Crossing the Rubicon of API Migration

Ralf Lémmel® and Tijs van der Storm?

! Software Languages Team, Universitit Koblenz-Landau, Germany
2 SEN, CWI, Amsterdam The Netherlands

Abstract. Within the programming domain of XML processing, we set up a
benchmark for API migration. The benchmark is a suite of XML processing
scenarios that are implemented in terms of different XML APIs. We suggest
that a relatively general technique for API migration should be capable of pro-
viding source-to-source translations between the different implementations. The
benchmark involves APIs that are different enough to require more than just local
rewrites for the migration. We make different attempts at API migration: wrap-
ping, rewriting, and protocol-based translation. None of our attempts are entirely
satisfactory, and we hope to provide this benchmark as a challenge to the broader
programming language and automated software engineering communities.
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1 Introduction

APIs (application programming interfaces) are crucial components of our programming
environments. Each API addresses some domain on a scale of “general to special” pur-
pose. For instance, an XML API addresses the relatively general domain of XML pro-
cessing. Other important and general domains (all supported by APIs) include database
programming, GUI programming, and distributed programming. More specific domains
(again supported by APIs) include financial exchange or version control management.
Typically, multiple APIs exist for a given domain and programming environment. Also,
APIs evolve over time. Further, new APIs emerge as the understanding of a domain
improves and programming languages become more expressive. What if an application
wants to alter its commitment to a particular API or a particular version? This is when
API migration may be needed!

We speak of API migration when facing the following situation. Given an applica-
tion that makes use of one API — the source API, we wish to migrate the application so
that it leverages another API for the same domain instead — the target API. As a more
concrete example, consider a Java application that uses say the JDOM API for XML
programming. In an attempt to consolidate the number of “third party” APIs used in the
application, the owner decides to eradicate the use of JDOM and migrate to the stan-
dardized DOM API. The owner of another application may go the exact inverse route:
in an attempt to modernize the XML processing code, the owner decides to migrate
from DOM to JDOM.

There are indeed multiple incentives for API migration:



new Vector() = new ArrayList()

int Vector:receiver.size() => int receiver.size()

Object Vector:receiver.firstElement() = Object receiver.get(0)

Object Vector:receiver.setElementAt(Object: val, int: idx) = Object receiver.set(idx, val)

void Vector:receiver.copyInto(Object: array) = void Util.copylnto(receiver, array)
Enumeration Vector:receiver.elements() => Iterator receiver.iterator()

new Hashtable() = new HashMap()

Object Hashtable:receiver.put(Object: key, Object: val) = Object receiver.put(key, val)

Enumeration Hashtable:receiver.elements() = Iterator (Collection receiver.values()).iterator()

Fig. 1. Quoted from [4]: a specification for migrating Java code to use a modern collection class.
The source APl is the class Vector. The target APl is the class ArrayList. The specification
consists of rewrite rules that apply to allocation sites and method calls in legacy code.

Reduce the sheer number of different APIs used in the application.

Improve intra-application coherence by using only one API for a given domain.
Prefer a “standardized” API over a “third party” API in the application.

Prefer a “modern” API over an “aged” API in the application.

Commit to a new version of a given API.

Previous work on API migration Manual migration is a labor-intensive and error-prone
task. Some sort of automation is clearly desirable. Research efforts have focused on the
goal of making applications work with a new version of an API; there are two classes of
approaches — both are based on API refactorings that are either recorded, or inferred, or
provided as a specification. The first class of approaches replays refactorings on client
source or bytecode so that it can directly use the new version of the API [20, 33, 39,
43]. The second class of approaches provides (binary) adapter layers (in the sense of
the design pattern) that shields client source or bytecode from the changes of the API
[10,11,14].

There is also previous work that goes beyond refactoring and potentially addresses
incentives of API migration other than evolution along different versions of one API
[8,24,4,30]. Essentially such approaches involve some form of rewriting that replaces
patterns over the source API by patterns over the target API . (Again, one can consider
approaches at the source or the bytecode level.) The approach by Balaban, Tip, and
Fuhrer [4] (see Fig. 1 for an illustration) is worth pointing out. This approach uses
rewrite rules to describe the migration of allocation sites and method calls, and it uses
extra checks and analyses to determine whether the rewrites can be safely applied.

Main thesis of this paper We contend that API migration is a hard problem. In fact,
we would like to call out APIs as an important form of “software asbestos” [26]. All
examples of API migration that we have seen addressed in the literature essentially deal
with evolution of the kind that two very similar APIs are being considered, where “very
similar” may stand for “different versions” or APIs with nearly identical interfaces mod-
ulo renaming or macro expansion, with (nearly) identical observational behavior; c.f.,
Fig. 1. In this paper, we look into API migration when source and target APIs differ
more substantially, say when local rewrite rules are insufficient to perform the migra-
tion. Instead some sort of code reorganization is needed, and the transformation must
be validated and informed by an extra program analysis.



Contributions'

— We present a benchmark for API migration, which we think is representative of
the situation that source and target APIs differ more substantially. The example is
extracted from the XML programming domain.

— We make different attempts at API migration for the benchmark. None of our at-
tempts are entirely satisfactory, but we make an effort to understand the involved
limitations, and to derive proposals for further investigation.

— We develop a grammar-based form of API protocol. Protocols can be interpreted as
languages of execution traces as well as sets of control-flow graphs. Protocols give
structure to specifications for API migration.

Roadmap §2 describes our benchmark for API migration. It is essentially a collection of
XML processing scenarios implemented with the XML APIs DOM and JDOM. §3 at-
tempts the reimplementation of DOM’s interface in terms of JDOM and vice versa. This
experiment provides a limited mapping specification between the APIs, and actually
clarifies the hardness of the migration example at hand. §4 attempts a rewriting-based
approach to API migration, where, however, we go beyond local rewrites. Other than
that, the approach is admittedly naive, and lacks proper correctness or completeness
guarantees. §5 develops a migration technique that is based on API protocols which
define “disciplined” (well-understood) API-usage scenarios. Throughout the sections
§3-85 we refer to related work and thereby complement the above discussion of exist-
ing approaches to API migration. §6 concludes the paper.

2 A benchmark for API migration

Within the programming domain of XML processing, we will present and implement
a few simple scenarios. We will show and discuss illustrative implementations for two
XML APIs (DOM and JDOM), but we provide additional implementations online. The
idea is here that an automated API migration could be expected to transform one im-
plementation into the other (say the DOM one into the JDOM one — or v.v.) by means
of a source-to-source translation.

We look at this benchmark as a “Rubicon of API migration”. To paraphrase Martin
Fowler [16]: If you migrate the XML processing scenarios “Build XML document”,
“Query XML document”, and “Update XML document” for say DOM and JDOM both
ways, it probably means, you can do other forms of API migration as well. We do not
claim that our scenarios cover the XML domain in any reasonable sense. We merely
assume that the scenarios and sample APIs are challenging enough to call for an API
migration technique that can handle “somewhat different” APIs.

2.1 Scenario “Build XML document”

Given is a class of persons with accessors like the following:

! We are making the benchmark and our API migration attempts available online via the open source project
SLPS: http://slps.sourceforge.net/. See directory topics/apimigration.



public static Document makeDocument (List<Person> contacts) {
Document doc = new Document () ;
Element root = new Element ("contacts");
document .addContent (root) ;
for (Person p: contacts) {
Element px = new Element ("person");
Element namex = new Element ("name");
namex = namex.setText (p.getName());
px = px.addContent (namex) ;
Element agex = new Element ("age");

agex = agex.setText (new Integer (p.getAge()).toString());
px = px.addContent (agex);
root = root.addContent (px);

}

return doc;

Fig. 2. Using the JDOM API, map a collection of persons to an XML document.

public class Person {
public String getName() { ... }
public int getAge() { ... }

}

Given a collection of persons, such as “Barack Obama” of age 47, and “John Mc-
Cain” of age 72, we want to build an XML document that represents the collection. The
resulting XML tree should look as follows:

<contacts>
<person>

<name>Barack Obama</name >

<age>47</age>
</person>
<person>

<name>John McCain</name>

<age>T72</age>
</person>
</contacts >

Fig. 2 implements the scenario using the popular JDOM API for XML processing
in Java. Documents and elements are constructed by regular constructor methods. The
element constructor takes the element tag as an argument. Elements are hierarchically
composed by the addContent method. The content of leaf elements is set by the
setText method.

Fig. 3 implements the scenario using the standardized DOM API for XML pro-
cessing. Elements are constructed by a factory method of the document. That is, ele-
ment construction always refers to the hosting document. Elements are hierarchically
composed by the appendChild method. The content of leaf elements is set by the
setTextContent method. Before element construction can commence however, a
document has to be fabricated through some stages of auxiliary factories, builders and
implementations. This process can also result in a checked exception, which is accord-
ingly caught.



public static Document makeDocument (List<Person> contacts) {
DocumentBuilder b;

try {
DocumentBuilderFactory f = DocumentBuilderFactory.newlInstance();
b = f.newDocumentBuilder();
} catch (ParserConfigurationException e) { ... }
Document doc = b.getDOMImplementation () .createDocument (
null, "contacts"”, null);
Element root = doc.getDocumentElement () ;

for (Person p: contacts) {
Element px = doc.createElement ("person”);
Element namex = doc.createElement ("name”);
namex.setTextContent (p.getName () ) ;
px.appendChild (namex) ;
Element agex = doc.createElement ("age");
agex.setTextContent (Integer.toString(p.getAge()));
px.appendChild (agex) ;
root .appendChild (px) ;

}

return document;

Fig. 3. Using the DOM API, map a collection of persons to an XML document.

2.2 Scenario “Query XML document”

Given an XML document with a collection of persons, we want to compute the average
age of all persons contained in the document. To this end, we should locate all <age>
elements, and extract their content for the aggregation of an average value.

Fig. 4 implements the scenario using the JDOM APIL. We use JDOM’s concept of an
element filter in combination with the get Descendant s method to locate the <age>
elements. The getDescendant s method happens to return an iterator which forces
us into using Java’s interface for iteration, c.f., hasNext and next. The iterator does
not provide a type parameter, and hence we need to use a cast to recover the intended
type from the universal type Object;cf., (Element) .. ..

Fig. 5 implements the scenario using the DOM API. We locate the <age> elements
with the help of the getElement sByTagName method; it queries all descendants
with a given tag. The query result is a DOM-style node list which forces us into using
index-based access; c.f., item (1i).

2.3 Scenario “Update XML document”

Given an XML document with a collection of persons, we want to increment the age
value for a person on his or her birthday. More specifically, let us describe the update
needed for “John McCain” on his birthday — August 29. Operationally, such an update
requires iteration over all <person> elements, until the person of interest is found
(judging by its child element for the name), and then, the content of the child element
for the age is incremented accordingly.



public float average (Document doc) {
int total = 0;

int count = 0;
ElementFilter filter = new ElementFilter ("age");
Iterator i = doc.getDescendants (filter);
while (i.hasNext()) {
Element e = (Element)i.next();
total += Integer.parselnt (e.getText());
count++;

}
return (float) total / (float) count;

Fig. 4. Using the JDOM API, compute average age over persons of a document.

public float average (Document doc) {
int total = 0;
int count = 0;
NodeList nodelist = doc.getElementsByTagName ("age");
for (int i = 0; i < nodelist.getLength(); i++) {

Element elem = (Element) nodelist.item(i);
total += Integer.parselnt (elem.getTextContent());
count++;

}
return (float) total / (float) count;

Fig. 5. Using the DOM API, compute average age over persons of a document.

Fig. 6 implements the scenario using the JDOM API. We query all <person>
elements with the help of the get Content method that is parametrized by a suitable
element filter very similar to the previous scenario. This query is applied to the root
element rather than the document; c.f., the use of the getRootElement method.
We use JDOM’s convenient getChild method to retrieve the <name> and <age>
children of a <person> element. The update of the age value boils down to the update
of the text content of the <age> element; c.f., get Text and setText.

One detail is worth mentioning. JDOM’s get Content method for child elements
returns a list whereas JDOM’s getDescendants method for descendants (see the
previous scenario) returns an iterator. These different results (for otherwise concep-
tually close query idioms) imply that client code has to consume the query results in
different ways. API migration clearly has to cover such variation.

Fig. 7 implements the scenario using the DOM API. We end up putting to work
the XPath API (i.e., org.apache.xpath.XPathAPT) for convenient query-based
access. This additional API, which is often used in combination with the pure DOM
API, compensates here for DOM’s lack of a query method for child elements with a
given tag. The execution of the XPath query returns a DOM-style node list that implies
indexed access. The XPath API may throw a checked exception, which is accordingly



public void august29 (Document doc) {
ElementFilter filter = new ElementFilter ("person");
List 1 = doc.getRootElement () .getContent (filter);
for (Object o : 1) {
Element px = (Element)o;
Element namex = px.getChild("name");
Element agex = px.getChild("age");
if (namex.getText () .equals ("John McCain")) {
int age = Integer.parselnt (agex.getText ());
age++;
agex.setText (Integer.toString(age));
break;

Fig. 6. Using the JDOM API, increase the age of one person in the document.

public void august29 (Document doc) {
try {
NodeList nodelist = XPathAPI.selectNodelist (doc, "/*/person");
for (int i = 0; i < nodelist.getLength(); i++) {
Element px = (Element)nodelist.item(i);
Element namex = (Element)XPathAPI.selectNodelList (px, "name").item(0);
Element agex = (Element)XPathAPI.selectNodelList (px, "age").item(0);
if (namex.getTextContent () .equals ("John McCain")) {
int age = Integer.parselnt (agex.getTextContent ());
aget++;
agex.setTextContent (Integer.toString(age)) ;
break;
}
}
} catch (TransformerException e) { ... }

}

Fig. 7. Using the DOM API, increase the age of one person in the document.

caught. The update of the age value boils down to the update of the text content of the
<age> element; c.f., get TextContent and setTextContent.

Arguably, the use of the XPath API could be avoided here. For the XML document
at hand, we could be sloppy and query all kinds of elements (<person>, <name>,
and <age>) by using DOM’s getElement sByTagName method for all descendants
with a given tag. (These elements tags do not occur in nested positions.) However, we
wish to preserve the semantics of the JDOM code which filters child lists rather than all
descendants. Alternatively, a pure DOM encoding could filter child lists programmat-
ically — by plain loops. (There is a get ChildNodes method that returns all child
nodes.) This approach is very verbose. The involvement of the XPath API brings up
the challenge of API combinations. That is, API migration cannot always be scoped to
single APIs for the source and target of migration. Rather a combination of APIs may
be faced.



3 API migration by wrapping

As a first attempt at API migration, we will use wrapping to re-implement the source
API in terms of the target API. More specifically, the interface of the source API is
implemented in terms of the target API. We will re-implement DOM via JDOM and
vice versa. (We only cover the interface needed in the benchmark scenarios.) There are
the following incentives for making this attempt:

— The wrapper approach can be said to provide us with a complete and type-checked
mapping specification (i.e., the wrapper classes) between the two involved APIs.
If we succeed to give such a specification, it may be a good baseline for other
implementations of the API migration. For instance, the specification is perfectly
amenable to testing because we can extend any test cases for the source API to the
reimplementation.

— The wrapper approach essentially corresponds to one of the two classes of prior
work on API migration that we mentioned in the introduction, i.e., the class that
relies on adapter layers [10, 11, 14] — except that we do not derive the wrappers
from refactorings, but we design them “from scratch”.

We should clarify that we are primarily interested in source-to-source translations
for API migration while wrappers do not actually serve such translations. However, in
principle, we could attempt to combine the wrapper approach with program specialisa-
tion [35, 5, 36], and thereby install the target API in the actual application code. We will
return to this option in the discussion part of the section.

3.1 Reimplementing DOM in terms of JDOM

We need to apply the adapter design pattern [17] systematically. Assuming a nearly
1:1 relationship between types of source API and target API, the reimplementation of
any type of the source API is basically a wrapper/adapter type for the corresponding
wrappee/adaptee type of the target API. Methods are reimplemented by delegation.
There is the following correspondence of DOM and JDOM types when aiming at a
reimplementation of DOM in terms of JDOM:?

Adapter type Adaptee type
org.w3c.dom.Document|org. jdom.Document
org.w3c.dom.Node org. jdom.Content

org.w3c.dom.Element |org.jdom.Element
org.w3c.dom.NodeList|java.util.Iterator

Fig. 8 shows some reimplemented DOM types. For instance, the Document type
wraps a private instance of type org. jdom.Document. The reimplementation of

2 The DOM API is actually inferface-based, i.e., all the types of interest are interfaces. For simplicity, we
provide a class-based wrapper implementation only; all DOM types are directly mapped to classes. A
serious reimplementation must be interface-based though to be fully compatible with the DOM API, and
to allow interface polymorphism, e.g., in the position of querying DOM documents by means of the XPath
API; c.f., the “Update XML document” scenario.



public class Document {
private org.jdom.Document doc;

public Element getDocumentElement () {
return new Element (doc.getRootElement ());
}
public Element createElement (String name) {
return new Element (new org.jdom.Element (name));
}
public Nodelist getElementsByTagName (String string) {
return new NodeList (
doc.getDescendants (new ElementFilter (string)));
}
}
public class Node {
protected org. jdom.Content content;
Node (org. jdom.Content node) { this.content = node; }

/I Helper needed to wrap JDOM nodes as DOM nodes
protected static Node wrap (org.jdom.Content node) {
if (node instanceof org. jdom.Element)
return new Element ( (org. jdom.Element)node) ;
else
return new Node (node) ;
}
}
public class NodelList {
private List<Node> list;
public Nodelist (Iterator iter) {
list = new LinkedList<Node>();
while (iter.hasNext ())
list.add (Node.wrap ((org.jdom.Content)iter.next ()));
}
public int getLength() { return list.size(); }
public Node item(int i) { return list.get(i); }
}

Fig. 8. Reimplementing DOM in terms of JDOM.

DOM’s getElement sByTagName method delegates to IDOM’s getDescendants
method while creating a suitable JDOM element filter on the fly. The reimplementation
of the createElement method does not refer to the wrapped document because the
JDOM API uses regular constructor methods instead of document-centric factory meth-
ods. The reimplementation of the getDocumentElement method again delegates to
the adaptee while it wraps the JDOM result before returning it. In general, “API-typed”
arguments of the wrapper methods need to be unwrapped before being passed to the
wrappee, and “API-typed” results returned by the wrappee methods need to be wrapped
before being returned by the wrapper.

Consider the NodeList in Fig. 8. The class receives an Iterator upon con-
struction which it immediately translates to a plain list (without wrapping the itera-
tor until later). Hence, the iterator-based query is completed before even the first el-
ement is drawn from the node list. Consider the creation of a node list initiated by



public class Content {
protected org.w3c.dom.Node domNode = null; // Adaptee
protected String text = null; // State needed until DOM node construction

public String getText () { return text; }
public void setText (String text) { this.text = text; }

/I Needed by reimplementation
Content () { }
Content (String text) { this.text = text; }

/I Deferred construction of adaptee
void build(Element parent) {
domNode = parent.domNode.getOwnerDocument () .createTextNode (text);
((org.w3c.dom.Element)parent.domNode) .appendChild (domNode) ;
}
}
public class Element extends Content {
String name = null;
private List<Content> kids = new LinkedList<Content>();

public Element (String name) { this.name = name; }

public Element addContent (Content elt) {
kids.add(elt);
if (domNode != null) elt.build(this);
return this;

}

public String getName () {

if (domNode != null)
return ((org.w3c.dom.Element)domNode) .getTagName () ;
else

return name;

}

public Content getChild(String name) { if ... }
public void setText (String text) { if ... }
public String getText () { if ... }

/... further build and wrapping infrastructure omitted

Fig. 9. Reimplementing JDOM in terms of DOM.

the getElement sByTagName method. Each of the returned JDOM descendants is
wrapped with a new DOM identity.

3.2 Reimplementing JDOM in terms of DOM

Fig. 9 shows an attempt at reimplementing JDOM in terms of DOM. It is an attempt
only because we cannot delegate node construction to DOM. More specifically, we
cannot construct the wrappees right at the time of wrapper construction because DOM’s
node constructors rely on the document being part of the construction message. As a
result, all subsequent messages sent to wrappers cannot be delegated to the wrappee



either — unless the wrapper was parented in the meantime. Parenting is initiated by the
addContent method, and “deferred” construction is described by the virtual build
method of node types (shown for Content in the figure).

In an effort to still approximate a functional implementation of the JDOM interface,
the code in the figure enriches the basic adapter pattern by extra state for the (yet) non-
constructable adaptee: the Content class maintains the text value of the node, and
the Element class maintains the element tag and the list of child elements. When a
service is requested on an unparented node, then a designated implementation on that
extra state is invoked instead of delegation to the adaptee. This approach is not very
useful because we end up implementing the JDOM API from scratch.

3.3 Discussion

Our wrapper experiments make us conclude as follows:

Undelegatable services The wrapper approach cannot be applied when we encounter
undelegatable services, as we did in the “JDOM in terms of DOM” case. In general, we
assume that an undelegatable service is merely a consequence of different API proto-
cols as opposed to different sets of API services. For instance, both DOM and JDOM
support node construction, but their protocol slightly differs, and hence wrapping fails.
The remaining discussion is limited to the cases where we succeed with a wrapper im-
plementation, as we did in the “DOM in terms of JDOM” case (for the subset of services
considered).

Wrapper proliferation If we were actually planning to use the wrapper implementa-
tion, we must be prepared to encounter behavioral deviations or efficiency issues due
to the wrapper objects. In particular, (many) different wrapper identities may get as-
sociated with the same wrappee. Idioms that take a dependency on node identities
will be broken — unless we engage in memoization of wrappers (as it is feasible for
getDocumentElement of Fig. 8, for example) or an (expensive) global and bidi-
rectional association map between wrappers and wrappees (as it is necessary for the
constructor of the NodeList class of Fig. 8, for example).

Program specialization We consider it an important topic for future work to establish
whether current program specializers (at the state of the art) [35, 5, 36] can be usefully
adopted to convert applications (source code) on the grounds of the wrapper implemen-
tation. One challenging aspect of such an attempt is the requirement that the specializer
must produce readable code that is comparable to the code that is written by a de-
veloper when performing a manual migration. We expect that the specializer needs to
be configured for the API couple at hand. Also, the specializer needs to be aware of
programming idioms that are relevant for the APIs at hand (such as different styles of
consuming collections).

Semantic mismatch There is another fundamental problem with the wrapper approach:
its premise to fully re-implement the source API, presumably up to observational equiv-
alence. Our simplified wrapper implementations are faithful enough to pass the tests for



the benchmark scenarios. However, independently developed APIs differ in semantic
details that make it hard to achieve or to attest observational equivalence. (For instance,
it is very hard to make XML serialization fully agree for any given couple of XML
APIs.) When using straightforward delegation code, then the semantic differences will
invalidate observational equivalence. When more complex delegation code is used to
resolve the semantic differences, then inefficiency is incurred and program specializa-
tion is much less likely to be able to produce readable code. In the end, observational
equivalence may still be limited to hold only for certain “usage scenarios” of the API,
while the wrapper implementation has no way of quantifying these scenarios.

4 API migration by rewriting

We will now examine rewriting as a technique for API migration in the sense of per-
forming a source-to-source translation. As we noted in the introduction, some sort of
rewriting (or pattern-based replacement) has been used by a number of approaches that
address some form of API migration [8,24,4,30] without though covering the case
where source and target APIs differ more substantially.

We are particularly interested in applying rewriting to the case where wrapping
failed. The failure to delegate node construction for the “JDOM in terms of DOM”
case actually suggests that local rewrite rules alone (as in say [4]) are insufficient to
cover that case. Hence, we will consider rewrite rules that perform some sort of code
reorganization and program analysis. The following specification focuses on the “Build
XML document” scenario. We use the ASF+SDF approach to rewriting [6].3

4.1 Local rewrites

We begin with the part of the specification that models local rewrites. Here we as-
sume that the rewrite function is parametrized in the document that is to be used for
node construction. Given a sequence of API calls for XML processing, and (the vari-
able that holds on) the hosting document, the statements are locally rewritten, one-by-
one. Refer to Fig. 10. For instance, rewrite rule [setText] rewrites a call to JDOM’s
setText method to DOM’s set TextContent method. The extra argument for the
hosting document (see &doc in the figure) is used in rewrite rule [new-element] where
JDOM’s use of a regular constructor is replaced by the invocation of a factory method.

4.2 Code reorganization

For the local rewrite rules to be applicable, we need to determine (the variable that
holds on) the hosting document. For simplicity, we assume here that the translation is

3 ASF+SDF provides us with conditional term rewriting and support for concrete syntax (Java in our case).
Conditional rewrite rules consist of any number of “premises” (conditions) and a conclusion separated by a
horizontal line — that line is omitted when there are no conditions. Most rewrite rules of our specification
are “unconditional”. Conclusions are of this form: “f{ArgTerml, ..., ArgTermN) = Result” — to be read
from left to right: match terms on argument position and construct a result term. We only use premises of
the following form: “Variable := Term” where the right-hand term is normalized and then bound to the
left-hand side variable.



Types of the rewriting functions

xStms(BlockStm=, doc:ld) — BlockStmx // Rewrite many statements
xStm(BlockStm, doc:ld) — BlockStm // Rewrite one statement

Rewrite rules

[new—element] xStm(org.jdom.Element &elt = new org.jdom.Element(&str);, &doc) =
org.w3c.dom.Element &elt = &doc.createElement(&str);

[addContent] xStm(&elt1.addContent(&elt2);, &doc) =
&elt1.appendChild(&elt2);

[ setText ] xStm(&elt.setText(&expr);, &doc) =
&elt.setTextContent(&expr);

[ for —loop] xStm(£for (&formal: &expr) { &stmx }, &doc) =
for (&formal: &expr) { xStms(&stmx, &doc) }

[ default —xStm] xStm(&stm, &doc) = &stm
[xStms—nil] xStms(, &doc) =

[xStms—cons] xStms(&stm &stmsx, &doc) = xStm(&stm, &doc) xStms(&stm=, &doc)

Fig. 10. Local rewrite rules for JDOM to DOM translation.

readily applied to a scope, in fact, a statement block, that lines up the entire “Build
XML document” scenario — just like in Fig. 2. Hence, we need to locate the variable
initialization for the relevant document in that statement block; c.f., find-doc in Fig. 11.
That is, we search the statement block and return both the corresponding variable & doc
and the remaining statements of the block.

If we compare the DOM and JDOM implementations of the “Build XML docu-
ment” scenario, then we realize that the construction of the root element is done quite
differently. The JDOM code explicitly constructs an element and adds it to the doc-
ument. In contrast, the DOM code creates the root implicitly when it constructs the
document, and extracts it for subsequent use. This difference is addressed by the fol-
lowing strategy. We use the find-root function (c.f., Fig. 11) to discover the variable for
the root element — based on a call to the addContent method with the document as
receiver. Further, we use the find-tag function (c.f., Fig. 11) to look up the construction
statement for the root element; in fact, to look up the zag of the root element — based
on the variable for the root that we obtained before. Both helpers remove the relevant
statements from the block.

The rewrite rule in Fig. 12 puts together all the pieces. The incoming statement
block is first transformed to remove the code for document and root construction. Then,
the local rewrite rules are applied. Finally, a complete statement block is returned that
begins with the construction of the document and the extraction of the root element (in
DOM style).



Types of the rewriting functions

find —doc(BlockStm«) — <BlockStm:x, |d>
find —root(BlockStmx, Id) — <BlockStmx, Id>
find —tag(BlockStmx, I1d) — <BlockStm=, StringLiteral>

Find the statement that constructs and assigns the document.

[ find —doc] find—doc(org.jdom.Document &doc = new org.jdom.Document(); &stm:)
= <&stmx, &doc>

[ default —find—doc] <&stms’, &doc> := find—doc(&stmx)

find —doc(&stm &stmsx) = <&stm &stmx’, &doc>

Find the statement that adds the root element to the document.

[ find —root] find —root(&doc.addContent(&root); &stms, &doc)
= <&stmx, &root>

[ default —find—root] <&stms«’, &root> := find—root(&stmx, &doc)

find —root(&stm &stmsx, &doc) = <&stm &stmx«’, &root>

Find the element construction for the root, and hence the root tag.

[ find —tag] find —tag(org.jdom.Element &root = new org.jdom.Element(&str); &stmx, &root)
= <&stmx, &str>

[ default —find—tag] <&stmx«’, &str> := find—tag(&stm:x, &root)

find —tag(&stm &stmx, &root) = <&stm &stmx’, &str>

Fig. 11. Code-reorganization helpers for JDOM to DOM translation.

4.3 Discussion

The JDOM to DOM translation, to the extent shown, is prohibitively naive. The follow-
ing discussion lists limitations in a systematic manner. Thereby, it gives an indication
of the complexity of a proper solution.

Intra-procedural rewriting The transformation is intra-procedural, as it stands. For in-
stance, we cannot apply it to the entire makeDocument method of Fig. 2; we are
limited to reason about the translation of the method body. An inter-procedural gen-
eralization is feasible — with the usual caveat about dynamic dispatch, callbacks, and
other difficult program constructs. That is, any method call, within the given scope of
the translation, requires recursion into the body of the called method. Also, method
signatures have to be converted by applying a type mapping like the following:

JDOM type [IDOM type
org.jdom.Document|org.w3c.dom.Document
org.jdom.Element |org.w3c.dom.Element




Type of the rewriting function
jdom2dom(BlockStmx) — BlockStmx

Top-level rewrite rule of JDOM to DOM translation

[main] <&stm=1, &doc> := find—doc(&stmsx),
<&stm=2, &root> := find—root(&stm=1, &doc),
<&stmx3, &str> = find—tag(&stm=2, &root)

jdom2dom(&stms) =
org.w3c.dom.Document &doc = DocumentBuilderFactory
.newlInstance()
.newDocumentBuilder()
.getDOMImplementation()
.createDocument(null, &str, null);
org.w3c.dom.Element &root = &doc.getDocumentElement();
xStms(&stmx*3, &doc)

Fig. 12. Main module of JDOM to DOM translation.

(This type mapping is already used implicitly by the local rewrite rules; see rewrite
rule [new-element] in Fig. 10.) Clearly, if a method is reached by inter-procedural
rewriting, and hence, if its signature is modified, then, obviously, all callers must be
migrated; see the issue of a global strategy below.

Local, single, unaliased assignments The applicability of the present transformation
relies on an escape analysis: only local variables must be used for holding onto XML
objects. The transformation would be considerably more complicated when variables
are allowed to escape from the relevant scope (e.g., when fields are used). Further, the
correctness of the transformation relies on the fact that the variables for document and
root are assigned to only once (also excluding aliasing).

Idiomatic incompleteness There are various idiomatic variations that are not covered by
the simple transformation. One variation is method chaining as admitted by the JDOM
API. For instance, child elements can be added within chains of calls to addContent
method. Also, “substitution” (method calls with non-variable argument expressions) is
an obvious variation; consider, for example, the construction of a node directly on the
argument position of the addContent method. Further, other Java idioms come to
mind, e.g., loops other than for loops. All these limitations are relatively easy to lift by
either applying a code normalization prior to rewriting or by adding designated rewrite
rules. (In the former case, normalization must be inverted after the actual translation
because the code should be generally preserved as much as possible.)

API incompleteness The transformation only covers very few API methods and types.
For simplicity, the default rule [default-xStm] of Fig. 10 simply skips all statements
that do not match any of the patterns described by the other rules. That is:

[ default —xStm ] xStm(&stm, &doc) = &stm



It is straightforward to replace this liberal default by a policy that avoids skipping
over any statement that involves the source API. It is also straightforward to add local
rewrite rules to cover a larger API subset (as long as no complicated, non-modular code
reorganization issues arise).

Lack of a global translation strategy The transformation must be readily applied to a
scope that is assumed to comply with the scenario “Build XML document”. Two dimen-
sions of generalization are needed to obtain a global translation strategy — referring
here to the notion of strategy a la the language and system Stratego [41] for software
transformation. First, the translation must be expanded to apply to an arbitrary source
unit that may contain any number of scopes of interest. This dimension requires itera-
tion over the scopes of the source unit; it also requires the incorporation of applicability
conditions to decide whether the translation should be attempted at any given scope.
Second, the translation must cover all scenarios of interest.

Unawareness of data dependencies Except for the ad-hoc treatment of document and
root construction, the transformation does not express or check any data dependencies
between the statements that are rewritten. For instance, there is the implicit assump-
tion that the results from all calls of the element constructor, in the given scope, will
be ultimately added to the same hosting document (at some level of nesting). When
this is not the case, the translation will be incorrect indeed because it will invoke the
factory method for element construction on a specific document (that was looked up
by find-doc). We seek a way to express data dependencies between the API calls that
presumably make up for some scenario; see the next section.

Lack of well-typedness preservation In the general case, it is unrealistic to expect a
proof of semantics preservation for API migration specifications. However, we may
want to establish other guarantees about a (rewriting-based) migration specification.
Specifically, well-typedness preservation is desirable: when the migration of a (well-
typed) program completes, then the result is guaranteed to be well-typed (without ap-
plying a separate phase of type checking). It may be possible to adopt ideas from the
rewriting-based approach of Balaban et al. [4] where type constraints (as known from
type checking [31]) are generated (from the input program and the rewrite rules) to de-
termine where updates can be applied such that well-typedness is preserved. Related
work on type-safe code generation [18,22, 15] may be useful in this context, too. Here
the observation is that some parts of a migration specification will essentially interpret a
service of the source API as a kind of macro that expands to services of the target API.

5 API migration based on API protocols

The “amount of issues” with the (naive) rewriting approach suggests that we should
generally seek extra “discipline” so that migration based on some form of rewriting be-
comes more manageable. In this section, we will discuss one disciplining measure: the
use of grammar-based API protocols. The overall idea can be summarized as follows:



— We view API-usage scenarios as languages over the terminals of execution traces,
i.e., actions for object construction or method invocation. The languages are de-
scribed by context-free grammars (and eventually attribute grammars).

— Now we could use standard parsing techniques to decide whether a given program
run meets a protocol. However, we are rather interested in the static property of a
program to encode a scenario that meets the protocol. To this end, we re-interpret
the grammars for the API protocols as descriptions of sets of control-flow graphs
(CFGs), and we lift parsing from the trace level to the CFG level.

— At this point, we can annotate protocols of the source API with actions of the target
API so that the enriched protocol defines a translation from CFGs over the source
API to CFGs over the target API. We argue that such a translation is more manage-
able than a freewheeling rewriting-based specification.

5.1 Context-free approximation of API protocols

As a first approximation, consider the following EBNF-style grammar that describes
the API-usage scenario underlying the benchmark scenario “Build XML document’:

build = newDocument newElement addContent content
content = setText | (newElement content addContent)x

Here, we use (underlined) terminals to refer to the corresponding API method calls.
That is, the API-usage scenario of building documents entails the construction of a new
document, followed by the construction of an element (presumably the root element),
followed by an action to add the root element to the document, followed by actions to
build the content of the root element. We mention in passing that sequential composition
can be complemented by permutational or interleaving composition — thereby enabling
a more flexible order of actions.

5.2 API protocols

Context-free grammars are insufficient to capture data dependencies between the ac-
tions participating in a scenario. (This limitation corresponds to the unawareness of
data dependencies in §4.3.) Consider again the first few actions of build:

newDocument newElement addContent

This formulation does not ensure that the object constructed by hewElement is
added to the object constructed by newDocument via the method call addContent.
As a remedy, we take into account the object identifiers for all arguments and results
of all constructor and method calls. We generalize from context-free grammars to at-
tribute grammars [27] so that we can constrain object identifiers in an API protocol.
Fig. 13 shows the API protocol for the scenario of building XML documents. Based
on the grammatical view on logic programming [13], we use Definite Clause Gram-
mars (DCGs; [32, 38]) as the attribute grammar “notation” of choice. Thereby, the API
protocols become directly executable in Prolog. To preserve EBNF style, we rely on
higher-order predicates for EBNF’s regular expression operators [28]; c.f., the use of
the postfix (higher-order) predicate */1 for EBNF’s iteration.



build (Doc) —

newDocument(Doc), % Construct a new document with identity Doc.
newElement(Root), % Construct a root element with identity Root.
addContent(Doc, Root ), % Add the root element to the document indeed.
content (Root ). % Fill in the content of the root element.

content (Element) —
setText (Element). % Set the text of a leaf element.

content (Parent) —

( child ( Parent ))*. % Add many children.
child ( Parent) —
newElement(Child), % Construct a child element.
content (Child ), % Fill in the content of the child element.

addContent(Parent, Child). % Add the child element to the parent at hand.

Fig. 13. The API protocol for building JDOM trees.

5.3 Basic actions

Even though we do not plan to ever collect execution traces, we will still define the pos-
sible actions that could occur in these traces so that we can reason about those actions
at the level of control-flow graphs:

- new(Oid, Type) (Object construction)
— special(Result,Signature, Arguments) (Object initialization)
— virtual(Result,Signature, Arguments) (Virtual method invocation)
— static(Result,Signature, Arguments) (Static method invocation)

Oid is a placeholder for a constructed object identifier; Type is a placeholder for a
method signature; Result and Arguments are placeholders for object identifiers as
well. Fig. 14 gives the part of the DCG that maps the apparent terminals of the API
protocol for building JDOM trees (i.e., newDocument, newElement, addContent,
and setText) to actions for method and constructor calls.*

5.4 Control-flow trees

Eventually, we want to determine whether a program encodes a a scenario that meets
a given API protocol. To this end, we view programs as suitable control-flow graphs
(CFGs) for which we need to check whether they are contained in the set of CFGs
generated by the grammar for the API protocol.

We limit ourselves to a simple inter-procedural analysis for obtaining the CFGs of
interest. That is, non-API calls must be non-virtual and non-recursive so that we can

4 In DCG notation, right-hand side literals of the form [ T'] denote terminals. In the usual DCG example,
a terminal is a character, a keyword, or a token parametrized by a token attribute. In our application,
terminals are terms that represent actions as listed above.



newDocument(Doc) —
[new(Doc, "org.jdom.Document’)],
[ special (_, '<org.jdom.Document: void <init>()>", [Doc])].

newElement(Element) —
[new(Element, ’org.jdom.Element’)],
[ special (-, ’<org.jdom.Element: void <init>(java.lang. String )>",[ Elt|-])].

addContent(Doc, Content) —
[ virtual (Doc,
'<org.jdom.Document: org.jdom.Document addContent(org.jdom.Content)>’,
[Doc,Content ])].

addContent(Parent, Child) —
[ virtual ( Parent,
'<org.jdom.Element: org.jdom.Element addContent(org.jdom.Content)>’,
[Element, Child])].

setText (Element) —
[ virtual (Element,
'<org.jdom.Element: org.jdom.Element setlext (java.lang. String )>’,
[Element, _])).

Fig. 14. Basic actions of the API protocol for building JDOM trees.

inline the called methods into a simple intra-procedural CFG that is essentially of tree
shape (hence, a “control-flow tree”, i.e., a CF tree). The (slightly simplified) grammar
of such CF trees is the following:

¢ = skip (The empty statement)
| a (Method and constructor calls)
| cthenc (Sequential composition)
| corc (Selective composition, say if ... else ...)

| iterate ¢ (Iteration, say loops)

This view on the program does not contain any “variable declarations”. Instead, the
actions a refer to symbolic object identifiers — subject to a symbolic execution [25] of
the program. Here we leverage enhanced API signatures for the benefit of establishing
constraints on arguments and results of API calls. For the scenario of building JDOM
trees, we need to observe equality constraints like the following:

The result of org. jdom.Element .addContent equals the receiver.

Such equality constraints express JDOM’s capability for method chaining. If we
do not pay attention to these equality constraints, the CF trees contain extra symbolic
object identifiers thereby interfering with the expected precision of expressing data de-
pendencies in an API protocol. In other scenarios, we have also encountered the need
for ownership constraints [9].



5.5 CF-tree parsing

The above grammar of CF trees resembles the regular operators that are used in forming
the EBNF part of our API protocols. Such resemblance is the foundation of a strategy
for parsing such CF trees in accordance with an API protocol. We start from a configu-
ration (c, v) with ¢ as the complete CF tree and v as the start symbol of the API protocol.
In general, the v component is a generalized sentential form (i.e., a regular expression
over terminals and nonterminals). We use a top-down parsing approach where lead-
ing nonterminals are immediately unfolded. (Hence, we do not admit left-recursion.)
Parsing commences as follows:

— skip matches with e.

— a matches with a.

— cthen ¢’ matches with v v’ if ¢ matches with v, and ¢’ matches with v’.
- cor ¢ matches with v | v/, if ¢ matches with v, and ¢’ matches with v’
— iterate ¢ matches with vx if ¢ matches with v.

We need an additional rule to deal with actions that are not of interest for the API
protocol at hand. Here we assume that an API protocol is meant to cover all actions
of types for one or several APIs, whereas the API protocol is meant to be oblivious
to actions of all other types. The additional rule is to simply treat such uninteresting
actions as e.

We also need additional rules to cater for control flows that essentially correspond
to “loop unrolling”. That is, we cannot insist on the sentential form v* to be matched
only with the control flow iterate c. Likewise, we should admit control flows to select
one alternative when the grammar provides several. Further, we need to define matching
for optionality in the grammar (“?”). Hence, we add the following rules:

— c¢matches with v | v’ if ¢ matches with v or with v’.
— ¢ matches with v? if ¢ matches with v | e.
- ¢ matches with v« if ¢ matches with (v v%)?.

These rules can be directly used for parsing CF trees with the DCGs for API pro-
tocols. The simple case of parsing lists for normal DCGs coincides with (say right-
associative) sequential composition of actions.

5.6 Protocol-based translation

CF-tree parsing establishes whether a program encodes a scenario that meets a given
API protocol. By enriching an API protocol, and by generalizing parsing to rewriting,
we derive an effective translation for API migration.

We start from the protocol for a given scenario for the source API; see at the top
of Fig. 15. We continue by making the protocol (the DCG) capture the parsed actions;
see the intermediate step in the middle of of Fig. 15. The meta-predicate >>/2 captures
the prefix consumed by its first argument as its second argument. All these captures are
then composed as a synthesized attribute of the left-hand side. (In accordance with the
general format admitted by CF trees, we do not need to flatten these lists.)



A rule of the API protocol for building JDOM trees; see Fig. 13.
Jjdom:build(Doc) —

Jjdom:newDocument(Doc), % Construct a new document with identity Doc.
Jjdom:newElement(Root), % Construct a root element with identity Root.
Jjdom:addContent(Doc, Root), % Add the root element to the document indeed.
Jjdom: content (Root ). % Fill in the content of the root element.

An illustrative, intermediate step

jdom:build (Doc,
% Concatenation of reproduced matched actions
[JDomNewDoc,JDomNewRoot,JDomAddContentToDoc,Content]

) —
jdom:newDocument(Doc) >> JDomNewDoc,
Jjdom:newElement(Root) >> JDomNewRoot,

Jjdom:addContent(Doc, Root)  >> JDomAddContentToDoc,
Jjdom: content(Root, Doc, Content ).

The corresponding part of the protocol-based translation

Jjdom: build(Doc,
[ (JDomNewDoc, DomCreateDoc),
(JDomNewRoot, DomGetRoot),
(JDomAddContentToDoc, []),

Content |
) —
Jjdom:newDocument(Doc) >> JDomNewDoc,
jdom:newElement(Root) >> JDomNewRoot,

jdom:addContent(Doc, Root)  >> JDomAddContentToDoc,
Jjdom: content (Root, Doc, Content),

{

dom:createDocument(Doc, DomCreateDoc),
dom:getRoot(Doc, Root, DomGetRoot)

}.

Helpers to construct associated DOM actions

dom:createDocument(Doc, [
static (Factory, ’<javax.xml. parsers.DocumentBuilderFactory: ...>’, []),
interface ( Builder, ’<javax.xml.parsers.DocumentBuilderFactory: ...>’, [Factory ]),
interface (Domlmpl, °’<javax.xml.parsers. DocumentBuilder: ...>’, [Builder ]),
virtual (Doc, ’<org.w3c.dom.DOMImplementation: ...>’, [DomImpl, _, _, _]) ]).

dom:getRoot(Doc, Root, [
virtual (Root,
'<org.w3c.dom.Document: org.w3c.dom.Element getDocumentElement()>’,

[Doc])]).

Fig. 15. A protocol-based translation from JDOM to DOM (excerpt).



Eventually, we couple the matched actions of the source API with the corresponding
actions of the target API. Thereby, we describe the replacement of source actions by
target actions including the precise location of new target actions; see the translation
specification at the bottom of Fig. 15. The enhanced DCG synthesizes “coupled CF
trees”. We sense the potential for a domain-specific language to better express these
translations.

5.7 Related work on API-usage scenarios and protocols

There is no generally agreed notion of API protocol. However, some options can be
inferred from the various approaches that focus on recovery of some sort of API-usage
scenarios. For instance, [23] recovers scenarios as UML sequence diagrams; [1] re-
covers scenarios as control-flow-sensitive, static, inter-procedural traces that are rep-
resented as partial orders; [37] recovers temporal API specifications of the form of
finite-state automata by means of static analysis (abstract interpretation).

The description of API-usage scenarios is also relevant for guiding code-search
engines [34,21,40,42] or code completion [29]. The description and verification of
the correct use of an API (or components in the sense of component-based software)
[44, 12, 19] has suggested several kinds of constraints on API usage, e.g., sequencing,
interleaving, ownership.

None of the above approaches relates to API migration, and it is not obvious how
these sorts of protocols would need to be adopted to be useful in this context. The
contribution of our proposal is that API-usage scenarios are described by grammars
over execution traces with an alternative semantics that can be used to parse CF trees
and further refined to rewrite these trees for the purpose of API migration.

In terms of modeling API protocols, our work is closely related to and inspired
by Czarnecki, Antkiewicz et al.’s notion of framework-specific modeling languages
(FSMLs; [3,2]). FSMLs model usage scenarios of OO frameworks such as Java ap-
plets or Struts (but potentially also APIs). Linguistically, framework-specific metamod-
els are feature models (i.e., some form of grammars) over abstract code structures that
are enriched by attribute constraints, and mapping information to facilitate forward en-
gineering (i.e., code generation) and reverse engineering (i.e., extraction of feature con-
figurations), while both directions are informed by additional program analyses. It has
been shown that FSMLs are also suitable to support framework migration [7]. Com-
pared to FSMLs, our contribution is a form of protocol whose interpretation is a set of
control-flow graphs while the protocol can be optionally annotated to facilitate rewriting
on control-flow graphs.

6 Conclusion

We have described a benchmark for API migration within the XML programming do-
main. The challenge is to be able to migrate programs that use one XML API to use
instead another API. We have studied basic options for API migration: wrapping and
a basic rewriting approach. These options illustrated the hardness of the problem. Ul-
timately, we have proposed the use of protocols for capturing API-usage scenarios and



disciplining the description of translations for API migration. The proposed form of
protocol is grammar-based and relies on grammar-based and compiler techniques to
implement migration, i.e.: parsing, rewriting, and flow analysis.

By putting online an extended benchmark and some of our implementational exper-
iments, we hope to motivate others to join us in the investigation of the API-migration
problem. Considerable research effort will be needed to arrive at a general form of
API protocol that covers more arbitrary domains and APIs. A key challenge is also the
amalgamation of the protocol language with a sufficiently general as much as effec-
tive and transparent framework for program analysis so that protocols (and translations
upon them) can involve data-flow constraints, control-flow constraints, non-escaping
constraints, and others. The verification of the relative completeness of a translation as
well as up-front guarantees such as well-typedness preservation also has an impact on
the design of the protocol language.
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