T T in Figure 6), is simulated by a scattering func-
tion on the GPU by extending the diffuse Lambert term
N •L. The trick with the so called ’wrap lighting’ is to ’turn’
the light around the object. Therefore a term w ∈ [0;1] is
added to the diffuse term (line 5 of Algorithm 1), which
causes a certain light intensity on the backfacing side (see
Fernando et al. [Fer04], p. 264).

To improve the impression of a hair volume, the normals

c© The Eurographics Association 2005.

Y. Jung et al. / Hair Simulation and Rendering

Figure 8: Normal Bending and Ambient Occlusion

of each patch are bended into the direction of the binormals
(see Figure 2, and Figure 8, left). Thus the light intensity is
sloping towards the edges, which leads to the impression of
a cylindrical shape.

A technique for approximating complex light distribu-
tions is called ’ambient occlusion’ [Fer04]. The basic idea
is to calculate for each point to be lit the fraction of incident
direct light that is not occluded by any other geometry. This
self-shadowing information will be used to scale the light-
ing term. The original method consists of several rendering
passes, nevertheless it can be simplified with some object
knowledge, thus hair from lower layers receive less energy
than those from top layers. This occlusion term is calculated
per vertex depending on its position and the height of its as-
sociated anchor point (see line 7 of Algorithm 1, and right
side of Figure 8).

6. Results

In contrast to the often used mass spring systems our heuris-
tically motivated hair simulation system is computationally
less intensive because of the special chainlike structure of the
hair wisps. Especially properties like pliancy can be easily
included without any additional expense. Moreover the sys-
tem is nearly non-oscillating and insofar it is most unlikely
that it will blow off. Therefore the number of iterations per
time-step can be reduced a lot in favour of a much higher
frame-rate. Concerning the lighting simulation, we are like-
wise still working on a phenomenological level by adopt-
ing approaches from physically based rendering to simpler
GPU-based methods. However, the result is very close to
photorealism and is applicable in information rich virtual en-
vironments. As can be seen in Figures 9 and 10, a realistic
appearance with interactive frame rates is achieved even for
light colored hair.

The simulation and rendering components were imple-
mented in C++ as native scene graph nodes in our inhouse
VR/AR system Avalon, which supports an extension of X3D
as the application description language. This is done by
defining a simulation system scene graph node, and another
scene graph node for rendering a set of sorted primitives,
whose field values are updated by the simulation system
node via the X3D routing mechanism. Therefore the simu-
lation system as well as the hair shaders are easily to create,
use and parameterise even during runtime.

Vertices 5096 18690 37498 52192

Anchors 364 623 2316 2388

Simulation 248 fps 80 fps 37 fps 18 fps

Rendering 64 fps 49 fps 19 fps 16 fps

Combined 52 fps 35 fps 15 fps 11 fps

Table 1: Benchmarks for different hair styles

Figure 9: Blond hair viewed from behind

Benchmarks are shown in Table 1 for four different num-
bers of vertices resp. anchor points. The values have been
taken using a Linux PC with Pentium IV, 2.8 GHz with Hy-
perthreading, 1 GB RAM with a GeForce FX 5900 Ultra
graphics card (about 170 000 pixels are covered by hair).
The first row shows animation performance with standard
OpenGL lighting, the second shows performance with GLSL
shaders but without simulation, and the last row shows frame
rates achieved with both simulation and shaders activated.

Figure 10: Grey hair (circa 37,000 vertices)

c© The Eurographics Association 2005.

Y. Jung et al. / Hair Simulation and Rendering

7. Conclusions and Future Work

In this paper we analyzed existing approaches for hair sim-
ulation, whereas most of them are only suitable for offline
rendering. We then proposed a realistic looking method for
simulating and rendering human hair in real time, applicable
in complex scenarios. By including both transmission based
lighting terms TT and TRT, an almost photo-realistic appear-
ance even for light colored hair is achieved. Moreover on
modern graphics hardware our hair shader is fast enough for
the use in real time applications, at least if the hairs don’t
cover the whole screen. Because of the chainlike structure
and some simplifications, our cantilever beam based simu-
lation system is fast, looks convincing and runs numerically
very stable.

The main drawback is the problem, that without any fur-
ther extensions the simulator is only suitable for smooth hair
styles. Because of this, we are investigating the possibility of
extending our system for the simulation of other hair styles.
Currently we are working on an adaptive hierarchical sim-
ulation algorithm, which emphasizes the dynamic transition
from clustered hair wisps to single hair strands in consid-
eration of external factors like viewing distance or speed
of movement. Furthermore we are implementing a texture
based modeling tool for simplifying the process of creating
different hair styles.

References

[AUK92] ANJYO K.-I., USAMI Y., KURIHARA T.: A
simple method for extracting the natural beauty of hair.
In SIGGRAPH ’92: Proceedings of the 19th annual con-
ference on Computer graphics and interactive techniques
(1992), ACM Press, pp. 111–120.

[BCN03] BANDO Y., CHEN B.-Y., NISHITA T.: Ani-
mating hair with loosely connected particles. Computer
Graphics Forum 22, 3 (9 2003), 411 – 418.

[BW98] BARAFF D., WITKIN A.: Large steps in cloth
simulation. Computer Graphics 32 (1998), 43–54.

[CJY02] CHANG J. T., JIN J., YU Y.: A practical model
for hair mutual interactions. In SCA ’02: Proceedings of
the 2002 ACM SIGGRAPH/Eurographics symposium on
Computer animation (2002), ACM Press, pp. 73–80.

[DMTKT93] DALDEGAN A., MAGNENAT-THALMANN

N., KURIHARA T., THALMANN D.: An integrated sys-
tem for modeling, animating and rendering hair. Com-
puter Graphics Forum 12, 3 (1993), 211 – 221.

[Fer04] FERNANDO R. (Ed.): GPU Gems. Addison Wes-
ley, 2004.

[Gol97] GOLDMAN D. B.: Fake fur rendering. In SIG-
GRAPH ’97: Proc. of the 24th annual conference on Com-
puter graphics a. interactive techniques (1997), ACM
Press/Addison-Wesley Publishing Co., pp. 127–134.

[GZ02] GUANG Y., ZHIYONG H.: A method of human
short hair modeling and real time animation. In PG ’02:
Proceedings of the 10th Pacific Conference on Computer
Graphics and Applications (2002), IEEE Computer Soci-
ety, p. 435.

[HMT01] HADAP S., MAGNENAT-THALMANN N.: Mod-
eling dynamic hair as a continuum. Computer Graphics
Forum 20, 3 (September 2001).

[HR04] HERNANDEZ B., RUDOMIN I.: Hair paint. In
CGI ’04: Proceedings of the Computer Graphics Interna-
tional (2004), IEEE Computer Society, pp. 578–581.

[KH01] KOH C. K., HUANG Z.: A simple physics model
to animate human hair modeled in 2d strips in real time. In
Proceedings of the Eurographic workshop on Computer
animation and simulation (2001), Springer-Verlag New
York, Inc., pp. 127–138.

[KHS04] KOSTER M., HABER J., SEIDEL H.-P.: Real-
time rendering of human hair using programmable graph-
ics hardware. In CGI ’04: Proceedings of the Computer
Graphics International (2004), IEEE Computer Society,
pp. 248–256.

[KK89] KAJIYA J. T., KAY T. L.: Rendering fur with
three dimensional textures. In SIGGRAPH ’89: Proc. of
the 16th annual conference on Computer graphics a. in-
teractive techniques (1989), ACM Press, pp. 271–280.

[KLY02] KONG D., LAO W., YIN B.: An improved algo-
rithm for hairstyle dynamics. In ICMI ’02: Proceedings
of the 4th IEEE International Conference on Multimodal
Interfaces (2002), IEEE Computer Society, p. 535.

[KN02] KIM T.-Y., NEUMANN U.: Interactive multires-
olution hair modeling and editing. In SIGGRAPH ’02:
Proceedings of the 29th annual conference on Computer
graphics and interactive techniques (2002), ACM Press,
pp. 620–629.

[MJC∗03] MARSCHNER S. R., JENSEN H. W., CAM-
MARANO M., WORLEY S., HANRAHAN P.: Light scat-
tering from human hair fibers. ACM Trans. Graph. 22, 3
(2003), 780–791.

[NTSP02] N.MAGNENAT-THALMANN, S.HADAP,
P.KALRA: State of the art in hair simulation. In Inter-
national Workshop on Human Modeling and Animation,
Korea Computer Graphics Society (2002), pp. 3–9.

[Sch04] SCHEUERMANN T.: Practical real-time hair ren-
dering and shading. Siggraph04 Sketches, August 2004.

[WL03] WARD K., LIN M. C.: Adaptive grouping and
subdivision for simulating hair dynamics. In PG ’03:
Proceedings of the 11th Pacific Conference on Computer
Graphics and Applications (2003), IEEE Computer Soci-
ety, pp. 234 – 242.

[Yu01] YU Y.: Modeling realistic virtual hairstyles. In
Proceedings of Pacific Graphics (2001), pp. 295–304.

c© The Eurographics Association 2005.

