
Fachbereich 4: Informatik DFKI Saarbrücken

Graph-Based Visualization of RDF
Soccer Data and Interaction
Possibilities on a Handheld

Diplomarbeit
zur Erlangung des Grades eines Diplom-Informatikers

im Studiengang Computervisualistik

vorgelegt von

Philipp Heim

Erstgutachter: Prof. Dr.-Ing. Stefan Müller
(Institut für Computervisualistik, AG Computergraphik)

Zweitgutachter: Dipl.-Ling. Daniel Sonntag
(DFKI Saarbrücken, Intelligente Benutzerschnittstellen)

Koblenz, im Februar 2007

i

Erklärung

Ich versichere, dass ich die vorliegende Arbeit selbständig verfasst und keine
anderen als die angegebenen Quellen und Hilfsmittel benutzt habe.

Ja Nein

Mit der Einstellung der Arbeit in die Bibliothek bin ich einverstanden. � �

Der Veröffentlichung dieser Arbeit im Internet stimme ich zu. � �

. .
(Ort, Datum) (Unterschrift)

ii

Aufgabenstellung

Die Dialogführung mit einem Computer ist eingeschränkt. Ein wichtiger
Grund hierfür ist die Tatsache, dass ein Computer nicht im menschlichen
Sinne ”verstehen” kann. Um eine Verständigung zwischen Mensch und Com-
puter dennoch zu ermöglichen, müssen wir Verstehen simulieren. Für diese
Simulation benötigt man semantische Informationen über den Dialog. Diese
können mit Hilfe einer Ontologie bereitgestellt werden.

Die Diplomarbeit beschäftigt sich mit der grafischen Repräsentation eines
solchen Dialogs. Dieser Dialog findet über einen Handheld (PDA) statt und
besteht im Wesentlichen aus einer Frage und der darauf gegebenen Antwort
durch den Computer.

Die semantischen Informationen, die benötigt werden, um Verstehen zu
simulieren, werden bereits durch das Dialogsystem extrahiert. Die Aufgabe
dieser Diplomarbeit ist herauszufinden, auf welche Weise man diese Infor-
mationen für die grafische Schnittstelle des Dialogs zwischen Computer und
Mensch konkret nutzen kann.

Die Herausforderung besteht darin, die semantischen Informationen zu
den Antworten des Computers in sinnvoller Weise für die Präsentation ein-
zusetzen. Der Einsatz soll dem Verständnis von komplexen Resultaten
und der Möglichkeit zur Navigation durch die Resultatstrukturen dienen.
Auch sind die besonderen Konditionen auf einem PDA, wie geringer Platz,
niedrige Auflösung und beschränkte Rechenleistung zu berücksichtigen. Hi-
erfür müssen geeignete Lösungen gesucht und getestet werden.

Das Ziel dieser Diplomarbeit ist die Entwicklung einer grafischen Dar-
stellungs- und Interaktionskomponente zur Nutzung von semantischen In-
formationen.

Schwerpunkte dieser Arbeit sind:

1. Literatur Recherche

2. Prototypentwicklung / Evaluation

3. Implementierung / Umsetzung des Prototypen

4. Dokumentation

iii

iv

Die Diplomarbeit wird am DFKI (Deutsches Forschungszentrum für Künst-
liche Intelligenz GmbH), Bereich IUI (Intelligent User Interfaces), innerhalb
des SmartWeb Projektes in Saarbrücken durchgeführt.

Abstract

In this thesis we searched for ways to enhance human accessibility to the cur-
rent Semantic Web technology by enabling the visualization of knowledge.
We built a graph-based user interface in which users can explore and adapt
information that is arranged with respect to the relations within this infor-
mation as well as its meaning. The data necessary to arrange information
that way is extracted out of RDF descriptions.

The work in this thesis was done in the context of the SmartWeb project
at the German Research Center for Artificial Intelligence (DFKI). The goal
of the SmartWeb project is to lay the foundations for multimodal user in-
terfaces to distributed and composable Semantic Web services on mobile
devices.

Due to the use of a mobile handheld device, our graph-based user in-
terface must be able to present content on a small screen size. For the
space-efficient visualization we use a graphical fisheye view for graphs in
combination with advanced interaction forms to offer details on demand.
The use of a graphical fisheye view is a valuable tool for seeing both “local
detail” and “global context” simultaneously.

Our graph presentation system needs to be able to deal with arbitrary
RDF input data. Therefore, we structurally map this RDF input data to
useful graph data for a visualization and than use an automatic layouter to
arrange that graph data properly on the handheld. The automatic layouter
applies a constraint-based method to find positions for all graph vertices
with respect to their semantic relations. Due to the use of an automatic
layouter, our graph-presentation system is ready for the integration into the
SmartWeb system.

During the development of this thesis, we evaluated the usability of our
approach in two stages. The first evaluation of our graph-presentation sys-
tem showed that the users, especially those with less computer skills, had
problems with the advanced interaction possibilities and with the extraction
of information out of the distorted graph.

Drawing the right consequences from the first evaluation, the results of
the second evaluation showed a clear improvement of usability and suitability
to extract information out of the graph. This positive feedback of the second
evaluation demonstrates, that our approach to arrange information in a

v

vi

graph structure on a handheld with respect to its semantic relations can
provide the users with a general survey of the information structure and
thereby support their understanding of interrelations.

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Starting Point . 2

1.2.1 SmartWeb Project . 3
1.2.2 Semantic Web . 3
1.2.3 Resource Description Framework 4
1.2.4 Meta-Data . 5
1.2.5 SmartWeb Architecture 7

1.3 Task Description . 8
1.4 Related Work . 10
1.5 Outline . 11

2 Specification and Architecture 13
2.1 Prototyping . 13

2.1.1 Ergonomic Principles 14
2.2 Software Specification . 14
2.3 Software Architecture . 15

2.3.1 Design Pattern . 16
2.3.2 Conclusion . 22

3 Prototype Implementation 23
3.1 Dummy Data . 23

3.1.1 Dummy Graph Data 24
3.1.2 Dummy Graph Layout 24

3.2 Visualization . 25
3.2.1 Visualizing Instances and Relations 25
3.2.2 Visualizing Many Edges 27

3.3 Interaction . 27
3.3.1 Changing Instances . 27
3.3.2 Changing Relations 32

3.4 Limited Space . 35
3.4.1 Perspective Techniques 36
3.4.2 Fisheye View . 38

vii

viii CONTENTS

3.5 Semantic Navigation . 42

4 First Evaluation 47
4.1 Evaluation Framework . 47

4.1.1 First Prototype . 47
4.1.2 Implementation Objectives 48
4.1.3 Evaluation Questions 48
4.1.4 Context of the Evaluation 49

4.2 Evaluation Procedure . 49
4.2.1 Sources of Information 49
4.2.2 Information Needed and Methods Used 50

4.3 Evaluation Results . 52
4.3.1 Insights Gained From Free-Text User Input 56

5 Further Development 59
5.1 Consequences Arising out of the First

Evaluation . 59
5.2 Visual Improvements . 61

5.2.1 Refinement of the Consistency Check 63
5.2.2 Refinement of the Fisheye Distortion 65

5.3 Integration into SmartWeb 67
5.4 Structure Mapping . 68
5.5 Automatic Graph Layout . 70

5.5.1 Force Directed Method 72
5.5.2 Constraint-based Method 73
5.5.3 Perturbation Model 74
5.5.4 Refinement Model . 75

5.6 Server Client Communication 81
5.6.1 Data Structure . 82
5.6.2 Conclusion . 84

5.7 Limits of the Constrained-based Method 85

6 Second Evaluation 89
6.1 Evaluation Framework . 89

6.1.1 Second Prototype . 89
6.1.2 Implementation Objectives 90
6.1.3 Evaluation Questions 91
6.1.4 Context of the Evaluation 91

6.2 Evaluation Procedure . 91
6.3 Evaluation Results . 91

6.3.1 Conclusion . 94

CONTENTS ix

7 Conclusion 97
7.1 Summary of Results . 97
7.2 Outlook . 99

Questionnaire i

x CONTENTS

Chapter 1

Introduction

Visualization is in many cases an important factor of success and value en-
hancer of information reception. For every specific type of information there
are certain categories of visual representation that are more suitable than
others. The use of a graph for the visualization of information has the advan-
tage that it can capture the information structure and can model knowledge
to a great extend. Therefore graphs are suitable to convey semantic re-
lations between different elements and to provide an understanding of the
overall information structure. To arrange information that way, semantic
meta-data is needed.

In the approach described in this thesis, we rely on RDF descriptions
as semantic meta-data. In the Semantic Web, RDF data is used to make
meaning computer-processable. Machines can use those meta-data to build
a view of how the individual terms within the information relate to each
other and thereby become able to search websites and perform actions in a
meaningful way. Even if the described information is intended for machines,
there is no reason for not using RDF data for humans too, by facilitating
their understanding through enhanced visualization.

1.1 Motivation

Our approach, described in this diploma thesis, is founded on the premise
that machine web-based meta-data need not necessarily be only for ma-
chines, but can be used to offer humans a graphical representation of this
meta-data to support their understanding of content.

In this thesis we develop a graphical user interface (GUI) for a mobile
device, a handheld, which uses such meta-data for a better understanding
of content. Our work is done in the context of the SmartWeb project whose
aim it is to develop a context-aware, mobile, and multimodal user interface
to the Semantic Web system [44].

Using meta-data for a graphical representation can improve the users’

1

2 1. INTRODUCTION

understanding of certain information pieces and of the relations between
these pieces. With our additional graphical representation for the SmartWeb
system, the dialog with the user could become more efficient because of a
faster and more precise understanding of the presented information. A faster
and more precise understanding would be especially useful for a dialog on a
handheld because of its mobile aspect.

The use of meta-data to arrange information pieces with respect to their
semantic relations could lead to an enhanced capacity to retrieve informa-
tion. The capacity could be enhanced due to the fact that users are more
familiar with this way of information arrangement, because humans itself
encode information based upon its meaning (semantically) [34].

Just as the way to arrange information, the way to offer a new possibility
to ask for new information could be also more familiar to the user than the
already existing one.

In our GUI, the user should be able to use the already displayed infor-
mation as a starting point to ask for additional information. By using this
information as starting point, the received additional information is always
semantically related to the already displayed one. Unlike to a complete new
question, this way the received additional information could be smoothly
integrated into the already displayed one. The user will therefore be able
to iteratively refine his knowledge by following cross-references that lead
to related information. Such a browsing functionality could be more intu-
itive for the user, especially if he does not know in advance what pieces of
information are necessary to find an appropriate solution.

The use of meta-data to support the understanding of information in a
graphical user interface could be a promising way to improve the multimodal
dialog in the SmartWeb system. It could open up a new way of information
reception on a handheld.

1.2 Starting Point

Consistent with the motivation given in the previous section, the starting
point can be expressed as the question:

• Can RDF description be used not only to make the management and
navigation of Web data easier to automate, but also to offer users
a graphical representation of this description to support their under-
standing of content?

In this work we discuss ways of how this RDF description can be used
suitably in a new GUI. Thereby we focus on ways for a concrete project, the
SmartWeb project.

1.2. STARTING POINT 3

1.2.1 SmartWeb Project

The SmartWeb1 project is organized by the German Research Center for
Artificial Intelligence (DFKI)2 in cooperation with several other research
centers and companies. The goal of the SmartWeb project is to lay the
foundations for multimodal user interfaces to distributed and compassable
Semantic Web services on mobile devices [55].

The appeal of being able to ask a question to a mobile internet terminal
and to receive an answer immediately has been renewed by the broad avail-
ability of information on the Web. Ideally, a spoken dialogue system that
uses the Web as its knowledge base would be able to answer a broad range
of questions.

SmartWeb provides a context-aware user interface, so that it can support
the user in different roles, e.g. as a car driver, a motor biker, a pedestrian,
or a sports spectator. One of the planned demonstrators of SmartWeb is
a personal guide for the 2006 FIFA world cup in Germany that provides
mobile infotainment services to soccer fans, anywhere and anytime.

The work in this thesis is done in the context of the SmartWeb project,
more precisely in the context of the FIFA world cup scenario of this project.
In this scenario soccer fans employ a handheld computer to request informa-
tion available in the Semantic Web. The questions can be formulated freely
in spoken natural language and can be supported by pointing gestures on the
touch screen [45]. The domain of inquiry is focused on subjects surrounding
the FIFA World Championships 2006, such as facts about the players and
games. SmartWeb searches the Internet, in particular the Semantic Web,
finds and formulates a natural language answer. In addition, the answer can
include videos, graphics, texts, or other type of media. Natural language
queries (perhaps supplemented with gestures) initiate an intelligent Seman-
tic Web search. When all relevant data for answering the question has been
collected, it is sent back to the handheld client and there presented to the
user by a graphical user interface.

1.2.2 Semantic Web

The central idea of the Semantic Web initiative is to make the meaning
of Web content machine accessible and processable [2]. The information
in the Semantic Web is given a well-defined meaning due to meta-data.
The meta-data consists of semantic information about the Web content and
enables the development of sophisticated tools that can provide a much
higher functionality in supporting human activities on the Web.

The Semantic Web relies on the combination of the following technolo-
gies:

1http://www.smartweb-project.de
2http://www.dfki.de

4 1. INTRODUCTION

• Explicit meta-data: They allow Web pages to make their meaning
accessible. For example, on a soccer club’s Web Page, meta-data can
identify names, final results, attendances, active players, goals etc.

• Ontologies: They describe the main concepts of a domain and their
relationships. For example, a Sport Event ontology may contain con-
cepts such as soccer matches, players, goalkeepers, and relationships
such as subclass information (all goalkeepers are players).

• Logical reasoning: It makes it possible to draw conclusions from com-
bining meta-data with ontologies.

The machine-readable descriptions enable content managers to add mean-
ing to the content, thereby facilitating automated information gathering
and research by computers. RDF and RDF Schema provide the basic core
languages for the Semantic Web.

1.2.3 Resource Description Framework

Resource Description Framework3 (RDF) is the W3C standard for encoding
knowledge [53].

RDF provides a general, flexible method to decompose any knowledge
into small pieces, called triples, with some rules about the semantics (mean-
ing) of those pieces.

The foundation is breaking knowledge down into a labeled, directed
graph. Each edge in the graph represents a fact, or a relation between
two things. The edge in the example in figure 1.1, from the vertex michael-
Ballack labeled playsFor to the vertex chelseaFootballClub represents the
fact that Michael Ballack plays for Chelsea Football Club.

The W3C specifications define an XML format to encode RDF. For our
example, figure 1.2 shows how actually to write this in RDF.

http://www.example.org/playsFor
http://www.example.org/michaelBallack http://www.example.org/chelseaFootballClub

Figure 1.1: RDF knowledge expressed as a directed graph for the example:
Michael Ballack plays for Chelsea Football Club.

A fact represented this way has three parts: a subject, a predicate (i.e.,
verb), and an object. The subject is what is at the start of the edge, the
predicate is the type of edge (its label), and the object is what is at the end
of the edge. The predicate expresses a relationship between the subject and
the object.

3http://www.w3.org/RDF/

1.2. STARTING POINT 5

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:ex="http://www.example.org/">
<rdf:Description rdf:about="http://www.example.org/michaelBallack">

<ex:playsFor rdf:resource="http://www.example.org/chelseaFootballClub"/>
</rdf:Description>

</rdf:RDF>

Figure 1.2: W3C XML format to encode RDF for the example: Michael
Ballack plays for Chelsea Football Club.

In essence, RDF Schema is a primitive ontology language offering the
following features:

• Organisation of instances in concepts (player, soccer player, stadium,
score) and binary relations (happens at, held in, committed by).

• Subconcepts (all soccer players are players) and subrelations (everyone
who score a goal in a soccer match is on a team) relationships.

• Domain (only a player can score) and range (one can score goals only)
restrictions on relations.

1.2.4 Meta-Data

The SmartWeb system makes use of the SmartWeb integrated ontology
SWIntO [36] in order to exchange data between its internal modules. SWIntO
integrates various domain-specific ontologies that are relevant for mobile and
intelligent user interfaces to open-domain question-answering and informa-
tion services on the Web.

An answer found by the SmartWeb system consists of ontological in-
stances which can include different media types. Every instance is of a cer-
tain concept defined in SWIntO and can have relations to other instances.
This information is meta-data and it is encoded in RDF. It provides infor-
mation about concepts and relations of instances.

To give an example of such meta-data, we will use the following dialog
consisting of an asked question and a given answer. The question, asked by
the user, is:

• How was Germany playing against Argentina in a world championship?

The answer found by the SmartWeb System on the server consists of four
soccer matches of these teams in a world championship, the first 1958 in
Sweden, the second 1966 in England, the third 1986 in Mexico and the
last match 1990 in Italy. Along with this comes further information such
as dates, locations, goals, players and so on. An abbreviated RDF repre-
sentation of the answer found by the SmartWeb system is given in figure
1.3.

6 1. INTRODUCTION

<rdf:RDF
xmlns:j.1="http://smartweb.semanticweb.org/ontology/smartdolce#"
xmlns:j.0="http://smartweb.semanticweb.org/ontology/smartsumo#"
xmlns:j.2="http://smartweb.semanticweb.org/ontology/context#"
xmlns:j.3="http://smartweb.semanticweb.org/ontology/smartmedia#"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:j.4="http://smartweb.semanticweb.org/ontology/swemma#"
xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
xmlns:j.6="http://smartweb.semanticweb.org/ontology/mpeg7#"
xmlns:j.5="http://smartweb.semanticweb.org/ontology/discourse#"
xmlns:j.7="http://smartweb.semanticweb.org/ontology/sportevent#"
xmlns:j.8="http://smartweb.semanticweb.org/ontology/emma#" >

<rdf:Description rdf:about="http://smartweb.(...)#Argentinien_vs_Deutschland_FRG_29__Juni_1986">
<rdfs:label>Argentinien vs. Deutschland (29.06.1986) 3:2 Finale</rdfs:label>
<j.1:HAPPENS-AT rdf:resource="http://smartweb(...)semistruct#29. Juni 1986_interval"/>
<j.7:inTournament rdf:resource="http://smartweb.(...)#SportEventOntology7Jan_Instance_10028"/>
<j.7:inRound rdf:resource="http://smartweb.semanticweb.org/ontology/semistruct#id_31992"/>
<j.7:heldIn rdf:resource="http://smartweb.(...)semistruct#Mexico_City_Azteca_Stadium"/>
<j.7:attendance>114600</j.7:attendance>
<j.7:officials rdf:resource="(...)Deutschland_FRG_29__Juni_1986_Berny_Morera"/>
<j.7:matchEvents rdf:resource="(...)vs_Deutschland_FRG_29__Juni_1986_Jose_Brown23_Score"/>
<j.7:matchEvents rdf:resource="(...)vs_Deutschland_FRG_29__Juni_1986_Jorge_Valdano55_Score"/>
<j.7:matchEvents rdf:resource="(...)Deutschland_29__Juni_1986_Karl-Heinz_Rummenigge74_Score"/>
<j.7:matchEvents rdf:resource="(...)_vs_Deutschland_FRG_29__Juni_1986_Rudi_Voller80_Score"/>
<j.7:matchEvents rdf:resource="(...)Deutschland_FRG_29__Juni_1986_Jose_Burruchaga83_Score"/>

</rdf:Description>
</rdf:RDF>

<rdf:Description rdf:about="http://(...)sportevent#SportEventOntology7Jan_Instance_10028">
<rdf:type rdf:resource="http://smartweb.semanticweb.org/ontology/sportevent#FIFAWorldCup"/>
<j.7:url>http://fifaworldcup.yahoo.com/06/en/p/pwc/r/1986.html</j.7:url>
<j.7:NumberOfQualifiers>113</j.7:NumberOfQualifiers>
<j.7:gender>Men</j.7:gender>
<rdfs:label>WC 31.5.1986 - 29.6.1986, MEXICO (MEX)</rdfs:label>
<j.7:NumberOfParticipants>24</j.7:NumberOfParticipants>
<j.7:officialName>XIII Copa del Mundo - Mexico'86</j.7:officialName>
<j.1:HAPPENS-AT rdf:resource="http://(...)#SportEventOntology_Instance_30037"/>

</rdf:Description>

<rdf:Description rdf:about="(...)Deutschland_29__Juni_1986_Karl-Heinz_Rummenigge74_Score">
<rdfs:label>Tor von Karl-Heinz Rummenigge (0) in der 74. Minute</rdfs:label>
<j.7:committedBy rdf:resource="(...)Deutschland_29__Juni_1986_Karl-Heinz_Rummenigge_PFP"/>
<j.1:HAPPENS-AT rdf:resource="http://(...)#29-6-1986__:_timepoint+74_RelativeTimePoint"/>
<j.7:opponentScoreAfterGoal>1</j.7:opponentScoreAfterGoal>
<j.7:ownScoreAfterGoal>2</j.7:ownScoreAfterGoal>
<rdf:type rdf:resource="http://smartweb.semanticweb.org/ontology/sportevent#ScoreGoal"/>

</rdf:Description>

(...)

Figure 1.3: Abbreviated RDF representation of the answer to the question:
“How was Germany playing against Argentina in a world championship?”
found by the SmartWeb system

1.2. STARTING POINT 7

The meta-data encoded in this RDF representation defines, for example,
that a certain match between Germany and Argentina is of the concept ”soc-
cer match”. In this ”soccer match” concept all relations to other concepts
are described in an abstract form. So every concept defines the relation
structure for all concrete instances of it. Such a relation is, for example,
”happens at”. This relation has a ”soccer match” as the subject concept
and the ”date” concept as the object. For a concrete instance of ”soccer
match” there must be a concrete instance of ”date” for the ”happens at”
relation. So every instance has, depending on its concept, several relations
to other instances. All relations defined by a concept are called the outgo-
ing relations for the instances of this concept. These outgoing relations have
this concept as the subject and other concepts as the object.

Every instance has arbitrary incoming relations. Incoming relations are
all relations with the concept of this instance as the object. For a concrete
instance of the concept ”date”, the ”happens at” relation is an incoming re-
lation, because it leads from a ”soccer match” to a ”date” concept. Whether
a relation is called incoming or outgoing relation depends on the concept we
look at. For the ”soccer match”, ”happens at” is an outgoing relation, for
the ”date” concept it is an incoming one.

Not all relations are only between instances. Some are between an in-
stance and a primitive. A primitive can be a literal or a number and has no
outgoing relations.

For the presentation of this information to the user, every instance has
labeling information. These labels stand for the semantic meaning of its
instance.

In figure 1.3 the labels are marked with the tag “rdfs:label”. For example,
a label for an instance of the concept ”tournament” is ”WC 31.5.1986 -
29.6.1986, MEXICO (MEX)”.

Along with the labels comes more information about this instance, like
the number of participants or a outgoing relation “happens at” to an instance
of a date. For every concept the number of outgoing relations can differ,
starting from zero up to a few tens. The soccer match in figure 1.3, for
example, has nine outgoing relations.

All the information in the RDF files is given by the SmartWeb system.
The question is how to use this knowledge description for a graphical user
interface on a handheld in a multimodal dialog system.

1.2.5 SmartWeb Architecture

The SmartWeb architecture consists of two basic processing blocks: hand-
held client and server system platform as shown in figure 1.4. The multi-
modal recognizers, the dialog system, and the Semantic Web access subsys-
tems are located on this server. The user poses open-domain multimodal
questions over the handheld client. The multimodal input is interpreted and

8 1. INTRODUCTION

SmartWeb
Ontologies

Server System Platform

Multimodal
Recognizer

Dialog
System

Semantic Web
Access

Speech &
Camera Input

Speech Output

Input & Output via
Graphical User Interface

Handheld Client

Figure 1.4: Distributed dialog processing in the SmartWeb system.

transmitted using UMTS or wireless LAN to a back-end server system. The
handheld client and the server system exchange data in an XML format [44].

After the answer to an asked question has been found on the server side,
it is sent back to the client, running on the user’s handheld. It consists of a
local Java based control unit which takes care of all I/O. It is connected to
the GUI-controller, which is realized using Macromedia Flash with Action-
script. So the results are presented to the user via a Flash interface on the
handheld client.

This thesis is written in the context of the SmartWeb project. Therefore
the conditions are:

• A handheld client that uses a graphical user interface, shown in figure
1.5 and 1.6.

• Over this interface, the user can pose open-domain multimodal ques-
tions.

• The multimodal input is interpreted and transmitted using UMTS or
wireless LAN to a back-end server system.

• The communication is realized due to a client-server architecture.

• The response to a question is presented on the mobile device and
rendered on its screen (figure 1.6).

• A dialog is used for question answering functionality.

1.3 Task Description

In this thesis, the task is to develop a graphical representation of the answers
found by the SmartWeb system. Additionally to the existing representation

1.3. TASK DESCRIPTION 9

Figure 1.5: The current GUI for the
SmartWeb system on a handheld
client. The user has asked the ques-
tion: “Who was the world champion
1990?”

Figure 1.6: The response to this
question is presented on the mobile
device. The answer is “Germany”.

of the result data, consisting of media types such as text, picture, video,
audio, and answer snippet (figure 1.6), the task is to offer the user a sec-
ond result representation. In contrast to the current representation on the
handheld, this new representation should deploy the meta-data to present
the results in a way to support the understanding of its overall structure.

Due to the use of this meta-data, the user should better understand the
complex interrelations in the result data and receive a different, a semantic
point of view on it. We are using the term semantic point of view, be-
cause the meta-data identifies concepts and relationships and thereby gives
information a well-defined meaning.

Furthermore, the second representation should offer a possibility to navi-
gate through the result data. The user should be able to explore the received
data through this semantically based graphical representation. We call such
an exploration a semantic navigation.

Beyond the semantic navigation, the user should be able to ask for new
information due to this second interface. In addition to the possibility to
ask a concrete question, formulated freely in spoken natural language or
typed in an input field (figure 1.5), this second interface should provide a
way to directly use the presented results as a starting point to ask for new
information.

Together with this new way to ask for information, the goal of the second
GUI is to reach the following three benefits:

10 1. INTRODUCTION

1. To support a new understanding of the received data by using the
meta-data out of the RDF files.

2. To offer another way to explore the result data by a semantic naviga-
tion.

3. To provide another way to ask for new information, using the already
received data as a starting point.

The challenge is to reach these benefits at a device with severe restrictions.
The most severe restriction thereby is the size of the handheld. So a major
effort to deal with is the small size and the low resolution of the screen.

Another problem is the restricted computing power of the device. Be-
cause of that, the amount of computation on the handheld has to be as small
as possible. Thus it appears that the given kind of device has an important
stake in finding the right solution for this task.

Finally, our solution should get integrated in the SmartWeb system and
has to work with dynamically generated data.

1.4 Related Work

Displaying RDF data in a user-friendly manner is a problem addressed by
various types of applications using different representation paradigms [41].

Web-based tools such as Longwell4 use nested box layouts, or table-like
layouts for displaying properties of RDF resources with varying levels of
details.

Figure 1.7: IsaViz is a visual envi-
ronment for browsing and authoring
RDF models represented as graphs.

Figure 1.8: The MoSeNa-Approach
aims at modeling complex, role-
based and integrated navigation
structures for structured and semi-
structured data.

4http://simile.mit.edu/longwell/

1.5. OUTLINE 11

Other tools like IsaViz [39] (see figure 1.7) represent RDF models as
vertex-edge diagrams, explicitly showing their graph structure. IsaViz is
a visual environment not only for browsing, but also for authoring RDF
graphs and is one of the most widely seen tools for graph visualizations of
RDF meta-data [40]. It produces the graphs for the W3C’s RDF validator.

A third approach combines these paradigms and extends them with spe-
cialized user interface widgets designed for specific information items like
calendar data, tree structures, or even DNA sequences, providing advanced
navigation tools and other interaction capabilities: The MoSeNa-Approach
[5] (see figure 1.8) and Haystack [43].

In our approach, we use a graph-based representation of the RDF data.
We will think about ways to use this graph-based representation, consisting
of vertices and edges, as a user interface for the handheld client.

One problem by visualizing data on a small display is lack of space.
Several work has been done on generating space-efficient graphical user in-
terfaces for mobile devices, like a handheld, or for displays with limited
display resources in general [25]. We will discuss different ways of dealing
with the limitation of space in section 3.4.

Another problem we have to deal with by solving the task described in
section 1.3, is to automatically find a graph layout. We need an automatic
graph layout, to deal with arbitrary RDF input data. This topic will be
addressed in section 5.5.

1.5 Outline

The thesis consists of seven chapters.
Chapter 2 starts with the software specification and explains the software

architecture. The main focus is on useful design patterns for a graphical user
interface.

Chapter 3 deals with the implementation of our approach. The first
section is about input dummy data for our first prototype. Section two deals
with the concrete visualization, followed by a section about the interaction
possibilities and their realization. We conclude the chapter with a discussion
about the problem of limited space on the handheld.

In Chapter 4, we use a first evaluation of our first prototype to verify the
decisions made so far and to get interesting impulses for further development
steps.

In Chapter 5 we draw the consequences for further development of the
software. We start with visual improvements of our GUI, which is followed
by the important topic of automatic layout as a consequence of arbitrary
input data. With the ability to deal with arbitrary input data, our software
becomes ready to be integrated into the SmartWeb system.

12 1. INTRODUCTION

In Chapter 6, we use a second evaluation to validate the hypotheses from
the first evaluation and to identify problems.

The thesis finishes with Chapter 7 that consists of a summary of results
and an outlook, giving suggestions for further development.

Chapter 2

Specification and
Architecture

The steps for the development of our approach are, firstly, a specification
of the software, secondly, a description of the architecture and thirdly, the
implementation of the specification.

There are always several possible ways to realize a software specification,
so pros and cons have to be discussed. Therefore prototyping seems to be a
good approach for the software development process.

2.1 Prototyping

Prototypes are experimental and incomplete designs, which are cheaply and
fast developed. Prototyping, which is the process of developing prototypes,
is an integral part of iterative user-centered design because it enables de-
signers to try out their ideas with users and to gather feedback [42].

The main purpose of prototyping is to involve the users in testing design
ideas and get their feedback in the early stage of development, thus to reduce
the time and cost of development. It provides an efficient and effective way
to refine and optimize interfaces through discussion, exploration, testing and
iterative revision [46]. Early evaluation can be based on faster and cheaper
prototypes before the start of a full-scale implementation. The prototypes
can be changed many times until a better understanding of the user interface
design has been achieved with the joint efforts of both the designers and the
users.

As a guideline for the development of an ergonomic interface we use the
international standard ISO Norm EN ISO 9241.

13

14 2. SPECIFICATION AND ARCHITECTURE

2.1.1 Ergonomic Principles

The International Standard Organization has formulated guidelines for er-
gonomic requirements of computer-supported office work. The correspond-
ing standard comprises hardware design, activity and task design as well as
dialogue design.

ISO Norm EN ISO 9241, Volume 10, defines seven ergonomic principles
for work-oriented software that have to be considered for the development
of a successful interface. The seven ergonomic principles described therein
are suitability for the task, self-descriptiveness, controllability, conformity
with user expectations, error tolerance, suitability for individualization and
suitability for learning.

2.2 Software Specification

A specification is a set of requirements. One of the main requirements
concerning the implementation are clearly laid out interface components
that follow the demands on ergonomic software, as it is described in section
2.1.1. Other important requirements regard the functionality of the software.
In the following, an informal description of the functionality is given.

As input data, we receive a RDF file, as it is shown in figure 1.3. We need
to find a way to convert this RDF data into a useful structure for a graphical
user interface on a handheld client. The unconverted data expressed as a
RDF graph is unsuitable to fit on a small display. This is due to the fact
that in the RDF graph, every instance is represented by a separate vertex
and a RDF file can consist of many instances.

On this account, we need a structural mapping from the RDF data, to a
graph structure suitable for visualization on the small display of a handheld
client.

After having proper graph data, the next step is to find a graph layout.
The graph layout defines for every vertex of the graph data an x- and a
y-coordinate, determining its position. Because the received answers are
dynamically generated, we need an automatic graph layout to deal with this
dynamic input data.

The graph layout, generated automatically, then needs to be presented
to the user. Additionally to a proper visualization of this graph layout, the
user must be able to interact with the graph appropriately. As mentioned in
the task description in section 1.3, the user needs to be able to explore the
result data and to ask for new information, using this graph representation.

Finally this has to be integrated into the SmartWeb system. We need
the integration to ask for new information and to receive the answers from
the SmartWeb system. Furthermore, our graphical user interface has to be
integrated into the existing user interface of the SmartWeb system on the
handheld client.

2.3. SOFTWARE ARCHITECTURE 15

The software we are going to develop in this work is expected to fulfill
these requirements regarding the functionality, illustrated in figure 2.1.

RDF dataRequest
Requests information Structurally maps

Automatically layouts

Answers requests
(Dialog system)

Answer
(RDF)

SmartWeb system

Displays

Graphical
user interface

User

Graph
data

User
interaction

Graph
layout

Figure 2.1: A data flow diagram, giving a survey of the data processing that
has to be implemented in this diploma thesis.

To sum up, the software specifications are:

1. To receive dynamic input data encoded in RDF.

2. To structurally map these RDF data to useful graph structures for a
presentation on a small display.

3. For this dynamic graph data, we have to automatically generate a
graph layout.

4. Then the graph layout must be displayed on a handheld client.

5. The user needs to be able to interact with this graph to explore the
information in it.

6. Additionally the user needs to be able to ask for new information,
using this graph-based user interface.

7. Finally the software has to be integrated into the SmartWeb system.

2.3 Software Architecture

The software we are going to develop in this work is expected to provide
an additional graphical user interface to make the meta-data of the results
accessible for the user. In figure 2.2 we show a flow chart of the new graphical

16 2. SPECIFICATION AND ARCHITECTURE

user interface. This new GUI is using Macromedia Flash1 with Actionscript,
because the already existing GUI of the SmartWeb system is using this
technology.

Structure Mapping

Request Visualization

User Interaction

Figure 2.2: A flowchart of the new graphical user interface. The data out of
the RDF file is structurally mapped and visualized. The user can interact
with the graphical interface displayed on the handheld client. Additionally
the user has the opportunity to request for new information, using this graph
as starting point.

Our graph presentation system has to handle several complex tasks. It
has to arrange correctly a given graph structure, response suitably to user
interaction and communicate with the server. To find adequate software
architecture for these tasks, we use design patterns.

A pattern guides a designer by providing workable solutions to
all of the problems known to arise in the course of design [4].

2.3.1 Design Pattern

Design patterns originated as an architectural concept by Christopher Alexan-
der. He defines a pattern as follows: ”Each pattern describes a problem
which occurs over and over again in our environment, and then describes
the core of the solution to that problem, in such a way that you can use this
solution a million times over, without ever doing it the same way twice”.

He used it to refer to common problems of civil and architectural design,
from how cities should be laid out to where windows should be placed in a
room. The idea was initially popularized in his book ”A Pattern Language”

1http://www.adobe.com/products/flash/flashpro/

2.3. SOFTWARE ARCHITECTURE 17

[1]. Design patterns gained popularity in computer science after the book
”Design Patterns: Elements of Reusable Object-Oriented Software” [24] was
published in 1995. It describes patterns for managing object creation, com-
posing objects into larger structures and coordinating control flow between
objects.

For our graph-based user interface we are interested in patterns that
are particularly applicable to the problems that arise in graphical user in-
terfaces. In the following sections, we introduce three pattern used in the
implementation of our user interface.

The first pattern we will look at is the Observer pattern and describes,
how to update many objects when a single object changes state (figure 2.3).
The second pattern is the Model-View-Controller (MVC) and the third pat-
tern, the Delegation-Event Model. MVC is a combination of patterns that
grew out of the Smalltalk language [28] and is used to structure user in-
terfaces. The Delegation-Event Model is a core Java pattern that describes
how to implement events and event handling.

Observer Pattern

The Observer Pattern is a design pattern, used in computer programming
to observe the state of an object in a program. The essence of this pattern
is that one or more objects (called observers or listeners) are registered to
observe an event which may be raised by the observed object (the subject).

The Observer Pattern defines a one-to-many dependency between ob-
jects (figure 2.3), so that if one object changes state, all its dependents will
be notified and updated automatically [24].

For example, the Observer Pattern might be used to keep a pie chart
and a bar chart in sync, or it might be used to let multiple objects respond
to the completion of a game [31].

Subject

Observer 2

updates updates

registersregisters

Observer 1

Figure 2.3: Observer pattern.

18 2. SPECIFICATION AND ARCHITECTURE

Model-View-Controller Design Pattern

The Model-View-Controller (MVC) design pattern encompasses more of the
architecture of an application than is typical for a design pattern. In the
MVC paradigm the user input, the modeling of the external world and the
visual feedback to the user are explicitly separated and handled by three
types of objects, each specialized for its task [11].

MVC separates user interface code into three distinct classes:

• Model:
Stores the data and application logic for the interface

• View:
Renders the interface to the screen

• Controller:
Responds to user input by modifying the model

If we look, for example, at a vertex of our graph, then the model stores data
like the position and the size of the vertex, the view draws the vertex on
screen, and the controller sets the data of the vertex in the model when the
vertex is clicked (figure 2.4). The basic principle of MVC is the separation
of responsibilities.

Separating the code that governs a user interface into the model, view,
and controller classes yields the following benefits [31]:

1. It allows multiple representations (views) of the same information
(model).

2. It allows user interfaces (views) to be easily added, removed, or changed,
at both compile time and runtime.

3. It allows response to user input (controller) to be easily changed, at
both compile time and runtime.

4. It promotes reuse.

5. It helps developers focus on a single aspect of the application at a
time.

The MVC pattern is using the Observer Pattern to achieve a loose cou-
pling between the object that changes (the subject) and the objects being
notified of the change (the observers). The control flow works as follows:

1. The user interacts with the user interface, the views.

2. A controller handles the input event from the user interface (view).

3. The controller possibly modifies the model in a way appropriate to the
user’s action.

2.3. SOFTWARE ARCHITECTURE 19

4. If the model has been modified, it notifies all its observers (views) of
a change.

5. The observers (views) update themselves.

6. The user interface (views) waits for further user interactions, which
begins the cycle anew.

Model
Data and logic

Controller
User input

updates modifies

View
Interface

sends input events

Figure 2.4: The MVC communication cycle.

This control flow starts from a user interaction, leads possibly to a modifi-
cation of the model and the model then propagates the modification to all
its views. This propagation from the model to its views can be called an up
propagation, because the changes of the underlying model is propagated up
to the views on the surface, the graphical interface (look at figure 2.6).

The propagation from the user interface to the controller can conse-
quently be called a down propagation. However, the MVC pattern is not
using a loose coupling between the views and their controllers. For every
view there exists only one controller, handling the input events from it. The
down propagation in MVC is implemented by a one to one relationship be-
tween the view and its controller. Furthermore, every controller controls
only one model, however for every model there can exist several controllers
to modify it. With these restrictions to the software architecture it is dif-
ficult to propagate a user interaction not only to one controller, but to all
interested controllers in the system. For a loose coupling between the views
and their controllers, too, we need another design pattern.

Delegation-Event Model

The Delegation-Event Model is a general design for event broadcasting. In
the Delegation-Event Model, an event is propagated from a ”Source” object

20 2. SPECIFICATION AND ARCHITECTURE

Event source

Event object

creates registers

Event listenerpassed to

Figure 2.5: The Delegation-Event Model communication cycle.

to a ”Listener” object by invoking a method on the listener and passing in
the instance of the event subclass, which defines the event type generated2.

The Delegation-Event Model has three main participants:

• Event source:
An object that notifies other objects of some specific occurrence (some
events)

• Event listener:
The objects that will be notified by the event source if an event occurs

• Event object:
An object that describes the nature of the event

An event source is, for example, a vertex view, and the event is a click of this
vertex view by the user. If this event reaches only the connected controller,
then only one vertex model will be modified, namely the model which is
observed by the clicked view.

Having such a tight coupling between the view and its controller, pre-
vents a flexible down propagation of user interactions as it is needed in a
complex system like our graph presentation. A loose coupling for both prop-
agation directions, down and up, is shown in figure 2.6. In this figure, a user
interaction “click”, can reach several controllers due to a loose coupled down
propagation. These notified controllers possibly modify their models and the
modified models then updates their observer (views) due to an up propa-
gation. For a loose coupled down propagation we use the Delegation-Event
Model.

In the Delegation-Event Model to notify an event listener of an event,
the event source invokes an agreed-upon method on it. The event object
is passed to the agreed-upon method by the event source, giving the event
listener access to information about the event (figure 2.5).

2http://java.sun.com/j2se/1.5.0/docs/guide/awt/1.3/designspec/events.html

2.3. SOFTWARE ARCHITECTURE 21

click

:Views

notifies

modifies

updates
D

ow
n propagation

U
p propagation

:Controller

:Models

Figure 2.6: When the user clicks a vertex view, the event source broadcasts
this event to all registered listeners (Controller), then the controller can
modify their models if necessary and finally all modified models update
their observers (Views).

For example, the event object holds the state, the identity and the type
of the clicked vertex along with the event source, here a vertex view. Every
controller (event listener), that is notified by the event source can react
independently, depending on the information of the event object and the
source.

Using both patterns, the Delegation-Event Model and the Observer, to
create a loose coupling in both propagation directions, gives us the possibility
to react flexible to user interaction in our graph presentation system.

Differences between Observer Pattern and
Delegation-Event Model

Why do we use two different pattern to attain loose coupling between ele-
ments? Structurally, the Delegation-Event Model has much in common with
the Observer Pattern. The Observer Pattern has two basic participants, the
subject class and the observer classes correspond to, the Delegation-Event
Model has event source class, which broadcasts events, and event listener
classes, which receive event notifications.

The Delegation-Event Model is designed to broadcast specifically known
events rather than generic updates [31]. In Observer, the subject broad-
casts updates to observers by invoking a generic update() method. But in
the Delegation-Event Model, the event source broadcasts a specific type of

22 2. SPECIFICATION AND ARCHITECTURE

event by invoking a custom method on its listener. Listeners receiving the
event must implement an interface that defines the method invoked by the
event source. Furthermore, in the Delegation-Event Model, any class can
broadcast events; the event source does not need to be a subclass of some
base event-broadcasting class.

Finally, in Observer, the subject should broadcast an update only in
response to a state change. Events, by contrast, can be broadcasted for any
reason deemed to be appropriate by the event source.

Generally speaking, the Observer Pattern works well used as an internal
update mechanism within a discrete system, such as maintaining the position
of a single vertex and its connected edges (look at section 2.3.1).

By contrast, the Delegation-Event Model is appropriate usually, when
the granularity of events matters (that is, when events should correspond to
individual methods rather than a single update() method). Event granular-
ity is desirable for event sources that have a wide variety of unknown event
listeners. For example, a rollout button uses the Delegation-Event Model to
broadcast onClick() events to the world, but internally, it maintains its own
visual appearance using Observer as part of MVC.

2.3.2 Conclusion

Using these three design patterns to build up the graphical user interface
for our graph presentation system, makes it possible to maintain all kind of
user events and to responses in a flexible way (figure 2.6).

Firstly, the division into model, view and controller offers a clear sepa-
ration of responsibilities. Secondly, the up propagation and its organization
due to the Observer Pattern, make the structure extremely flexible and the
single elements independently applicable. And finally, the organization of
the down propagation due to the Delegation-Event Model leaves open pos-
sibilities in how to respond to a user event to the system.

Chapter 3

Prototype Implementation

In this chapter we implement the software specifications described in section
2.2. In a first prototype we are going to implement these specifications in
an experimental and incomplete way. The goal is to quickly put together a
working model (a prototype) in order to test various aspects of the design,
illustrate ideas or features and gather early user feedback. So the first pro-
totype deals with fixed dummy input data only. The ability to deal with
arbitrary input data will be implemented in the second prototype.

3.1 Dummy Data

Request RDF data
Requests information Structurally maps

Automatically layouts

Graph
layout

Graph
data

User
interaction

Answers requests
(Dialog system)

Answer
(RDF)

SmartWeb system

Dummy graph layout
Displays

Graphical
user interface

User

Figure 3.1: A data flow diagram, showing the use of dummy graph layout
to simulate wide parts of the data processing.

With the use of dummy data, we simulate the question answering process
to a large extent. Starting from a certain user question and its answer, given
by the SmartWeb system, encoded in RDF, followed by a structural mapping

23

24 3. PROTOTYPE IMPLEMENTATION

to receive appropriate graph data and ending with an automatic generation
of graph layout. In figure 3.1, the processes and the data flow, simulated by
the use of the dummy graph layout, is marked light gray.

3.1.1 Dummy Graph Data

A graph data G consists of vertices and edges, G = (V,E). V is a finte,
non-empty set of vertices and E is a set of edges (links between pairs of
vertices).

As source for our dummy data, we take the answer to the question: ”How
was Germany playing against Argentina in a world championship?”. The
answer given by the SmartWeb system, encoded in RDF, has already be
shown in figure 1.3.

We manually map this RDF data to useful graph data for a represen-
tation on a small display. The goal is to receive graph data with viewer
vertices as we would receive by directly mapping each instance of the RDF
data to its own vertex. This means, the instances need to be grouped to-
gether based on certain criteria. A general implementation of this structure
mapping is described in section 5.4, in connection with the integration into
the SmartWeb system.

As a first approximation of a structure mapping for our dummy graph
data, all instances with the same concept are grouped together to one vertex.
All the relations between these concepts, represented by vertices, are mapped
to edges. With this rough manual structure mapping of the answer, encoded
in RDF, we receive dummy graph data consisting of a directed graph with
cycles and labeled edges for a first approach to display such information on
the handheld client.

For example, we structurally map all four soccer matches between Ger-
many and Argentina to one vertex V1 and all dates, these matches happened
at, to another vertex V2. Every match has a “happens at” relation to one
of the dates. All four relations are mapped to one edge between V1 and V2

that is labeled with “happens at”, shown in figure 3.2.

3.1.2 Dummy Graph Layout

Having graph data consisting of vertices and edges, the next thing needed
for a visualization is the dummy graph layout.

For every vertex we manually define an x- and a y-coordinate, determin-
ing its position. An approach to automatically layout arbitrary graph data
will be described in section 5.5. For our dummy graph data we do not need
a general solution for this problem.

By defining the vertex positions, we have to consider that related vertices
should be placed next to each other and the edges between them must not
cross. As a result of this layout process we get for every vertex an x- and

3.2. VISUALIZATION 25

a y-coordinate. For example, the position (120, 140) for V1 and the position
(60, 100) for V2.

Vertex 1 Vertex 2
Relation:

happensAtSoccer match 1

Soccer match 2

13.04.1990

16.07.1966

Figure 3.2: Visualization of a relation by an edge between two groups of
instances.

3.2 Visualization

In this section about the visualization of the graph layout, achieved due to
structure mapping, we deal with problems arising from limitation of space
on the handheld display. Figure 3.3 illustrates the visualization.

Dummy graph layout
Displays

User

Graphical
user interface

Client

Figure 3.3: A data flow diagram to illustrate the visualization of the graph
layout to the user.

3.2.1 Visualizing Instances and Relations

As described in section 3.1.1 about the dummy graph data, all instances
with the same concept are grouped together and represented by a vertex.
All incoming and outgoing relations of this vertex are represented by edges
to other vertices, also groups of instances. Actually, for every instance of
such a group, there exists a certain instance in another group for every
incoming and outgoing relation, as it is shown in figure 3.2. Therefore, it
is not enough to have edges between vertices only, but to provide for every
instance of these vertices a separate edge.

26 3. PROTOTYPE IMPLEMENTATION

This is the case because there is no chance to see which instance is related
to which instance, if there are only edges between groups of instances and
not between single instances. For example, several soccer match instances
are grouped together in one vertex. This vertex has a relation ”happens at”
to a group of date instances, also represented by one vertex. Then there is
no way to tell which match happens at which date. To visualize this direct
relation between single instances, we need to draw a separate edge for every
pair, consisting of a match and the date it happened. In figure 3.4, every
soccer match is directly connected to its date instance in vertex 2.

Vertex 1 Vertex 2

Soccer match 1

Soccer match 2

Relation:
happensAt 13.04.1990

16.07.1966

Figure 3.4: Visualization of a relation by edges for every pair of instances.

However, such edges between all instances are not practicable, because
too many edges in the structure of the graph get confusing. This holds
especially when visual space is limited as on the handheld client.

Vertex 1 Vertex 2

Soccer match 1

Soccer match 2

Relation:
happensAt 13.04.1990

16.07.1966

Figure 3.5: Visualization of a relation by an edge between only one active
instance per vertex.

The idea is to offer only one active instance for every vertex. This
one active instance of a vertex is the only visible instance of the group of
instances, represented by this vertex. Because of this, we need to draw only
one edge for every relation between two vertices. This edge represents only
the relation between the two active instances of these vertices and therefore
the active instances of all related vertices have to be consistent. This idea
is shown in figure 3.5.

If, for example, the active date is ”16.07.1966”, all the related vertices
must have consistent active instances; like the active soccer match has to be

3.3. INTERACTION 27

exactly the one happens at this date.
Having only one active instance per vertex implies a mechanism to

change the active instances. There must be a possibility to take another
instance as active one out of every group of instances. The problem of the
consistency between the active instances and the possibility to change them
will be discussed in section 3.3.

3.2.2 Visualizing Many Edges

A problem by the visualization of the graph is the amount of outgoing
relations. As it is shown in the exemplary input data, the RDF file in
figure 1.3, a vertex can have many outgoing relations to other vertices. To
visualize all of them as labeled edges in the graph would again lead to space
problems. The more labeled edges are connected to one vertex, the harder
is a visualization of these edges without overlapping.

To solve this problem of too many edges, we use the same strategy as we
used for too many instances of the RDF graph, described in section 3.2.1.
The idea is to have not all the outgoing edges of a vertex visible. Again,
only a couple of all relations, available out of the RDF graph, are active,
the rest is inactive. Only active relations are represented through edges in
the graph visualization.

Having inactive relations invisible implies a mechanism to activate them.
Otherwise the information of these inactive relations would be inaccessible
for the user. The way to activate and deactivate relations over the graphical
user interface will be described in section 3.3.2, about changing relations.

3.3 Interaction

In this section we are talking about the options for the user to interact with
the graph. As mentioned in the last section, there must be a possibility to
change the active instance for every vertex as well as a possibility to change
the active relations.

3.3.1 Changing Instances

In our graph, the user can change the active instance for a vertex by using
a roll out mechanism. By clicking on a roll out button, a menu rolls out
and the user has the opportunity to define the active instance for the vertex
by clicking on one of the instances in the roll out menu. For example, the
user can change the active instance “16.07.1966” of a vertex to another
date like “29.06.1986” (figure 3.6). After clicking on the inactive instance
“29.06.1986”, this becomes the new active instance of that vertex. The old
active instance “16.07.1966” becomes inactive and therefore only visible in
the roll out menu.

28 3. PROTOTYPE IMPLEMENTATION

Figure 3.6: Roll out menu with several instances of the concept date. The
user defines the instance “29.06.1986” as the new active instance for this
vertex.

Consistency Check

If the user changes the active instance of a vertex, there is a need to check
whether all connected vertices and their active instances are still consistent
(figure 3.7). The active instance of a vertex is called consistent, if all active
incoming and outgoing relations are consistent. A relation is called consis-
tent, if for all involved vertices, all their active instances are consistent.

Consistent
graph layoutDisplays

User

Graphical
user interface

Client

Dummy graph layout
Checks consistency

Interaction:
New active instance

Figure 3.7: The data flow diagram extended by the consistency check.

To preserve a consistent graph, we need to implement a mechanism that runs
through the graph and check all vertices whenever the user has changed an
active instance. This mechanism is comparable to the link-state routing
protocol [30]. Starting from its appearance the mechanism propagates the
change done by the user in all directions through the topology. To avoid
infinite loops and out-dated information due to propagation through the
graph, we use two approaches.

Firstly, an approach to see whether new information is up-to-date by
using a new version number for every change of an active instance. And
secondly, an approach to solve the infinite propagation inside a loop, by us-

3.3. INTERACTION 29

ing information about the distance to the source of the change. Whenever a
change of an active instance is propagated through the graph, the distance
of the propagated information is increased by every hop. The distance holds
the information about the number of vertices, through which the change has
already propagated. So at least by reaching the source of the change again,
the distance of the propagated change is larger than the distance of the own
information about this change and so the loop is broken.

instance1c instance2a

instance1a instance2b

Vertex1
version=2, dist=0

Vertex2
version=1, dist=0

instance1b instance2c

new active
instance

consistent

instance1c instance2b

S
TE

P
 1

version=2, dist=0 version = 2, dist=1
active
instance

S
TE

P
 2

instance1ainactive
instances instance2a

instance1b instance2c

Figure 3.8: Every vertex in the graph propagates changes to related vertices
until all vertices are consistent again.

Every change of the graph by the user will be propagated through the graph
to hold consistency (figure 3.8). In Function 1, 2 and 3, we give a simpli-
fied version of the implementation. Every change is recursively propagated
through the graph until all vertices are consistent again.

For the realization of the consistency check, every vertex needs to hold
information about the last version of change and its distance to the source to
this last change. Whenever a change is propagated to a vertex, the vertex has
to compare the version and the distance of the propagated change with its
own version and distance. Based on this information, every vertex handles
its own update and the further propagation of this change.

If a change has a higher version (version1) as the last version saved by
a vertex (version2), the vertex will update its version and distance, update
its active instance if necessary and propagate the change further through
the graph structure. If version1 of the incoming information is less than
version2, vertex2 keeps its information and stops the further propagation.

30 3. PROTOTYPE IMPLEMENTATION

Only if the versions are equal, the distance information is needed.
For the distance, if distance2, saved by vertex2, is higher as the prop-

agated distance1, vertex2 is updated and the change is propagated. If dis-
tance2 is less or equal as distance1, there is a conjunction of the current
consistent instances of vertex2 and the instances of vertex2 that are con-
sistent with the current active instance of vertex1. Again, if this leads to
an update of the active instance of vertex2, this is propagated through the
graph.

Function 1 propagate(newActiveInst, newV ersion, newDistance)
Require: The new active instance to be propagated as well as the new

version and the distance to the source of the user interaction
1: var vertex1:Vertex = newActiveInst.getV ertex();
2: var activeOutRelations:Array = vertex1.getActiveOutRelations();
3: var activeInRelations:Array = vertex1.getActiveInRelations();
4: // Forward Propagation
5: while activeOutRelations.hasMoreElements() do
6: var outRel:Relation = activeOutRelations.getNextElement();
7: var consistentInstances:Array = inRel.getObjects(newActiveInst);

8: runUpdate(consistentInstances, newV ersion, newDistance);
9: end while

10: // Backward Propagation
11: while activeInRelations.hasMoreElements() do
12: var inRel:Relation = activeInRelations.getNextElement();
13: var consistentInstances:Array = inRel.getSubjects(newActiveInst);

14: runUpdate(consistentInstances, newV ersion, newDistance);
15: end while

3.3. INTERACTION 31

Function 2 runUpdate(consistentInstances, version1, distance1)
Require: A list of consistent instances, the current version and distance
1: var vertex2:Vertex = consistentInstances[0].getV ertex();
2: var version2:Number = vertex.getV ersion();
3: var distance2:Number = vertex.getDistance();
4: // if the new information has a higher version
5: if version2 < version1 then
6: vertex2.setV ersion(version1);
7: // we have to increase the distance at each step
8: vertex2.setDistance(distance1 + 1);
9: commit(consistentInstances, vertex2);

10: else if version2 == version1 then
11: // if the distance of vertex1 is less
12: if distance2 > (distance1 + 1) then
13: vertex2.setDistance(distance1 + 1);
14: commit(consistentInstances, vertex2);
15: // else their distances are equal or the vertex2 is closer
16: else
17: var consistInst2:Array = vertex2.getConsistentInstances();
18: var list:Array = conjunction(consistentInstances, consistInst2);
19: commit(list, vertex2);
20: end if
21: end if
22: return

Function 3 commit(instances, vertex)
Require: A list of consistent instances and the vertex to be updated and

committed
Ensure: The Array instances must not be empty
1: vertex.setConsistentInstances(instances);
2: if !instances.contains(vertex.getActiveInstance()) then
3: vertex.setActiveInstance(instances[0]);
4: propagate(instances[0], vertex.getV ersion(), vertex.getDistance());
5: end if

32 3. PROTOTYPE IMPLEMENTATION

3.3.2 Changing Relations

Choosing which instance is the active one for a vertex is not the only way
for the user to adapt the displayed information. As mentioned in section 3.2
about the visualization, the user needs also the possibility to control which
relations are active and which are not (look at figure 3.9).

When a new graph structure is displayed the first time, it has an initial
setting. In this initial setting, every vertex has an initial active instance and
initial active relations to other vertices. Starting from this initial setting,
the user can change it by choosing other active instances or relations. The
decision, which relations and instances are active, defines what information
is shown by the graph. Therefore we let the user control what information
to show.

Displays

User

Client

Dummy graph layout
Checks consistency

Consistent
graph layout

Interaction:
New active instanceGUI

Interaction:
New

relation

Figure 3.9: The data flow diagram extended by a new user interaction, the
change of relations.

So, for every relation we need a labeled edge and a possibility to activate
or deactivate it. One idea is to have a close button for every relation, for
example an “X” on the right upper corner as in figure 3.10. By clicking
the close button of a relation, this relation is no longer visible and so there
is space to display other relations. All the inactive relations are grouped
in a pool, represented by another vertex. This pool holds all the inactive
relations of a vertex, or in other words, all the inactive outgoing relations of
the concept of this vertex, and offers a way to select one for activation. By
activation, this relation is taken out of the pool and displayed as a labeled
edge between two vertices.

The first idea to visualize the interactive functionality by a closing button
has advantages and some disadvantages. One advantage is the fact, that the
user can organize whether a relation is displayed or not, as he likes. So it
is possible, for example, to deactivate all existing relations of a vertex or to
display all relations, even if they are overlapping. The disadvantage is that
the organization is time-consuming. In average, two work steps are needed
to activate a new relation. One step is needed to free space by closing an

3.3. INTERACTION 33

RelationVertex 1 Vertex 2

Figure 3.10: A relation vertex with a close button.

old relation and another to activate a new one.
In order to simplify the organization, we combine these two work steps

into one. One relation will be replaced by another and thereby the two steps,
to close the old and to open the new relation, become one and the same work
step (figure 3.11). The advantage of this simplification is an easy handling
due to the use of a roll out menu. The disadvantage is, that it is no longer
possible to arrange as many relations as one likes. This is because every
new relation is a replacement of an old relation and therefore the number of
active relations remains always constant.

Figure 3.11: The active relation “Endergebnis” (final results) is replaced by
the relation “in Runde” (in round).

In figure 3.10 and 3.11, a relation is represented by two edges and a
vertex. The reason for not using just a labeled edge for the graphical rep-
resentation of a relation is the extended interactive functionality. Every
relation can be activated and deactivated. With this extension a relation is
no longer just a labeled edge, but has become one element of the graph, a
vertex. Now we have to kinds of vertices, a vertex representing an instance
and a vertex representing a relation between instances. For a differentiation
between these two kinds of vertices, we call the vertex representing a relation
rvertex. A vertex representing an instance is still called vertex.

34 3. PROTOTYPE IMPLEMENTATION

Vertex 2 Vertex 3

rvertex 13

rvertex 12 Vertex 1

Figure 3.12: With the two articulated joints “rvertex 12” and “rvertex 13”,
complex structures become clearly arranged.

To make these two different kinds of vertices better distinguishable for
the user, we use different colors. As shown in figure 3.12, rvertices have a
green border and vertices are blue.

Edge Label Placement

One reason to represent a relation by a vertex, a rvertex, is its extension of
interactive functionality. Another reason to use a rvertex is, that it eases
the problem of edge label placement.

The problem of automatic label placement is important [17], and has
applications in many areas including Cartography [12], GIS[21] and Graph
Drawing [15]. Unfortunately, even in simple settings, the problem turns out
to be NP-hard [12, 19]. Using a rvertex instead of an edge label, simplifies
the problem of automatic placement. This is due to the fact that dividing
one edge into two edges simplifies the effort to avoid edge crossing, because
the shape of the edge becomes more flexible (figure 3.12). Furthermore, with
the edge label as a well-defined element of the graph, an rvertex, it is easier
to deal with the overlapping of the labels.

The problem is reduced to the question, where to place the rvertex.
The best position for a rvertex between two vertices is the straightest way
without overlapping.

Before we take a look at how to organize the rvertex positions, we have
to reconsider the given conditions. Firstly, there are two types of relations,
outgoing and incoming ones. So by placing the rvertices we have to consider
whether it represents an incoming or an outgoing relation. Secondly, not
all available relations are active. Like described in the second idea about
changing relations, there is always the same number of active relations for
every vertex on the screen. This is because the user can only replace one
rvertex by another one.

Taking these conditions into account we come to the idea that every ver-

3.4. LIMITED SPACE 35

rvertex 1

rvertex 2

rvertex 3

Vertex 1

Vertex 2

surrounding area

Free
places

Vertex 3

Vertex 4

Figure 3.13: Every vertex organizes its outgoing relations, represented by
rvertices, itself.

tex must organize its outgoing relations itself. Therefore every vertex gets
some surrounding area for doing so (figure 3.13). Every representation of an
active outgoing relation of a certain vertex is placed inside its surrounding
area. Therefore every vertex organizes a ring of possible places for its rver-
tices. Such a possible place has either the status free or busy. If the user
replaces an rvertex by another rvertex, the place of the old rvertex will be
set to free. After freeing the old place, a new position for the new rvertex
must be found. This happens by a computation of the closest distance. So
we take the straightest connection available to the vertex to which the new
rvertex is leading.

For every vertex we define 10 places, organized in a ring around this
vertex (figure 3.13), available for outgoing relations. At any time there are
for every vertex at most 4 outgoing relations active. Therefore there always
exists a proper place for a new rvertex, because the number of free places is
never less than 6.

3.4 Limited Space

The next problem to deal with is the limitation of space on the handheld
client. As already mentioned in the task description, to find appropriate
ways to deal with this problem is a key point of this work.

Displaying a graph structure, one question is: How do we get the posi-
tions for all the vertices, the graph layout?
We are going to discuss this position problem later in the section 5.5. As a
first approximation, we use dummy graph layout. As described in section

36 3. PROTOTYPE IMPLEMENTATION

3.1.2, we choose the positions for all the vertices in the dummy graph layout
manually.

Assuming these positions do exist, another problem occurs. On a limited
screen there is not enough space to display every graph in its full amount.
If every label of every vertex is of a readable size, we will shortly be running
out of space.

So the question is: How to display a more complex graph on a small
screen?
If we view the graph in a way all labels can be read easily, the display will
only show a part of the graph. So the user has no overview of the whole
structure and therewith looses orientation. If we, however, try to display
the whole graph on one screen, the labels will get unreadable small. If the
labels get to small, the user will not be able to get information out of the
graph.

A sufficiently large set of data, or a sufficiently small display
area, will force a change in perspective, or orientation, since
the ”natural” form of the structure cannot be displayed due to
insufficient display resources [25].

3.4.1 Perspective Techniques

Two categories of resolution techniques exist, undistorted and distorted ori-
entations [29]. These perspective techniques are used in conjunction with a
particular visual representation to create a visual interface and can be used
with a variety of other data structures in addition to hierarchies.

Undistorted Orientation

Undistorted orientation techniques display the information stored in a hi-
erarchy in sections, thus restricting the display to show only a portion of
the overall structure. These techniques are frequently used in conventional
interfaces and can generally restrict the usability of a visual interface if not
properly augmented with additional navigational information.

1. Paging: The simplest form of undistorted orientation is paging, which
splits the hierarchical structure into a linear series of pages, similar to
pages in a book. Each page can then be accessed by page numbers, or
through a simple ”next page, previous page” command.

2. Scrolling: Another popular form of undistorted orientation is scrolling.
This technique creates a virtual display area large enough to display
the entire hierarchy, and then maps this display to the real one. By
manipulating the x and y coordinates of the virtual display, the entire
hierarchy can be seen, one portion at a time.

3.4. LIMITED SPACE 37

Distorted Orientation

Figure 3.14: A graph structure distorted by a fisheye view.

The second category of orientation techniques modifies the natural view
of the structure of the hierarchy by applying a mathematical transformation
to the visual representation, so that a central area, or focus, dominates the
display. The remaining areas of the structure are compressed, thus allowing
most, if not all, of the original structure to be visible. These techniques are
considered more advanced than their undistorted counterparts, since they
attempt to map the entire hierarchical structure inside the display area and
provide visual cues for both global and local information [29]. By analyzing
the characteristics of the mathematical formula responsible for the visual
transformation, a distorted orientation technique can be classified as either
continuous or uncontinuous.

We only take a look on the continuous one, because non-continuous
techniques fail to provide a smooth transition between the focus area and the
context areas [25]. An example of continuous magnification transformation
is a Fisheye View.

38 3. PROTOTYPE IMPLEMENTATION

3.4.2 Fisheye View

The fundamental motivation of a fisheye strategy is to provide a balance of
local detail and global context. In many contexts, humans often represent
their own ”neighborhood” in great detail, yet only major landmarks further
away (figure 3.14). This suggests that such views (”fisheye views”) might be
useful for the computer display of large information structures like programs,
data bases, online text etc. [20].

Figure 3.15: A distorted graph
structure with “1.GER - ARG” as
the current focus vertex.

Figure 3.16: A distorted graph
structure with “Tor 0:1” as the cur-
rent focus vertex.

A fisheye camera lens is a very wide angle lens that magnifies nearby
objects while shrinking distant objects. It is a valuable tool for seeing both
local detail and global context simultaneously [49]. The Fisheye View is
unique in the way that it uses a system of priorities and thresholds to de-
termine what information should be presented and what information should
be suppressed [23].

Using a fisheye view to distort our graph is a solution for the space prob-
lem on the display of the handheld client. The fisheye view makes it possible
for the user to see both, local detail and global context simultaneously.

By using this fisheye approach to deal with the limited space, we add a
new interaction form to our user interface. Additionally to the two possibil-
ities of interaction, namely the change of relations and the change of active
instances, the user can choose the focus for the fisheye view.

This focus interaction happens by clicking on a vertex or a rvertex in
the graph. By choosing a new focus all positions and details change. For
every vertex of the graph the position and the detail must be recomputed
dependent on the distance to the new focus. Such a distortion of our graph-

3.4. LIMITED SPACE 39

based user interface can be seen in figure 3.15 and 3.16. The integration of
the fisheye distortion into the data flow of our graph presentation system is
illustrated in figure 3.17.

Dummy
graph
layout

Displays

User

Client

Distorts
(Fisheye)

Distorted
graph layout Checks consistency

Consistent
graph layout

Interaction:
New active instanceGUI

Interaction:
New

relation

Interaction: New focus

Figure 3.17: The data flow diagram extended by a new user interaction, the
choose of the current focus vertex.

The user can click on vertices to get a detailed view on this region of
the graph. If the user clicks on a vertex and sets the focus point, he shows
an interest in this region. So clicking on a vertex is a kind of a request for
detailed information about this vertex.

Implementation of the Fisheye Distortion

In Function 4 and 5, the computation of a new fisheye position for a vertex
is described. Intuitively, the position of a vertex in the fisheye view depends
on its position in the normal view and its distance from the focus. Our
implementation of the fisheye distortion is based on the algorithm described
in [49].

40 3. PROTOTYPE IMPLEMENTATION

Function 4 computeFisheyePosition(x:Number,y:Number,focus:Object)
Require: The undistorted coordinates x and y as well as the current focus

1: var focusX:Number = focus.getX();
2: var focusY :Number = focus.getY ();
3: // dBoundX: Horizontal distance between focus and the boundary of

the screen toward the vertex position
4: var dBoundX:Number = 0;
5: // dBoundY: Vertical distance to the boundary
6: var dBoundY :Number = 0;
7: if focusX > x then
8: dBoundX = −focusX;
9: else

10: dBoundX = screenWidth− focusX;
11: end if
12: if focusY > x then
13: dBoundY = −focusY ;
14: else
15: dBoundY = screenHeight− focusY ;
16: end if
17: // distX: Horizontal distance between the focus and the vertex
18: var distX:Number = x− focusX;
19: // distY: Vertical distance
20: var distY :Number = y − focusY ;
21: // pos: The new focus position
22: var pos:Object = new Object();
23: // We divide distX by dBoundX so that the argument to transform() is

normalized to be between 0 and 1
24: pos.x = transform(distX/dBoundX) ∗ dBoundX + focusX;
25: pos.y = transform(distY/dBoundY) ∗ dBoundY + focusY ;
26: return pos;

Function 5 transform(x:Number)
Require: x must be positive and distortion > 0 to change x
1: // transform is monotonically increasing and continuous for 0 ≤ x ≤ 1
2: return (((this.distortion + 1) ∗ x) / (this.distortion ∗ x + 1));

3.4. LIMITED SPACE 41

Flashlight Approach

Initially, the information in the graph is limited to a certain result, for exam-
ple the result to the question ”How was Germany playing against Argentina
in a world championship?”. The idea for further development is to offer
the possibility to deliver potential additional information to the user. If the
user reaches the limits of this initial information, the graph system should
automatically request for additional information. By offering the user stubs
of additional information, the user can choose on his own, which path to
follow. That way the graph gets dynamically expanded.

In this first prototype of a graph presentation system, we are not dealing
with dynamic data from the server, but with fixed dummy data, as described
in section 3.1. The information represented by the graph is limited to this
dummy data. When the user shows an interest in a certain vertex by click-
ing on it, the amount of local details available to display is limited to the
available information out of the dummy data. For this reason we do not
need a connection to a server, yet.

Anyway, in the further development of the semantic graph, the user
should become able to really request for new information by clicking on a
vertex. So the graph presentation system sends a request for more detailed
information for this certain vertex and its surrounding area to the server
and presents the response.

Michael Ballack

Figure 3.18: Using a flashlight is a metaphor for offering some stubs to reach
more information in a specific direction.

This approach is comparable to the use of a flashlight. Pointing with a
flashlight to certain spots of interest in a dark space is a way to discover
more information. The dimly lit surrounding area provides an information
basis of what could be a worthwhile point to spot. Like the dark silhouettes
around, the stubs of additional information provide indications of worthwhile
directions for information discovery. Using a flashlight is a metaphor for
offering some stubs to reach more information in a specific direction. We
call this approach the flashlight approach.

This flashlight approach is an alternative way to ask for more informa-

42 3. PROTOTYPE IMPLEMENTATION

tion. Pointing with the flashlight to certain spots in order to explore new
information, is just like asking a question in order to receive an answer. The
difference between these two ways is the fact that the flashlight only allows
to explore information, which is connected to the graph, in contrast to a new
question, which offers access to any kind of information. Using the flashlight
approach for exploration, the user is locally bound to the available stubs of
additional information in the current graph.

If we receive as initial result a couple of soccer matches, then an available
stub is, for example, the vertex holding all the players that have scored the
goals in these matches (figure 3.18), but without any additional information
in terms of outgoing relations to other vertices. In case the user is interested
in the players and clicks on this vertex, a request is sent to the server and the
response is integrated into the graph. A response could consist of additional
information like the team they are playing for or goals they have scored.

Together with the other forms of interaction, the change of instances
(section 3.3.1), the change of relations (section 3.3.2) and the change of the
focus vertex for the fisheye distortion (section 3.4.2), the flashlight approach
offers a specific semantic browsing function. Using this interaction possibili-
ties, the user becomes able to semantically navigate through the information
space.

3.5 Semantic Navigation

Navigation can be differentiated into three types: Navigation by content-
structures, free navigation and semantic navigation [5].

Navigation by content-structures is constituted by dependencies within a
complex content that contains several sub-contents. Like a book containing
several chapters, which are hierarchically ordered, content may consist of
several sections or chapters. Users can switch from one chapter to another
by clicking links.

Free navigation allows users to navigate without any implications for the
semantic context or structural dependencies. This concept is needed to link
external resources and to provide shortcuts in the information space.

The third and most comprehensive navigation structure is the semantic
navigation. In [9], semantic navigation is defined as a way to build up and
navigate views according to the logical organization given by ontologies.

The RDF graph, which lays the foundations of our graph-based user
interface, has a logical structure given by ontologies [36]. It offers thereby a
visual environment for browsing RDF models represented as graphs. Such
an environment has already been developed in other applications, as it is
described in section 1.4, about related work.

Even if already many visualization tools have been developed, there is
no “single view” that will appeal to all the users and tasks requiring vi-

3.5. SEMANTIC NAVIGATION 43

sualization. Therefore, many different ways to customize and extend the
visualizations are needed [50].

In this diploma thesis we develop a visualization tool, offering the pos-
sibility for a semantic navigation on a handheld. As already mentioned, we
get information as an answer for a question like ”How was Germany play-
ing against Argentina in a world championship?”. This result consists of
information pieces, called instances, and semantic information about their
concepts and relations. This semantic information is the logical organization
of the instances. In our approach the user has the opportunity to both, build
up views by changing the active relations and instances (look at section 3.3)
and navigate views by moving the focus (look at section 3.4). With the def-
inition of the active relations, the user controls the dimensions, which span
the information space for a semantic navigation. For example, the informa-
tion space is spanned by the dimensions “Region”, “Time”, and “Product”
with their corresponding instances (e.g. “France” and “Germany” for the
dimension “Region” and “Milk” and “Cheese” for the dimension “Product”).

Such an approach for a semantic navigation in an information space
is used in the MoSeNa-Approach [5], too. However, in this approach the
identification of dimensions like “Region” and “Product” must be specified
beforehand by information systems engineers and not dynamically by the
user. In the example concerning “regions”, “products” and “time” navi-
gation structure in [5] is limited to these three specified dimensions. For
example, the user could have the possibility to navigate along different re-
gions producing the same product, maybe milk. If there are several regions
producing milk, the system offers a semantic navigation through all of them.
So the user gets the possibility to semantically explore the data along these
three dimensions.

By defining a fixed dimension space beforehand and regardless of the
structure and the relations of the current content, the system looses im-
portant dimensions for a semantic navigation. Therefore the approach in
[5] offers, for example, no possibility to show the semantic relation between
products of the same company, even if this information is available. So
maybe milk is produced in several regions, but only by two companies. In
this system the user has no influence on the question, what dimensions are
available for a semantic navigation, and therefore, in the example, no oppor-
tunity to navigate through all places of production for only one of these two
companies. The different perspectives are limited by the beforehand defined
dimensions and not by the user or by the possible relations inside the data.

In contrast to the approach described in [5], in this thesis we take a
more flexible approach. In this way the full advantages of semantic relations
are delivered up to the graphical user interface. To give an example, we go
back to the matches between Argentina and Germany and take a look at
the dimensions available at this data.

Firstly, there are four soccer match instances grouped in one vertex.

44 3. PROTOTYPE IMPLEMENTATION

Figure 3.19: The graph from the
point of view of information about
certain world championships.

Figure 3.20: Changing the active
tournament leads to updates of ac-
tive instances throughout the graph.

The active instance for this vertex is the first match between Germany and
Argentina during the world championship 1958.

Secondly, there are lots of relations to other vertices, also groups of
instances, like dates, results and so on. The user can decide whether a rela-
tion is of interest or not (look at section 3.3). Every relation is a dimension
spanning the information space. The relation ”in tournament”, for exam-
ple, spans a new dimension and therefore a new point of view. If the user
is interested in all matches in a certain tournament, then he can take this
point of view by just activating this relation. After activation, the user has
the opportunity to get all soccer matches for a certain championship (figure
3.19). This is possible because of the consistency check in section 3.3.1.
Consistency means, that starting from the user interaction all connected
vertices must hold a consitent active instance. In other words, if the user
changes an instance of a vertex, the whole graph gets updated in a way that
all relations are consistent (figure 3.20). After such an update, the graph
shows a new point of view. In our example the graph shows all information
under the perspective of a certain world championship.

In this approach, the structure of the information defines the dimensions
spanning the space for the semantic navigation. For every concept all pos-
sible relations to other concepts are graphically represented. Even if only
few can be active at the same time, all can be activated by the user. And

3.5. SEMANTIC NAVIGATION 45

even though only the active relations build the current dimensions for a se-
mantic navigation, all the inactive relations can be chosen as dimensions,
too. Therefore the amount of possible dimensions is huge and the user can
decide how to span the information space.

To sum up, the difference between our approach and the approach, de-
scribed in [5], is the flexible possibility of semantic navigation for the user.
This is possible by building the dimensions for the semantic navigation dy-
namically depending on the information structure, instead of defining a fixed
amount of dimensions for the semantic navigation. This way the possibilities
for a semantic navigation are extracted from the current information struc-
ture and not from a structure defined beforehand by information systems
engineers.

46 3. PROTOTYPE IMPLEMENTATION

Chapter 4

First Evaluation

After a first prototype has been developed, we need to get a first feedback
from the users. This first feedback can be used to verify the decisions made
so far and to get interesting impulses for further development steps.

Software ergonomic methods have to be included in the design process
of software from the beginning. It is still necessary though, that the design
process also contains an evaluation after each stage of accomplishing the
prototype.

4.1 Evaluation Framework

In this section we define the framework for the evaluation. Firstly, we shortly
describe again our prototype, the program that will be evaluated. Sec-
ondly, we state the program implementation objectives in measurable terms.
Thirdly, the evaluation questions are formulated and finally we describe the
context of the evaluation. This procedure will ensure that the evaluation
reflects the program’s goals and objectives.

4.1.1 First Prototype

We are going to evaluate the first prototype of our graph-based user interface
at its current state of implementation. This includes everything mentioned
in chapter 3.

So we have a graphical interface, where semantic relations and concepts
are visually represented by a dynamic and interactive graph structure. This
graph structure is distorted due to a fisheye view. The user has the op-
portunity to set the focus of the fisheye view to gain detailed information.
Furthermore, he can change the content and modify the structure of the se-
mantic graph by changing the active relations and instances (look at section
3.3).

Because the integration into the SmartWeb system is not yet completed,

47

48 4. FIRST EVALUATION

the content of the graph is limited to a fixed set of dummy information.
This dummy information consists of the answer to the question ”How was
Germany playing against Argentina in a world championship?”. The user
has to imagine he would have asked this question and is interested in the
given answer represented by the interactive graph displayed on the handheld
client.

The answer consists of four soccer matches with additional data about
the dates, goals, players and locations. The user can navigate through this
information and interact with the graph in the above mentioned way.

4.1.2 Implementation Objectives

As a next step we decide what should get evaluated, because not much
insight can be gained from the answers to a question like ”Is it a good
system or not?”.

Therefore we formulate some implementation objectives in measurable
terms. This is to determine the kinds of information we need and avoid the
problem of collecting more information than is actually necessary.

The four implementation objectives are:

1. Interaction: The possibilities to interact with the graph are easily to
understand.

2. Information Extraction: It is possible to extract information out
of the graph structure and the vertex labels.

3. Differentiation: The user gets aware of the difference between an
instance and a relation.

4. Dependencies: The user realizes the dependencies between related
active instances.

The idea is to present the user the dummy graph about the soccer
matches between Germany and Argentina and ask questions about the in-
formation represented by the graph. If the representation is good and the
means of interaction are well designed and easy to understand, the answers
to these questions help to verify these objectives.

4.1.3 Evaluation Questions

Questions to be addressed in the evaluation concern two areas. The first
area deals with questions about the implementation objectives and their
achievement. Associated with this is the question about the barriers or
problems that have been encountered.

The second area focuses on whether evaluation results vary as a function
of characteristics of the participants or not. So the questions is: Did some

4.2. EVALUATION PROCEDURE 49

participants change more than others and, if so, what explains this differ-
ence? One explanation could be, for example, characteristics of participants
like the level of their computer skills.

4.1.4 Context of the Evaluation

This first evaluation took place during the CV-Tag 2006 at the Campus
Koblenz of the University Koblenz-Landau. During this event, several pro-
jects were presented by students. In this context we presented our first
prototype, too. This CV-Tag was a good option to attract potential partic-
ipants with different background.

So during this event we presented our first prototype to visitors and asked
to take part in its evaluation. Our prototype, implemented on a handheld
client, was given to the participants for the evaluation.

4.2 Evaluation Procedure

This section provides detailed descriptions of the practices and procedures
that are used to answer evaluation questions pertaining to our implementa-
tion objectives.

First, we identify sources of evaluation information and then we describe
in detail for every implementation objective the information needed to de-
termine if it is being attained and the method to collect this information.

4.2.1 Sources of Information

The most common method to obtain evaluation information is the survey
of system properties with an interview or questionnaire [37]. In addition to
a written questionnaire afterwards, we use own observations while the user
handles certain tasks during the evaluation. The user has to fulfill these
tasks, upon which he then gains experience. This method is most suitable,
if a prototype is available and if potential members of the target group agree
in participating [32].

The questionnaire, which can be found in the appendix, consists of nine
questions about the usability and the usefulness of the graph-based inter-
face. Additionally we ask about particulars, like the age and gender, and
about the knowledge of computers, particularly of PDAs. These questions
are statements like ”Navigation through the graph is a good way to collect in-
formation” and the user has to rate them. Rating those statements means,
the user has the possibility to agree with the statement, stay neutral or
disagree with it.

50 4. FIRST EVALUATION

4.2.2 Information Needed and Methods Used

For the four implementation objectives, several kinds of information are
needed. In the following we formulate for each objective the information
needed to determine if it is being attained and to assess barriers and facili-
tators. In addition we specify how this information will be collected (the
instruments and procedures) and who will collect it.

1. Type of information needed and methods used to collect them for the
first objective, concerning the Interaction:

(a) We need information if and how participants use the interaction
forms with the graph. Interaction forms are the click on a vertex
to set the focus for the fisheye view and the click on a rollout
button to open a rollout menu.
So we need information whether the user understands and uses
the forms of interaction with the graph or not.

(b) The information needed for the first objective is collected by ob-
servations. The person performing the evaluation needs to ob-
serve, if the participant realizes the possibilities to interact with
the graph and uses this interaction forms knowingly and goal
orientated.
Additionally, several questions about the interaction forms and
their usability are asked in the questionnaire.

2. Type of information needed and methods used for the second objective,
about Information Extraction:

(a) Here we need information about how participants extract infor-
mation out of the graph. Thereby it is important to determine
the quality of the extracted information. We have to check, if
this information is correct and whether it was easy to extract it
out of the graph or not.

(b) To collect the information to determine the second objective we
use a combination of concrete questions in the questionnaire af-
terwards and a certain task to be performed by the user. The
task is:

• Find an arbitrary result for a soccer match between Germany
and Argentina.

Solving this task is only possible, if the user combines two sepa-
rated information out of the graph to a new one. Therefore the
user just has to look at the graph and does not need to change
anything, because the relation ”result” is initially active. He has
to understand, that the three connected vertices ”GER - ARG”,

4.2. EVALUATION PROCEDURE 51

Figure 4.1: Out of this graph the user needs to get the information to name
an arbitrary result for a soccer match between Germany and Argentina.

”3:1” and ”result” together form the answer for this task (figure
4.1).
The given answer to this task serves for the determination of
the second objective, Information Extraction out of the graph
structure.

3. For the third objective, the Differentiation between an instance and
a relation, we need the following:

(a) Firstly, information about how the participants employ the graph.
Secondly, information whether they are able to distinguish be-
tween a relation and an instance. And thirdly, in case they are
able to distinguish, do they interpret the two different kinds of
vertices correctly.

(b) The special task to determine the third objective is to get the
correct answer to the question:
• Find a concrete date for an arbitrary soccer match between

Germany and Argentina.
This task demands the activation of an initially inactive relation,
namely ”happens at”. Therefore the user needs to understand the
meaning of a relation as well as the meaning of an instance and
how to activate a new relation.
The quality and correctness of the given answer is the information
basis for the validation of the third objective.

4. And finally the required information and useful methods for the fourth
objective, to realize the Dependencies between related active in-
stances:

52 4. FIRST EVALUATION

(a) For this objective we need information about the use of the roll
out menus. This holds for a change of an active instance as well
as for the change of an active relation.
Of special interest is the way a participant uses such a change to
gain new information. Does he realize the update of the graph
due to such a change?

(b) The special task for the last objective is:

• Find the result of the soccer match between Germany and
Argentina in the world championship 1966.

This is the most challenging task for the user. For the right an-
swer, the user has to change the active instance of the vertex with
all Championships to ”WM 66, ENG” and then he has to acti-
vate the right relations to get the information about the result.
Further the user needs an understanding of the dependencies be-
tween the active instances. This means, he needs to understand
that a change of an active instance can lead to further changes in
the graph due to propagation. This is described in section 3.3.1
about the consistency check.
So collecting the information of the answer to this given task
gives us a possibility to assess the forth objective, whether the
user realizes the Dependencies between related active instances.

4.3 Evaluation Results

In total twenty participants were interviewed during the first evaluation.
The computer skills of the twenty participants range from inexperienced to
professional and are uniformly distributed. The same holds for the distri-
bution of the gender, there is almost the same number of men and women.
The distribution of computer skills is shown in figure 4.2. The average age
of the twenty participants is 26.6 years, spreading between 43 and 21 years.

In the following we present the information we collected in order to
determine the four implementation objectives, introduced in section 4.1.2.
The data involves tabulating frequencies and classifying free text comments
into meaningful categories.

Results Regarding Interaction

The results regarding the first objective, the possibilities to interact
with the graph are easily to understand:

This does not hold in case of 42 percent of the participants (figure 4.3).
The most influential information for this high number of negative feedback

4.3. EVALUATION RESULTS 53

0

2

4

6

8

10

12

very good good normal bad

PC Skills
PDA Skills

Figure 4.2: The data out of the questionnaire about the computer skills of
the participants.

were the answers to the questionnaire statement: ”The interaction is diffi-
cult”. 73 percent agreed with this negative statement in the questionnaire.
Comments were, for example:

1. The reaction time of the system is too slow.

2. The area available to click on is too small.

The second most influential information for the 58 percent of negative feed-
back regarded the answers to the statement: ”The behavior of the graph is
hard to predict”. 63 percent of the users agreed with this statement in the
questionnaire.

58%

42%
positive
negative

Figure 4.3: 42 percent of all participants did not agree with the first objec-
tive: The possibilities to interact with the graph are easily to understand.

Results Regarding Information Extraction

The results regarding the second objective, it is possible to extract in-
formation out of the graph structure and the vertex labels:

54 4. FIRST EVALUATION

Only 25 percent of the participants failed to reach this objective. An
interesting point is here to distinguish between the result for participants
with good computer skills and participants with bad skills. The negative
percentage rises to 59 for the group with less computer skills and drops to
10 for the professionals (figure 4.4).

0% 20% 40% 60% 80% 100%

Bad Skills

Good Skills

positive
negative

Figure 4.4: 59 percent of all participants with bad computer skills did not
match with the objective: It is possible to extract information out of the
graph structure and the vertex labels.

These 59 percent negative feedback needs some explanation, so we take a
look at the information of this group of participants. The two explanations
given by the participants are:

1. The labels are too small and therefore too hard to read.
62 percent agreed with this.

2. To extract the required information out of the graph is difficult.
Half of the users agreed, 52 percent. The comments were that the ver-
tices around the focus vertex should get enlarged. So the surrounding
area is too small to read the labels.

Results Regarding Differentiation

The results regarding the third objective, the user gets aware of the
difference between an instance and a relation:

Here the percentage of negative feedbacks is low. Only 15 percent did
not agree with it. This time we take a look at the information from the
observation. While monitoring the users, it seems that they were not always
able to interpret the edges between two vertices as a semantic connection.
Therefore they tried to get the information about the date of a soccer match
from the relation ”happens at” itself and not from the related instance (figure
4.5 and 4.6).

4.3. EVALUATION RESULTS 55

Figure 4.5: If the relation “Spielda-
tum” (happens at) is the current fo-
cus, it is almost impossible to read
the date in the upper left corner, be-
cause the vertex is too small.

Figure 4.6: If the date itself has the
focus, the connected relations are
too tiny for visual inspection.

Results Regarding Dependencies

The results regarding the fourth objective, the user realizes the depen-
dencies between related active instances:

This last objective gained 45 percent negative feedback. If we take a look
again at the two groups of participants divided by the computer skills, there
is a difference of almost 30 percent between those groups. The low skilled
group reaches 67 percent negative feedback (figure 4.7) and the professional
group only 38 percent.

0% 20% 40% 60% 80% 100%

Bad Skills

Good Skills

positive
negative

Figure 4.7: 67 percent of all participants with low computer skills disagreed
with the objective: The user realizes the dependencies between related active
instances.

56 4. FIRST EVALUATION

This was mainly, because the users did not realize the change of the
active instances due to a change of a certain active instance in the graph.
So the dependencies between related instances were not realized.

4.3.1 Insights Gained From Free-Text User Input

After filling in the questionnaire the participants were asked to write down
some general remarks on the prototype. To give an impression of the written
answers, here are some samples of the positive and the negative remarks.

The headline for the first free text area on the back side of the question-
naire is: ”What did I like especially about this interaction form?”. Positive
remarks were:

• All information is displayed with regard to its context

• The representation through a graph is good

• The amount of information is visible as well as what information leads
to what information

• The animation helps to understand the interrelations

• New and efficient metaphor to find information

• Small gadget

The second free text area on the back side has the headline: ”What needs
immediate change?”, and negative remarks were:

• The font is to small

• The roll out button should be easier to recognize

• A change in the graph should be more obvious

• The reaction time is to slow

• The labels are sometimes misleading

• A help tool is needed to explain the functionalities

• The interaction form using the pen and the touch screen is difficult,
especially because the areas to click are to small for the pen

These remarks match with the results of the evaluation in total. The results
show, that our prototype still contains several obscurities.

On one hand the visualization has several weak points. First and fore-
most these are the readability of the labels and the visual effects for changes
in the graph content as well as the graph structure.

4.3. EVALUATION RESULTS 57

On the other hand, our graph prototype is only able to represent the
semantic structure of the answer to one certain question. So it is not possible
to represent arbitrary answers through the semantic graph-based interface,
yet. On this account the user cannot explore new information beyond the
dummy data, because the integration of new information into the graph is
also not implemented, yet.

In the first section (section 5.1) of the next chapter, we will discuss the
consequences arising out of the first evaluation.

58 4. FIRST EVALUATION

Chapter 5

Further Development

After the first evaluation, we are now going to draw the consequences out
of the evaluation results. If our analysis has been correct, we will be able to
find the right ways to improve our graph presentation system.

5.1 Consequences Arising out of the First
Evaluation

For every implementation objective we can look at the evaluation results
to see whether it is being attained or not. Additionally we get information
about factors that were barriers to attain this objective. Out of these factors
we draw consequences by identifying areas in which changes may be needed
for future implementation.

Consequences Regarding Interaction

The barrier to attain the first objective, the possibilities to interact with
the graph are easily to understand, consists mainly of three problems.
The area available to click on is too small, the reaction time of the system
is too slow and the behavior of the graph is hard to predict.

An idea to solve the first problem is to increase the clicking area for the
buttons. This should make the interaction with the graph easier.

The problem regarding the reaction time is more complicated to deal
with. Due to the use of Flash for the graphical interface in combination
with a handheld client, the system needs some time to compute the graph
movements. Even if we try to optimize these computations on the handheld
client, the animation of the graph will remain a complex operation.

A way to reduce this complexity is to hold the number of visible vertices
as small as possible. Holding the number small, reduces the amount of
computation to animate the movements of the whole graph. Every visible
part of the graph moves visually animated from its old screen position to

59

60 5. FURTHER DEVELOPMENT

its new one, accordingly to the current focus position. Until now, all the
vertices inside of a certain distance to the focus vertex are visible. Even
if the vertex has no active relation to another vertex at all, as shown in
figure 5.1. There is no management of the visibility of vertices as well as no
organization of vertex positions, yet.

Figure 5.1: Two loose vertices, left and right, without any connection to
other vertices, but still visible.

Organizing the visibility of vertices dynamically will decrease the amount of
computation for the handheld client. We need such a dynamic organization
anyway, in case of representing arbitrary graph data.

The third problem to reach the first objective is the difficultly to under-
stand the behavior of the graph. A response therefore could be to highlight
the current focus vertex. In the first prototype exists no visual mark for the
focus vertex except for the distortion due to the fisheye view. Marking the
focus in an additional way could make the interpretation of the distortion
easier and thereby the understanding of the behavior in general.

Consequences Regarding Information Extraction

The users’ comments, most closely associated with the second objective,
it is possible to extract information out of the graph structure
and the vertex labels, are attributable to the problems encountered in
implementing this objective. The comments were:

• The labels are too small and therefore too hard to read.

• To extract the required information out of the graph is difficult.

5.2. VISUAL IMPROVEMENTS 61

A solution could be just to increase the text size of all vertex labels. By
increasing the labels in equal measure in addition to the fisheye distortion
described in section 3.4.2, which increases vertices depending on their dis-
tance to the focus vertex, the readability would be improved. However, we
have to be careful with this, because the space for increasing all labels is not
available on the handheld client. We will think about a refinement of the
fisheye distortion to improve the readability in section 5.2.2.

Another solution for the problems to accomplish an easy information
extraction is to hide all vertices that have no connection at all to the focus.
Because, if there are vertices visible on the screen, not connected at all, it
is confusing to the user (figure 5.1).

Consequences Regarding Differentiation

The analysis of the barriers for the third objective, the user gets aware
of the difference between an instance and a relation, leads to the
judgment, that the vertex, to which a relation is leading to, has no sufficient
visibility. Therefore, the idea of a refinement of the fisheye distortion, to
increase those vertices of current interest to the user, seems to be a solution
for this problem, too. If the focus lies on a relation, then the vertex, this
relation is leading to, has to be increased. In case the focus lies on a normal
vertex all the outgoing relations have to be increased. As a consequence
the user possibly recognizes the related information more likely because it
is more visible.

Consequences Regarding Dependencies

For the fourth objective, the user realizes the dependencies between
related active instances, we found that the user did not recognize these
dependencies, maybe because the visual effects are too tiny. An idea to
counter this is a better visual response to an actualization of instances due
to a change of a certain active instance in the graph. Whenever a vertex
gets a new active instance due to an actualization, it could flash to signalize
this change.

Another idea is not to highlight the updated vertices, but all the edges
leading to them. With such a highlighting, the user would become able to
even see the way of the update through the graph.

5.2 Visual Improvements

The evaluation of the prototype reveals that a visual improvement of the
interface is needed. The analysis of the output information has clearly iden-
tified the areas in which changes will be needed.

62 5. FURTHER DEVELOPMENT

Figure 5.2: The focus vertex has a special color to be more visible.

The first area is the support of visual perception. The graphical repre-
sentation has to highlight changes and point out important information in
general.

One of such important information is the position of the focus vertex.
The first improvement is to increase the visual effect of the focus by a certain
color, as we can see in figure 5.2. Additionally to the increase of text size
due to the fisheye distortion, the extra color helps the user to identify the
focus vertex and thereby to understand the behavior of the whole graph.

Another important information is the update of active instances due to a
change of a certain active instance by the user. Whenever the user changes
the active instance of a vertex, the system runs a consistency check through
the whole graph, to check whether the related vertices have to update their
active instances, too. Highlighting every updated vertex due to a change
of its color makes every update more visible to the user. Such highlighted
vertices are shown in figure 5.3.

Along with this coloring of updated instances comes another idea. At
the present state of visual improvements, the coloring affects only the active
instances of updated vertices. As described in section 3.3.1, the user can
change the active instance for a vertex due to a roll out mechanism that
makes the inactive instances become visible in a roll menu. So the idea

5.2. VISUAL IMPROVEMENTS 63

Figure 5.3: The user has changed the active scored goal from “Tor 1:1” to
“Tor 0:1”. All the updated vertices are marked with a special color, here
light blue.

is to deliver additional information about the consistency by coloring also
inactive instances. To gain this additional consistency information about
inactive instances, the consistency check needs a refinement.

5.2.1 Refinement of the Consistency Check

As described in section 3.3.1, all instances are related to other instances,
no matter whether they are active or inactive. The difference is that the
active instances are permanently visible, while the inactive instances are only
temporary visible in the roll out menus. So the user can see the relationships
of the active instances only. For example, the user can see for the active
soccer match, the date it happened at, ”08.06.1958”, and one of the goals,
scored at this active soccer match, ”Tor 0:1”.

If the user changes the active soccer match, the consistency of all the
related vertices and their active instances have to be checked, as described
in section 3.3.1. So for our example, if the active date instance ”08.06.1958”
is no longer consistent with the active soccer match, it has to be updated.
The same holds for the active goal instance ”Tor 0:1”.

The consistency check, in the form it was implemented in section 3.3.1,

64 5. FURTHER DEVELOPMENT

changes the active instance of a vertex, if it is not consistent anymore.
Whenever an active instance changes, it is highlighted by a change of its
color, as described in section 5.2. However, the primary consistency check
is only responsible for a consistent active instance per vertex and thereby
provides no information about the inactive instances and their consistency.
To provide information whether inactive instances are also consistent or not,
we need a refinement of the consistency check. This information can then
be represented by the color of the inactive instances.

Consistency of Inactive Instances

In the primary consistency check, implemented in section 3.3.1, we defined
consistency in the following way:

• The active instance of a vertex is called consistent, if all active incom-
ing and outgoing relations are consistent.

Because this first definition concerns only active instances and their con-
sistency, a second definition for inactive instances and their consistency is
needed. We define the consistency of inactive instances in the following way:

• An inactive instance is called consistent, if it has a connection to a
consistent instance for all incoming relations.

Two things have to be pointed out, firstly, this second definition is only valid
for inactive instances and secondly, the consistency of inactive instances
depends only on incoming relations.

The most important consequence of the implementation of this second
definition is the division of inactive instances into consistent instances and
inconsistent instances. By visualizing these two groups differently, the user
gains the information whether the change to another instance as the active
one, causes a change of related instances or not. It is thereby possible to
predict the change of the graph content, just by looking at the color of the
inactive instances.

In figure 5.4, in STEP 1, the user clicks the inactive instance “2.GER-
ARG”. Just by looking at the color of “2.GER-ARG”, he knows that this
inactive instance is inconsistent and thereby causes a change of related in-
stances. In STEP 2, after the refined consistency check, all the goals, scored
by the new active match “2.GER-ARG” are marked with white to show
their consistency. As a consequence of the goal “Tor 1:1” being consistent,
the player “Völler”, which has scored it, is marked consistent, too.

The distinction between consistent and inconsistent inactive instances
offers the possibility for a further visual improvement. The idea is to show
for certain vertices only consistent inactive instances in the roll out menu
and hide the inconsistent inactive instances. This is particularly suitable for
vertices where the number of inactive instances is too huge to be properly

5.2. VISUAL IMPROVEMENTS 65

Tor 0:1

1.GER-ARG Tor 1:0

2.GER-ARG Tor 2:0
3.GER-ARGnew active

instance

2.GER-ARG Tor 0:1

1.GER-ARG
3.GER-ARG

all inactive instances
are visible

only consistent inactive
instances are visible

active
instance
inactive
instances

Rahn

Herberger

Völler

Corbatta

S
TE

P
 1

S
TE

P
 2

Völler

RahnTor 0:1

Tor 1:1

inconsistent

consistent

Tor 1:1 Corbatta

HerbergerTor 0:2invisible

Figure 5.4: The propagation and visualization of the consistency of inactive
instances, possible due to the refinement of the consistency check.

displayed, for example the goals scored in all the matches between Germany
and Argentina. There are more than ten goals scored in four matches and
displaying all of them would confuse the user and could not be properly
arranged on the small screen.

Because of this, all vertices are divided into two groups, as shown in figure
5.4. In the roll out menu of the first group, all inactive instances are visible.
In the roll out menu of the second group, only consistent inactive instances
are visible. The vertex holding all the soccer matches, for example, always
shows all inactive instances in the rollout menu (figure 5.5); however, the
vertex holding all scored goals shows only the consistent ones (figure 5.6).
Therefore, only those goals scored in the current active soccer match are
visible in the roll out menu. If the user changes the active goal, the active
soccer match remains the same.

5.2.2 Refinement of the Fisheye Distortion

Another consequence arising out of the first evaluation is to increase the
text size of the vertex labels. Because we do not have the space to increase
all labels in equal measure, we need a way to increase the size of only those
labels of current interest to the user.

With the fisheye distortion, described in section 3.4.2, we are already
using a mechanism to increase the size of certain labels. The evaluation

66 5. FURTHER DEVELOPMENT

Figure 5.5: In the rollout menu with
the soccer matches, all inactive in-
stances are visible even if they are
inconsistent. Inconsistent inactive
instances are dark blue. The la-
bel “Ereignis” refers to the scored
goals.

Figure 5.6: In the rollout menu with
the scored goals, only the consistent
inactive instances are visible. Con-
sistent are all goals that were scored
in the active soccer match. Consis-
tent inactive instances are white.

showed, that the fisheye view at its current state of implementation offers
no optimal distortion of the graph to easily extract information out of it.
Therefore we have to think about ways to refine the fisheye distortion. The
goal of such a refinement is to increase the text size of the vertex labels in a
way, more adapted to the current demands of the user. It must be pointed
out, that this refinement idea uses a new concept to increase certain labels,
in addition to the distortion of the graph due to the fisheye view.

So firstly, we have to define current demands of the user. The text size
of which vertices have to be increased in which situations?

If the user chooses an active instance as focus vertex, then the labels of
all active outgoing relations of this new focus vertex have to be increased.
So if, for example, the vertex with a certain soccer match between Germany
and Argentina has the focus, then all active outgoing relations are of interest.
Outgoing relations are, for example, ”happens at” and ”final result”. We
assume that there is a connection between the interest in a certain instance
and the interest in related information, like here the final result and the date
for the soccer match.

In case of one of the relations having the focus, the interest of the user
moves to the certain vertex this relation is leading to. So, if the user focuses
on a relation, the label of the vertex this relation is leading to must be
increased. Here the assumption is, that if the user is interested in the relation

5.3. INTEGRATION INTO SMARTWEB 67

”geschossen von” (“scored by”), he will be highly interested in the real
information, namely the player who really scored the goal. In figure 5.7
the refined fisheye distortion is shown. Due to the refinement, the text size
of the vertex label, the relation ”geschossen von” (“scored by”) is leading
to, is increased. In comparsion, figure 5.8 shows the fisheye distortion at
its first implementation, as it was described in section 3.4.2. In the first
implementation, the text size of a vertex label depended only on its distance
to the focus vertex and not on its relation to this vertex.

With the refinement of the fisheye distortion, the text size gets more
adapted to the current demands of the user. Whether this refinement is
appropriate to improve the extraction of information out of the graph or
not, will be seen in the second evaluation.

Figure 5.7: The text size of the
player “Corbatta”, who has scored
the goal (“geschossen von”), is in-
creased due to the refinement of the
fisheye distortion.

Figure 5.8: With the primary fish-
eye distortion, the player is almost
invisible.

5.3 Integration into SmartWeb

Our graph presentation system is in the first instance developed as a part
of the SmartWeb system. It serves as a new semantic point of view for the
user, however, it offers not only a new perspective on the result data, but
also a new interaction form to explore this information space. Furthermore,
it should be possible, by using this graph-based user interface, to ask for
new information. These software specifications are described in section 2.2.

68 5. FURTHER DEVELOPMENT

At the current state of implementation, our second prototype is only
able to deal with dummy data. As described in section 3.1, this dummy
data represents the information of the answer to the question ”How was
Germany playing against Argentina in a world championship?”. As a first
approximation, we assumed that this is the only graph to display and there-
fore we could find appropriate positions for the vertices, the dummy graph
layout, manually.

However, for an integration into the SmartWeb system, our graph pre-
sentation system has to be able to handle arbitrary input data, encoded in
RDF, and hence be able to request for this RDF data from the SmartWeb
system (look at figure 5.9).

Dummy
graph
layout

Displays

User

Client

Distorts
(Fisheye)

Distorted
graph layout Checks consistency

Consistent
graph layout

Interaction:
New active instanceGUI

Structurally maps

Automatically layouts

Requests information
from SmartWeb

User
interaction

RDF data

Graph
data

Figure 5.9: The integration of the graph presentation system into the
SmartWeb system as a data flow diagram.

As it is shown in figure 5.9, for an integration we need mainly two things:

1. A structure mapping to convert the RDF input data into useful graph
data for a representation on a small display.

2. An automatic layouter to get the positions for all the vertices of the
graph data, the graph layout.

5.4 Structure Mapping

In the first prototype, we manually mapped the RDF data of the answer
to the question ”How was Germany playing against Argentina in a world

5.4. STRUCTURE MAPPING 69

championship?” to useful dummy graph data. In this section, a general
implementation of a structure mapping for arbitrary RDF input data is
described. The corresponding data flow diagram is shown in figure 5.10.

Dummy
graph
layout

Displays

User

Client

Distorts
(Fisheye)

Distorted
graph layout Checks consistency

Consistent
graph layout

Interaction:
New active instanceGUI

Structurally maps

Automatically layouts

Requests information
from SmartWeb

User
interaction

Dummy RDF data

Graph
data

Figure 5.10: The Data flow diagram extended by a structure mapping.

Again, the reason for this structure mapping is to receive graph data
with fewer vertices as we would receive by directly mapping each instance
of the RDF data to its own vertex. Reducing the vertices needed for a
representation of the RDF data, makes them more suitable to be displayed
on the small screen of the handheld client. This means, the instances are
grouped together based on certain criteria. In our manual structure mapping
in section 3.1.1, we used as a criteria the concept of the instances.

It is possible to group the instances by their concepts, but maybe that
is hard to implement. This is because, even if two instances are of the same
concept that does not mean they share the same relationships. This does
not apply for instances with different incoming relations. The incoming
relations of an instance can differ from other instances of the same concept,
because the incoming relations are not defined by the concept, but depend
on the context.

This is, for example, the case for the concept ”date”. An incoming
relation from the concept ”soccer match” to the concept ”date” is ”happens
at”. However, another date instance can have other incoming relations, for
example a relation ”starts at” from a concept ”championship” that defines
a starting point for a time period.

Even if both instances are of the same concept ”date”, their contexts are

70 5. FURTHER DEVELOPMENT

different. One date stands for an exact day of a soccer match and another
date just stands for the beginning of a championship.

If both instances were represented by only one vertex, the edges con-
nected to this vertex would be incorrect. This is because the incoming
relations ”happens at” and ”starts at” are not valid for all the dates inside
this vertex.

For this reason, our criteria to group instances together are the incoming
and outgoing relations of the instances. In this approach different instances
are only grouped together to one vertex, if they share exactly the same
incoming and outgoing relations. So, only if the instances stand in the same
contextual structure to all other vertices and their groups of instances. An
instance, sharing the same concept, but having different incoming relations,
can not belong to the same vertex. In this case, a new vertex is needed for
all the instances, standing in this contextual structure.

In case of the example about dates, all instances of the ”date” concept
are divided into two groups of instances with different contextual structures.
Therefore we need two different vertices, one for each group. All the date
instances in one group have ”happens at” as an incoming relation from their
soccer matches and all the instances in the other group have ”starts at” as
an incoming relation from their championships.

To sum up, all instances of the RDF data are grouped by their contextual
structure. Every group is then represented by one vertex in the new graph
data. This approach for a structure mapping is applicable for arbitrary RDF
input data.

5.5 Automatic Graph Layout

If we have to display graph data, how do we get the positions for all the
vertices?

In the first prototype, we manually defined an x- and a y-coordinate to
determine the positions of every vertex (look at section 3.1.2). This method
was sufficient to receive a dummy graph layout for our fixed graph data. To
receive a graph layout for arbitrary graph data, the appropriate positions
for the vertices must be found automatically, as shown in figure 5.11. If the
user changes a relation, the layout needs to be updated.

Constraints The three constraints for our automatic graph layout are:

1. All vertices must be inside a fixed space on the handheld.

2. Vertices must not overlap.

3. Related vertices must be placed next to each other.

In addition to these constraints for the automatic graph layout, a number
of aesthetic criteria should be considered as far as possible [16].

5.5. AUTOMATIC GRAPH LAYOUT 71

Automatically layouts

Checks consistencyDistorts
(Fisheye) Displays

User

Distorted
graph layout

GUI

Consistent
graph layout

Interaction:
New active instance

Interaction:
New relation

Graph layout

Client

Interaction: New focus

Requests information
from SmartWeb Structurally maps

Dummy RDF data

Graph
data

Figure 5.11: The graph layout for arbitrary graph data is found automati-
cally and, in case of a relation change, it is updated appropriately.

Aesthetic Criteria For a small display on a mobile device, our four Aes-
thetic Criteria are:

1. Avoid edge crossings.

2. Keep edge lengths uniform.

3. Distribute vertices uniformly.

4. Keep vertices conform with user expectations.

There has been significant research on graph drawing algorithms [15]. In
general two approaches are used to automate graph layout: the algorithmic
approach and the declarative approach [52].

In the algorithmic approach, the idea is to devise an algorithm that
is supposed to produce a graph that meets a pre-specified set of criteria.
Force-directed algorithms are a class of algorithms for drawing graphs in an
aesthetically pleasing way. Though this approach usually is computationally
efficient, it is difficult to meet all criteria, and changing criteria or changing
priority usually involves developing a new algorithm. Because the algorithm
usually runs in polynomial time, it is able to deal with large problems [13].

The declarative approach is the most direct. In this approach, the
layout of the graph is specified by a user-defined set of constraints, and it is
generated by solving the system of constraints.

72 5. FURTHER DEVELOPMENT

While this constraint-based method is a direct and expressive way of
formalizing constraints into a computer program, the program itself usually
takes a long time to compute a graph layout and is generally inefficient.

In this diploma thesis we try both approaches to find the best imple-
mentation of an automatic graph layout; the force directed method and the
constraint based method.

5.5.1 Force Directed Method

A particularly unique and successful strategy for drawing graphs, which meet
many of the aesthetic criteria, is the force directed method [22]. Unlike most
algorithms rooted in theory, the force directed simulates a system of natural
forces to find a graph layout.

The Force-Directed method defines a system of forces acting on the ver-
tices and edges to find a minimum energy state [18].

The ”spring-embedder” is the original force directed method, where all
the edges are modelled as stretchable springs of different length which oscil-
late until the system reaches equilibrium [18]. Other force-directed methods
produce physical models from subatomic forces of attraction and repulsion
[22] and energy minimization using simulated annealing [14]. A survey of
force directed methods can be found in [10].

For our problem, which consists in finding positions for vertices of a
given graph structure, the force directed method seems to be appropriate.
The method starts with an initial random placement of the vertices and
tries to reach a stable minimum energy state. Due to the fact of random
vertex positions right from the start of the computation, we never receive
an empty solution. So the user will never receive an empty screen, even if
the displayed solution of a graph layout is not optimal.

On the one hand, this is an important advantage of the force directed
method. However, on the other hand, it is a disadvantage, because there
exists no way to tell in advance, after what time the solution satisfies certain
constraints. This is because the force directed method just tries to find the
minimum of a global energy level for all pairs of vertices and does not care
for certain constraints, as for example: Vertices must not overlap. Even in
the optimal solution of the force directed method, there is no guaranty that
vertices do not overlap.

For our graph layout, we choose for a first rough implementation of such
a force directed method CCVISU1 [6]. CCVISU is a lightweight tool for co-
change visualization and force-directed graph layout, using the well-known
algorithm of Barnes and Hut[3]. Although the tool was originally developed
for computing clustering layouts of software systems, CCVISU is applicable
to many graph layout problems.

1http://directory.fsf.org/ccvisu.html

5.5. AUTOMATIC GRAPH LAYOUT 73

Our rough implementation with CCVISU confirms the described disad-
vantage of the force directed method. Especially for a graph layout to be
displayed on a small screen, so for our graph layout, the limited constraint
satisfaction capability is of great disadvantage. Due to the lack of space
on the handheld display, this disadvantage can easily lead to overlapping
vertices and thereby to a reduction of readability.

5.5.2 Constraint-based Method

The second approach to automate graph layout, is the constraint-based
method.

A central idea of this approach is to address automated layout by using
constraint processing techniques [54] to represent and process causal design
principles and perceptual criteria about human visual abilities for structur-
ing and organizing documents.

The design of an aesthetically pleasing layout is characterized as a com-
bination of a general search problem in a finite discrete search space and an
optimization problem [27].

This problem is called the ”Constraint Satisfaction Problem” or CSP.
Formally speaking, a constraint satisfaction problem (or CSP) is defined
by a set of variables, X1, X2, ..., Xn, and a set of constraints, C1, C2, ..., Cm

[47]. Each variable Xi has a nonempty domain Di of possible values. Each
constraint Ci involves some subset of the variables and specifies the allowable
combinations of values for that subset. A state of the problem is defined by
an assignment of values to some or all of the variables, {Xi = vi, Xj = vj , ...}.
An assignment that does not violate any constraints is called a consistent or
legal assignment. A complete assignment is one in which every variable is
mentioned, and a solution to a CSP is a complete assignment that satisfies
all the constraints.

In section 5.5, we have formulated our problem of automatic graph lay-
out in three constraints and four aesthetic criteria. Fortunately the problem
to satisfy these constraints belongs to the simplest kind of CSPs, it involves
only variables that are discrete and have finite domains, namely vertex po-
sitions. A position consists of an x- and y-coordinate and both coordinates
are discrete numbers. The domains for these coordinates are restricted by
the width and height of the handheld display.

If the maximum domain size of any variable in a CSP is d, then the
number of possible complete assignments is O (dn), where n is the num-
ber of variables. In the worst case, therefore, we cannot expect to solve
finite-domain CSPs in less than exponential time that is, exponential in the
number of variables.

We can roughly classify constraint-based languages and systems by using
one of two approaches: the perturbation model or the refinement model [8].

74 5. FURTHER DEVELOPMENT

In both cases constraints restrict the values that variables may take on.
In the perturbation model, at the beginning of an execution cycle

variables have specific values associated with them that satisfy the con-
straints. The values of one or more variables are perturbed, and the task of
the system is to adjust the values of the variables so that the constraints are
again satisfied. The perturbation model has often been used in constraint-
based applications such as the interactive graphics systems Sketchpad[51],
ThingLab 1[7], Magritte[26], and Juno[35], and user interface construction
systems such as Garnet [33].

In contrast, in the refinement model, variables are initially uncon-
strained; constraints are added as the computation unfolds, progressively
refining the permissible values of the variables.

5.5.3 Perturbation Model

For the perturbation model we use the DeltaBlue algorithm [48]. Delta Blue
is an efficient incremental algorithm for satisfying hierarchies of multi-way
constraints using local propagation [48].

When building interactive user interfaces, the displayed information chan-
ges frequently and therefore the set of constraints. It is thus useful to have
an incremental constraint satisfaction algorithm, one that can take advan-
tage of previous computations rather than starting over each time there is a
change in the set of constraints. The key idea behind DeltaBlue is to asso-
ciate extra information with the constrained variables so that the solution
graph can be updated incrementally, when a constraint is added or removed
without examining more than a small fraction of the entire constraint hier-
archy.

This is extremely useful for our graph representation in case of an ex-
tension or an update of the graph structure (look at section 3.3). So the
DeltaBlue algorithm tries to solve every new constraint by a local search in
the affected area, in contrast to a complete new search for all variables in
the refinement model.

Even if the DeltaBlue algorithm seems to fulfill our demands of automatic
graph layout with user interaction better, the effort for the implementation
of this approach is enormous. The reason for this enormous effort lies in
the fact that the SmartWeb system is implemented in Java and we have
not found a Java implementation of the DeltaBlue algorithm. Available
implementations of DeltaBlue are in C2 and Delphi3. This leaves three
possibilities, firstly, to implement it in Java ourselves, secondly, to build
an interface between the implementation of this algorithm and the main
SmartWeb system or thirdly, to switch to the refinement model.

2http://www.cs.washington.edu/research/constraints/deltablue/
3http://www.wack.co.za/article/articleview/177/1/11/

5.5. AUTOMATIC GRAPH LAYOUT 75

Before we decide to shoulder the effort of a new implementation, we have
to check whether there is an easier way available with the refinement model.

5.5.4 Refinement Model

In the refinement model the approach to solve CSPs is based on removing
inconsistent values from variables’ domains until the solution is found. This
is called forward checking. Whenever a variable X is assigned, the forward
checking process looks at each unassigned variable Y that is connected to X
by a constraint and deletes from Y ’s domain any value that is inconsistent
with the value chosen for X.

If a partial solution violates any of the constraints, backtracking is per-
formed to the most recently instantiated variable that still has alternatives
available. The term backtracking search is used for a depth-first search that
chooses values for one variable at a time and backtracks it, when a variable
has no legal values left to assign. An intelligent approach to backtracking is
to go all the way back to one of the set of variables that caused the failure.
A backjumping algorithm that uses conflict sets is called conflict-directed
backjumping.

For the implementation of the refinement model, we use the Choco Con-
straint Programming System4. Choco is a Java library for constraint satis-
faction problems (CSP) and constraint programming (CP). It is built on an
event-based propagation mechanism with backtrackable structures.

Implementing an automatic graph layout, we have to meet the following
three demands:
Firstly, it has to find positions for all vertices and these positions have to
satisfy the three constraints, formulated in section 5.5.
Secondly, the four aesthetic criteria, formulated together with these con-
straints, should be considered as far as possible and thirdly, the computation
of the solution has to be fast because of the interactive aspect of our system.

Implementing Constraints and Aesthetic Criteria

A vertex position consists of an x- and a y-coordinate. Unfortunately there
exists no variable type in our constraint system for such a tuple structure.
On this account we need to divide a vertex position into two constraint vari-
ables. One variable holds the x-coordinate of a position and another variable
the y-coordinate. The domain of possible values for these variables is limited
to the fixed space on the handheld, reserved for the graph presentation.

Now, if we want to formulate a constraint for the distance between two
vertex positions P1 and P2, we have to formulate constraints for distances
between two x-coordinates (x1, x2) and two y-coordinates (y1, y2).

4http://www.choco-solver.net

76 5. FURTHER DEVELOPMENT

We formulate for all pairs of vertices a first distance constraint to avoid
the overlapping of two or more vertices (figure 5.12). This minimum distance
constraint prevents overlapping by setting a minimum separation distance
value between all vertices.

As a second distance constraint, we additionally formulate for all pairs
of related vertices a maximal distance constraint to place them next to each
other (figure 5.12). With this second distance constraint, we also avoid edge
crossings and keep edge lengths uniform.

1P

2P

distmin

distmin

x

21 yy −

21 xx −

y

Figure 5.12: A rough approach to
set a minimum separation distance
(mindist) between two points (P1

and P2).

43 xx −3P

4P

distmax
43 yy −

distmax

Edge

Figure 5.13: To place related points
(P3 and P4) next to each other,
we additionally set a maximal sep-
aration distance (maxdist) between
them.

Our first idea to compute the distance between two positions is to use
the Pythagorean Theorem:

distance =
√
|x1 − x2|2 + |y1 − y2|2

However, this is not possible, because there is neither power nor radical
implemented in the Choco system, yet. Available are, at the best, elemen-
tary calculation types, like addition and subtraction, because more complex
types are too computationally intensive due to the fact that every calculation
type has to get integrated in the constraint system. So the constraint system
needs to be able to backtrack, prune and search through every calculation
type, for every variable and over the whole range of values. Thereby the
constraint system shortly runs out of time in case of a complex calculation
type like, for example, power.

5.5. AUTOMATIC GRAPH LAYOUT 77

Fortunately we do not need the exact distance; we only need to formulate
something like: ”Two positions must not get closer or must not get farther
than a certain number of pixels”. Therefore we can take a simpler approach
to prevent such a constraint, as it is shown in figure 5.12 and figure 5.13.

In this approach we define the shape of all positions with the same dis-
tance to a certain point as no longer being a circle, but as being a square.
So a constraint defines a square around a vertex position of a certain in-
tersection that keeps all other positions at bay. For doing so, it is enough
to formulate a constraint that either x1 has a certain distance to x2 or y1

has this distance to y2. With the variable “dist” as the distance between
the two vertex positions, the constraint can be described by the following
formula:

(|x1 − x2| > dist) ∨ (|y1 − y2| > dist)

If this constraint holds for two positions P1 and P2, then the distance be-
tween both positions is at least “dist”, as it is in figure 5.12.

Unfortunately there exists also no way to formulate an absolute value in
a constraint and that is the reason why something like:

(|x1 − x2| > dist)

needs to be formulated as:

((x1 − x2) < −dist) ∨ ((x1 − x2) > dist)

The implementation of the constraints between related vertices can be found
in function 6 and 7. Even if the formulation of a constraint seems to be very
complicated, we have not found another library on the Internet sufficient for
our concrete task.

The popular “Java Constraint Library”5 (JCL), for example, contains
no possibility to connect constraints with an “AND” or an “OR”. However,
we need this kind of constraints for the formulation of certain distances
between vertices. So we take the Choco System to formulate our constraints
and search for solutions.

Function 6 relateVertices(problem,x1,x2,y1,y2)
1: // Builds a maximal distance constraint between two vertices
2: problem.post(this.buildConstraint(

problem, x1, y1, x2, y2,maxDistanceX, maxDistanceY, false));
3: // Builds a minimal distance constraint between two vertices
4: problem.post(this.buildConstraint(

problem, x1, y1, x2, y2,minDistanceX,minDistanceY, true));

5http://liawww.epfl.ch/JCL/

78 5. FURTHER DEVELOPMENT

Function 7 buildConstraint(problem,x1,x2,y1,y2,limitX,limitY ,max)
1: Constraint c;
2: if max then
3: // A maximal distance constraint
4: c = problem.or(problem.or(

problem.lt(problem.minus(x1, x2),−limitX),
problem.gt(problem.minus(x1, x2), limitX)
), problem.or(
problem.gt(problem.minus(y1, y2), limitY),
problem.lt(problem.minus(y1, y2),−limitY)));

5: else
6: // A minimal distance constraint
7: c = problem.and(problem.and(

problem.leq(problem.minus(x1, x2), limitX),
problem.geq(problem.minus(x1, x2),−limitX)
), problem.and(
problem.leq(problem.minus(y1, y2), limitY),
problem.geq(problem.minus(y1, y2),−limitY)));

8: end if
9: return c;

After having implemented all three constraints and two of four aesthetic
criteria, formulated in section 5.5, the implementation of only two aesthetic
criteria is missing. The first aesthetic criteria, we are going to implement
in the following, is to distribute vertices uniformly, the second aesthetic
criteria, we are going to implement, is to keep vertices conform with user
expectations.

Distribute Vertices Uniformly An implementation of the aesthetic cri-
teria, to distribute vertices uniformly, is an optimization that tries to spread
the graph as much as possible over the available screen.

The Choco System offers a way to implement optimization. It is possible
to search for a solution and thereby try to maximize or minimize a certain
variable. We use this to implement as much spreading of the positions as
possible. Therefore we need a variable denoting the objective value.

The variable to be optimized during the solving step is the total distance
between all not related vertices (look at figure 5.14). The Choco System tries
to maximize this total distance variable while searching for vertex positions.
By doing so, the vertices are spread as widely as possible over the display.

Keep Vertices Conform With User Expectations If the user changed
a relation in our first prototype (section 3.3.2), the positions of the vertices
did not change, a relation only was replaced by another relation. All the

5.5. AUTOMATIC GRAPH LAYOUT 79

Figure 5.14: The automatic layouter tries to maximize the total distance
between all not related vertices to distribute vertices uniformly.

vertices inside of a certain distance to the focus vertex were visible, even if
the vertex had no active relation to another vertex at all. This problem was
introduced in section 5.1.

If the user changes a relation in our second prototype, the positions of
the vertices can change. This is because the automatic layouter tries to find
optimal positions for all visible vertices. Vertices without any active relation
to visible vertices are deactivated and become invisible. Having free space
on the screen available, the layouter will try to rearrange the still visible
vertices in a way to distribute them uniformly, as described above. This can
lead to a completely new graph layout.

A completely new graph layout contradicts the aesthetic criteria to keep
vertices conform with user expectations. Therefore we implement an opti-
mization that leaves as many vertex positions untouched as possible in case
of a new graph layout.

To leave always all vertex positions untouched is impossible on a re-
stricted screen space. If we are possibly not able to leave all of them un-
touched for the next display of the graph, we need to define an order in
which to try to leave them untouched.

The idea is to rate the vertex positions regarding to their importance for
the user. A measurement for this importance is the time-lag to the last click
by the user. Rating the old vertex positions this way, we get something like
a trace of the user clicks. All the vertices that have been clicked recently
keep their position in case of a new graph layout, all the vertices that have
not been clicked recently release their position more easily. This mechanism
is illustrated in figure 5.15 and 5.16.

80 5. FURTHER DEVELOPMENT

STEP 1

STEP 2

Figure 5.15: If a vertex (marked
with the black box in STEP 1) has
not been clicked recently, it releases
its position easily (marked with the
red box in STEP 2) in case of an
update.

STEP 1

STEP 2

Clicked recently

Figure 5.16: If a vertex has been
clicked recently, the automatic lay-
outer tries to hold its position (red
box in STEP 2) in case of an update,
here a change of relations (new rela-
tion: “Spielort”).

Performance Problems

Our graph presentation system is an interactive system and thereby highly
sensitive to performance problems. This is because the reaction time is an
important factor for the usability of the system.

The efficient satisfaction of constraints is essential to the performance of
constraint-based user interfaces [48]. The Choco System uses a systematic
search and therefore gets into trouble in case of an increasing solution space.
In our system, the solution space grows exponentially, because every new
vertex needs a new constraint for every already existing one. So if we add
just one vertex, we have to add a constraint for all already existing vertices
to clear their relation for the right placement. So the exploration of the
whole solution space could become quickly inapplicable for an interactive
system in case there is no way to improve the efficiency. There are several

5.6. SERVER CLIENT COMMUNICATION 81

methods to find solutions more efficiently.
One way is to use problem-specific knowledge to speed up the search.

For example, choosing the variable with the fewest ”legal” values first. This
method is called the minimum remaining values (MRV) heuristic. It also
has been called the ”most constrained variable” or ”fail-first” heuristic, the
latter because it picks a variable that is most likely to cause a failure soon,
thereby pruning the search tree [47].

Another way to speed up the search is to reduce the solution space. As
described in section 5.5.4, every vertex position is represented by two con-
straint variables. The domain of possible values for these variables is limited
to the fixed space on the handheld, reserved for the graph presentation. The
screen resolution of the handheld client is 320∗240 pixel. For a search over a
solution space of 320 times 240 possible positions for one vertex, the solution
space for 10 vertices becomes (320 ∗ 240)10. This is a number with 49 digits!

The idea is to discretize the solution space to narrow down the search.
We do not need a resolution as high as the display resolution of the hand-
held for the different vertex positions. It is enough to simplify the solution
space for one vertex to 32 times 24 possible positions and thereby reduce
the search period enormously (The solution space of possible positions for
10 vertices drop to a number with 29 digits). After receiving the vertex
positions we just have to multiply them by ten and we have adequate data.

A different way to deal with performance problems is to use a faster
computer. Even with all the described methods to find solutions more ef-
ficiently implemented in our automatic graph layouter, the handheld client
is much to slow to find vertex positions in appropriate time. Thus we com-
pute the automatic graph layout on the server and not on the handheld
client. However, the fisheye computation stays at the client side, because
the computational cost is far from the cost to compute an automatic graph
layout.

With the automatic graph layouter on the server side and the graphical
user interface on the client side, we have to implement a proper communi-
cation between them.

5.6 Server Client Communication

Our graph-based user interface on the handheld client needs the graph layout
from the automatic graph layouter. Therefore the graph layout needs to
be delivered from the server to the client. On the other side, the user
interactions need to be delivered from the client to the server to change the
graph layout accordingly. This data flow is shown in figure 5.17.

82 5. FURTHER DEVELOPMENT

Communicates

Communicates Automatically layouts

Checks consistencyDistorts
(Fisheye) Displays

User

Distorted
graph layout

GUI

Consistent
graph layout

Interaction:
New active instance

Interaction:
New focus,
new relation

Graph layout

User interaction

User
interaction

Graph
layout

Graph
layout

Server

Client

Requests information
from SmartWeb Structurally maps

Dummy RDF data

Graph
data

Figure 5.17: The data flow diagram of the whole graph presentation system
extended by a server client communication.

5.6.1 Data Structure

An exchange of data between the server application and the client applica-
tion is already organized in the SmartWeb system. Therefore we can just
hook up with this exchange mechanism to deliver the graph layout to the
client and the user interaction to the server.

In the SmartWeb system, all the data exchanged between server and
client is organized by an XML structure. We extend this XML structure
by an new tag, dynamicgraph, for the data to be exchanged in our graph
presentation system, the graph layout and the user interaction.

Figure 5.18 exemplifies a graph layout being encoded inside the dynam-
icgraph tag. The graph layout consists mainly of vertices, their positions
and relations. The instances are encoded in pairs inside the relations and
the current focus vertex can be found in the footer.

The graph layout, encoded in XML, is sent from the server to the client to
be displayed on the handheld. The user interacts with the graph-based user
interface on the handheld client. If the user changes a relation or chooses a
new focus vertex, this interaction is sent back to the server, also encoded in
XML (look at figure 5.17). The third possible user interaction, to change an
instance, is handled by the consistency check (section 3.3.1) on the handheld

5.6. SERVER CLIENT COMMUNICATION 83

<?xml version="1.0" encoding="UTF-8"?>
<dynamicgraph>

<vertex>
<id>match1:Match</id>
<xpos>120</xpos><ypos>160</ypos><active>true</active>
<showOnlyValids>false</showOnlyValids>

</vertex>*
<relation>

<relid>match1-result1:Endergebnis</relid>
<rellabel>Endergebnis</rellabel><active>true</active>
<startvertex>match1:Match</startvertex>
<pair>

<startid>match1</startid>
<startlabel>1.GER - ARG</startlabel>
<endvertex>result1:Result</endvertex>
<endid>result1</endid><endlabel>3 : 1</endlabel>

</pair>*
<relation>*
<footer>

<newfocus>
<vertid>match1:Match</vertid><instid>match1</instid>

</newfocus>
</footer>

</dynamicgraph>

Figure 5.18: The XML structure to deliver the graph layout from the server
to the client.

client and needs no communication with the server.

Figure 5.19 exemplifies the XML structure to deliver the user action, to
choose a new focus. Even if the fisheye distortion (section 3.4.2) is computed
on the client, a new focus vertex can lead to a request for new information
from the SmartWeb system, as it is described in the flashlight approach in
section 3.4.2. However, at the current progress of the integration into the
SmartWeb system, it is not possible to really request for new information,
yet. This topic is part of the outlook in section 7.2.

As the user action, to choose a new focus, the action, to change a relation,
can also lead to a request for new information from the SmartWeb system.
Such a request will happen whenever the user interaction is an exploration
of information outside the already received result data. The response to this
request from the SmartWeb System then is send back to the layouter, to
update the graph layout. Finally, this updated graph layout is forwarded
to the graph user interface on the handheld client. The XML structure to
deliver the user action, to change a relation, is shown in figure 5.20.

84 5. FURTHER DEVELOPMENT

<?xml version="1.0" encoding="UTF-8"?>
<dynamicgraph>

<action>
<graphcommand>newFocus</graphcommand>
<vertexid>match1:Match<vertexid>
<instanceid>match1<instanceid>

</action>
</dynamicgraph>

Figure 5.19: The XML structure to deliver the user interaction, to choose a
new focus vertex, from the client to the server.

<?xml version="1.0" encoding="UTF-8"?>
<dynamicgraph>

<action>
<graphcommand>newRelation</graphcommand>
<newid>match1-date1:Spieldatum</newid>
<oldid>match1-result1:Endergebnis</oldid>

</action>
</dynamicgraph>

Figure 5.20: The XML structure to deliver the user interaction, to change
a relation, from the client to the server.

5.6.2 Conclusion

We found a way to balance the disadvantages of the Choco System in com-
parison with the DeltaBlue algorithm without causing too much effort. Our
graph layouter finds the vertex positions automatically, solves the perfor-
mance problems, described in section 5.5.4, and fulfills the constraints and
aesthetic criteria, formulated in section 5.5. However, we still have to proof
this in the second evaluation.

To sum up, our graph presentation system gets dummy RDF data and
structurally maps it to appropriate graph data, as described in section 5.4.
This graph data consists of instances, grouped to vertices and relations be-
tween those vertices. To present this graph data to the user, the automatic
graph layouter tries to find proper positions for all the vertices. The problem
is formulated as a Constraint Satisfaction Problem. The solution is an opti-
mized graph layout with a memory function for old vertex positions (section
5.5.4). If the user interacts with the graph, the system is able to update
and optimize the graph accordingly. Even the extension of the graph due to
new information is possible but not implemented, yet.

5.7. LIMITS OF THE CONSTRAINED-BASED METHOD 85

In the next section we will think about limits of our approach and ways
to handle them.

5.7 Limits of the Constrained-based Method

Compared to a force directed method, where a solution is always returned
(look at section 5.5.1), a constrained-based method, like our refinement ap-
proach, returns a solution only if it satisfies all existing constraints (look at
section 5.5.2). If there exists no solution that satisfies all the constraints,
no solution will be returned. This happens either if the number of vertices
is to large to fit on the available space or if the constraints are inconsistent.
Actually, in both cases the constraints are inconsistent, only the reasons dif-
fer. To avoid an empty screen due to inconsistent constraints, we formulate
three ideas how to handle this case.

The first idea, and probably the worst one, is to enlarge the space by
a scrolling mechanism. If the amount of information does not fit on the
available screen space, the user must scroll to reach all the vertices of the
graph. Thereby, the user looses a general survey of the graph structure.
However, during the whole development of the graph interface, we have
tried to keep the advantage of a general survey in mind, so we should not
start losing sight of it now.

The second idea is to increase the fisheye distortion. The distortion
of the fisheye view defines the intensity of shrinking distant objects and
magnifying nearby objects in relation to the focus (look at section 3.4.2).
The mechanism is the same as by a lens of a fisheye camera. If the lens has
a wide angle, the visible area is enormous, but the distortion is enormous,
too. So we could change the intensity of the distortion depending on the
amount of required space for the graph. However, there is also a threshold
for the distortion of the graph, because at a certain intensity of distortion
the remote vertices are getting too small to even be clicked on.

The third idea is to reduce the amount of vertices to display and thereby
to reduce the amount of constraints to satisfy. Unlike the first two ideas
that only offer a solution for inconsistent constraints due to a lack of space,
this would be a solution for inconsistent constraints in general.

Whenever the automatic layouter is not able to find a solution to satisfy
all the constraints, the amount of active vertices will be reduced to only
those vertices with an active input or output relation to the current focus
vertex. So only vertices with a direct connection to the focus vertex will
stay visible. Due to this reduction, the inconsistency will be eliminated and
a graph layout can be found.

In figure 5.21, we illustrate this procedure with our example of the soccer
matches between Germany and Argentina together with their results, dates
and scored goals and three additionally added relations “TEST1”, “TEST2”

86 5. FURTHER DEVELOPMENT

STEP 2STEP 1

STEP 3STEP 4

TEST 2

TEST3

Figure 5.21: Four screenshots of our graph-based user interface and the way
it handles inconsistent constraints.

and “TEST3”. At the beginning, in STEP 1, all three additional relations
are inactive. Having all the relations active, the constraints will become
inconsistent and the amount of active vertices will be reduced.
STEP 1 starts with the soccer match vertex as focus and the three active
outgoing relations to the result, the date and the scored goals. Every relation
between two vertices forces their position to hold a certain distance to each
other as described in section 5.5.4. The constraints between the vertices in
STEP 1 are consistent and so positions for all four vertices are found.
In STEP 2, the focus changes to “08.06.1958” and thereby activates the
output relation “TEST1” between the date and the result6. The activation
of this new relation leads to the formulation of a new constraint of the
distance between the date and the result vertex. As can be seen in STEP
2, this constraint forces the connected vertices to stay closer together.
The two relations “TEST2” and “TEST3”, connected by light gray dotted
lines in STEP 3, are drawn in to better understand the change to STEP
4. Both relations are inactive and will be activated not until STEP 4. If

6The mechanism to activate available relations of the focus vertex is described in the
flashlight approach in section 3.4.2

5.7. LIMITS OF THE CONSTRAINED-BASED METHOD 87

these relations are activated, the according constraints will force the related
vertices to stay closer together, as described above. To find a solution to
satisfy all these constraints is impossible, because vertex “Tor 3:1” can not
have the same distance to the soccer match, the date and the result vertex
with the relation “TEST1” still active.

08.06.1958 Tor 1:0

1.GER-ARG

3 : 1
dist

h
2*h

Spieldatum Ereignis Ergebnis

Test2Test3

Test1

Figure 5.22: An illustration of the distances between four vertices con-
strained by fife active relations. The constraint of the sixth relation “Test1”
can not be satisfied.

Figure 5.22 shows the distances between all four vertices together with
their six relations. Having fife relations active and thereby the same distance
dist between the four related vertices, makes it impossible to have the sixth
relation “Test1” active, too. This is because the fife active relations form
a parallelogram consisting of two equilateral triangles where the distance of
the one inactive relation “Test1” is 2 ∗ h. The altitude h of an equilateral
triangle is defined as h := dist/2 ∗

√
3. If we insert this in 2 ∗ h we get:

2 ∗ h = 2 ∗ dist/2 ∗
√

3 = dist ∗
√

3 > dist, ∀dist > 0

We proofed, that the distance 2 ∗ h in figure 5.22 is greater than dist for all
dist > 0. So it is impossible for all four vertices to remain equally aloof if
the distance is greater than zero.

In STEP 4 (figure 5.21) on this account the automatic layouter is not
able to find a solution to satisfy all the constraints of the six active relations
and therefore the active vertices are reduced. Only vertices with a direct
connection to the current focus stay active and thereby visible. By clicking
on the soccer match vertex, the constraints become inconsistent again, what
leads us back to STEP 1.

88 5. FURTHER DEVELOPMENT

Chapter 6

Second Evaluation

In this chapter we evaluate our graph presentation system the second time.
The goal is to validate the drawn consequences from the first evaluation and
identify problems still existent to attain the implementation objectives. This
second evaluation thereby serves also as the basis for the final conclusion and
the summary of results.

Even if our graph presentation system is now able to deal with arbitrary
input data, the information presented to the user in the second evaluation
remains the same as in the first evaluation. Having the same information
available through the graph interface, makes it easier to compare the results
of the first and the second evaluation. Besides the better comparability,
the interface for the graph layouter to request for new information from the
SmartWeb on the server platform is not completely executable, yet. This
problem is also part of the outlook, in section 7.2.

6.1 Evaluation Framework

The framework of the second evaluation is almost the same as the frame-
work of the first evaluation, described in section 4.1. Firstly, we look at
the program that will be evaluated. Secondly, we state the implementa-
tion objectives in measurable terms. Thirdly, the evaluation questions are
formulated and finally we describe the context of the evaluation.

6.1.1 Second Prototype

Again we are going to evaluate the current state of our graph presentation
system, the second prototype. However, there are several improvements in
the visual representation and in the reaction forms in comparison to the first
prototype.
The main points are:

• The graph layout is computed dynamically.

89

90 6. SECOND EVALUATION

• The visual occurrence has been improved.

• The interactivity of the graph is better and changes are clearly visible.

Unfortunately, the integration into the SmartWeb system is not completed,
yet. Because of this, the content of the graph is still limited to a fixed set of
dummy information. This dummy information consists of the answer to the
question: “How was Germany playing against Argentina in a world cham-
pionship?”. Again, the idea is to present the user the dummy graph about
the soccer matches between Germany and Argentina, ask questions about
the information represented by the graph and after this every participant
fills out a questionnaire containing nine questions about the usability of the
program.

Even if this seems to be nearly the same prototype to evaluate as it was
in the first evaluation, the mode of operation has changed completely. The
vertex positions are adapted to the currently visible graph structure and
all information displayed on the handheld client is provided due to a server
client connection. All user interaction is delivered to the server, where the
data is analyzed by the graph layouter and thereupon new information is
delivered back to the client to update the graph.

The graph presentation system to be evaluated consists of not only a
graph-based graphical user interface, implemented on the handheld client,
but also of a graph layouter on the server. This second program controls
the displayed graph as well as the communication between graph interface
and graph layouter.

6.1.2 Implementation Objectives

The four implementation objectives remain the same as in the first evalu-
ation. By doing so, we make sure, that the new results are comparable to
the old ones.

The four implementation objectives are:

1. Interaction: The possibilities to interact with the graph are easily to
understand.

2. Information Extraction: It is possible to extract information out
of the graph structure and the vertex labels.

3. Differentiation: The user gets aware of the difference between an
instance and a relation.

4. Dependencies: The user realizes the dependencies between related
active instances.

6.2. EVALUATION PROCEDURE 91

6.1.3 Evaluation Questions

In this second evaluation we validate whether the drawn conclusions from
the last evaluation have been correct or not. Therefore we deal again with
the question about the achievement of objectives and possibly occurring
barriers. However, this time we have a result out of the first evaluation to
compare with.

The main question is:

• Were the improvements, implemented as a consequence of the first
evaluation, appropriate to fix the weak points of the first prototype?

To answer this question, we confront the results of the first evaluation and
the resultant consequences with the results of the second evaluation. If the
attainment of implementation objectives has improved, the consequences,
drawn from the first evaluation, had been correct. If the second evalua-
tion reveals the opposite, we have to analyze the evaluation information to
identify the barriers that have been encountered.

6.1.4 Context of the Evaluation

The second evaluation took place at the campus Saarbrücken of the Saar-
land University. The server was running on a notebook and had a direct
connection to the handheld client. The handheld was plugged in an access
point, connected to the notebook via an USB cable.

6.2 Evaluation Procedure

The practices and procedures to answer evaluation questions pertaining to
the implementation objectives have not changed. We need exactly the same
types of information, the sources of this information remain the same and the
methods for collecting them, too. This is because the types of information
needed, is guided by the objectives we assess and they have not changed
either.

Again, the needed information is collected by the written questionnaire
and own observations while the user handles certain tasks during the evalu-
ation, as described in section 4.2.2. The used questionnaire can be found in
the appendix.

6.3 Evaluation Results

In total, twenty participants were interviewed during the second evaluation.
This is exactly the same number as it was for the first evaluation, what
makes it easy to compare the results. This holds also for the computer skills
of the twenty participants. The distribution is nearly the same as it is for

92 6. SECOND EVALUATION

the first evaluation. However, no participant out of the first evaluation was
interviewed in the second evaluation.

Results Regarding Interaction

In the first evaluation, 42 percent of the participants did easily understand
the interaction possibilities, the remaining 58 percent did not. To reduce
this high number of negative feedback, we did several improvements.
Firstly, we decided to increase the clicking area for the buttons.
Secondly, we reduced the amount of visible vertices on the display by an
automatic graph layout, described in section 5.5. Due to this, vertices with
no relation to other visible vertices are dynamically set invisible. This helped
to increase the reaction time of the program, because it unloaded the amount
of computations.
And thirdly, we marked the focus vertex with a special color, to make the
current focus position more obvious (section 5.2).

As a result of these improvements, the amount of negative feedback
dropped to only 16 percent in the second evaluation, as shown in figure 6.1.

84%

16%

positive
negative

Figure 6.1: The possibilities to interact with the graph are easily to under-
stand. This objective was attained in case of 84 percent of the participants
in the second evaluation.

Results Regarding Information Extraction

In the first evaluation, 59 percent of the group with less computer skills
were confronted with problems by extracting information out of the graph
structure. The amount of negative results for professionals was only 10
percent.

To correct this huge amount of negative feedback from unskilled par-
ticipants, we decided to increase the text size of special vertex labels by
a refinement of the fisheye distortion. The idea of this refinement was to
increase those vertices of current interest to the user and by doing so to ease
the extraction of information out of the graph (look at section 5.2.2).

6.3. EVALUATION RESULTS 93

Another point to support the information extraction was to dynamically
hide vertices that have no connection at all. So the automatic graph layouter
helped a lot to improve the graphical user interface.

With these ideas, the percentage of negative feedback felt to zero in the
second evaluation. However, zero percent does not mean, everything con-
cerning this objective went perfectly. There are always several factors that
decide whether an objective holds for one participant or not. And therefore,
such a number is always only a tendency and not a fact. Nevertheless, in
comparison to the first evaluation, it is an improvement.

Results Regarding Differentiation

95%

5%

positive
negative

Figure 6.2: The user gets aware of the difference between an instance and
a relation. Only 5 percent disagreed with this third objective in the second
evaluation.

The third objective, regarding the Differentiation between an instance
and a relation, was attained soonest. Only 15 percent were not aware of the
difference between an instance and a relation in the first evaluation.

A barrier to attainment of this objective during the first evaluation was
the fact, that the participants of the evaluation did not realize the connection
between a relation like ”happens at” and the information itself, the certain
date instance. This was mainly because the vertex, this relation was leading
to, was too small to get recognized by the user.

As a consequence, we increased those vertices of current interest to the
user in the refinement of the fisheye distortion in section 5.2.2. Due to
this refinement, the text size of the vertex label a relation is leading to will
be increased, if this relation has the focus. This helps to understand the
difference between an instance and a relation. Therefore, the result of the
second evaluation dropped to only 5 percent of negative feedback (figure
6.2) for the objective to make an instance and a relation distinguishable.

94 6. SECOND EVALUATION

Results Regarding Dependencies

The last objective, regarding the Dependencies between related active
instances, gained 45 percent negative feedback in the first evaluation. This
happened mainly because the users did not realize changes in the graph
due to a change of a certain active instance. So the dependencies between
related instances were not realized.

The idea was to counter this bad feedback by a better visual response due
to a change of a certain active instance in the graph. When ever an instance
changes, it flashes to signalize this change (section 5.2). This improvement
gained nothing at all and the percentage of the second evaluation is again
45 percent.

One reason for this stagnation of the percentage could be the faint visual
effect in case of an update of active instances in the graph. Apparently this
faint effect has not been noticed by the user. So maybe we need to increase
the intensity of this effect to gain attention.

Another, more complicated reason could be the fact, that a new rela-
tion always replaces an old relation. Replacing an existing relation means
to replace also the information by other information, so for example the
information about the date by the information about the final result. If this
replacement mechanism is not yet understood by the user, he could replace
information that is still needed to answer a certain task.

The concrete task to validate this statement was: ”Name the result of
the soccer match between Germany and Argentina in the world championship
1966”. For the right answer, the user has to change the active instance of the
vertex with all Championships to ”WM 66, ENG” and then to activate the
right relations to get the information about the result. If the user replaces
exactly the relation, leading to the Championships, by the relation ”result”,
he could get confused because he cannot see whether this is still the right
Championship. This problem is part of the chosen interaction form, the
replacement, and therefore changing it will be difficult.

So to deal with this problem, it would be appropriate to offer an inter-
active tutorial. The purpose of this interactive tutorial would be to assist
users in learning how to use our graph-based user interface. This idea is
part of the outlook in section 7.2.

6.3.1 Conclusion

Generally speaking, this second evaluation shows a change to the better.
This holds for almost all areas. The possibilities to interact with the graph
are faster to understand, the extraction of information out of the graph
structure and the vertex labels works well and gradually the user becomes
able to distinguish between an instance and a relation.

Nevertheless, one area has not improved at all. The amount of users that

6.3. EVALUATION RESULTS 95

realize the dependencies between related active instances remains constant.
The reasons for this stagnancy and ways to counter them have been discussed
above.

Altogether, the second evaluation showed the general correctness of the
drawn conclusions from the first evaluation.

96 6. SECOND EVALUATION

Chapter 7

Conclusion

In this thesis we developed a semantic graph-based user interface, which can
provide new and interesting visual presentations and interaction possibilities.

Due to a graph-like representation of result data, the user gets a new
understanding of the overall result structure and the relations within. Fur-
thermore, the user receives another way to explore the content of this result
and at the same time he can adapt this content to his current demands.

7.1 Summary of Results

We developed an additional graphical user interface for the SmartWeb sys-
tem to make meta-data accessible for the user. The meta-data is used to
arrange content in a way that the user better understands the semantic
relations within this content.

For the graphical presentation of the content and its meta-data we chose
a dynamic and interactive graph. Through the graph-based user interface,
the user gets a semantic perspective due to the visualization of semantic
relations and contextual information. Furthermore, this graphical interface
offers the possibility to ask for more information or to show details on de-
mand.

During the development of this semantic graph-based interface, we took
the restrictions of the handheld device into consideration. We found a way
to deal with the restricted computing power and the small screen size of the
handheld client.

To reduce the amount of computation on the handheld we mainly do
two things: Firstly, we deactivate every vertex with no connection to the
current focus and thereby decrease the amount of computation to animate
the movements of the whole graph. Secondly, we compute the automatic
layout on the server in order to solve the performance bottleneck on the
handheld client. On the server, we use problem-specific knowledge and the
discretization of the solution space to narrow down the search for a graph

97

98 7. CONCLUSION

RDF data

Communicates

Communicates

Requests information
from SmartWeb Structurally maps

Automatically layouts

Checks consistencyDistorts
(Fisheye) Displays

User

Distorted
graph layout

GUI

Consistent
graph layout

Interaction:
New active instance

Interaction:
New focus,
new relation

Graph
data

User
interaction

Graph layout

User
interaction

Graph
layout

Graph
layout

Server

Client

Figure 7.1: For the integration of our graph-presentation system into the
SmartWeb system we have to implement an interface, which makes it pos-
sible to request information from the SmartWeb system and receive the
answer.

layout to increase the reaction time of our interactive system.
To offer the user an overview and details on the small screen size at the

same time, we use a fisheye view in combination with advanced interaction
forms to strike a balance between these two extremes. Using a fisheye view is
a valuable tool for seeing both local detail and global context simultaneously.

By clicking on a certain vertex of the graph, the user can change the
focus point for the fisheye distortion. This interaction form is a way to ask
for additional detailed information related to this new focus. At the current
state of implementation, the displayable information is limited to dummy
result data (figure 7.1).

Through the use of an automatic layout to arrange the vertices of the
graph, our graph presentation system is able to deal with arbitrary graph
data. Our automatic layouter tries to find vertex positions that satisfy
certain constraints and aesthetic criteria. Even if the constraints are incon-
sistent and no solution exists to satisfy all of them, we implemented a way to
handle this situation properly. Due to this, our graph presentation system
is prepared to get integrated into the SmartWeb system.

During the development of our system, we used two evaluation phases to

7.2. OUTLOOK 99

involve the users in testing design ideas and get their feedback in the early
stage of development. The results of the two evaluations gave us information
about the achievement of implementation objectives and barriers that were
encountered. These feedbacks were useful sources of suggestions for the
further improvement of our graph presentation system.

To sum up, in this diploma thesis we developed a promising approach
to use meta-data for a semantic graph-based user interface on a handheld
client as an additional GUI for the SmartWeb system.

7.2 Outlook

In this section we give an outlook to useful and necessary expansions of the
already implemented components of our graph presentation system.

The integration of our graph presentation system into the SmartWeb
system is not completed yet. Our graph-presentation system cannot be
used to really ask for new information and our graphical user interface is
not integrated into the SmartWeb GUI. Even though the integration is not
completed, all important preconditions are fulfilled.

As it is shown in figure 7.1, for a full integration we need an interface
between our graph presentation system and the SmartWeb system to request
information and to receive the answer. With such an interface, our system
would be able to request for new information to expand the displayed graph.
An idea for this interface could work as follows:
Whenever the user clicks on a vertex representing a group of instances, for
example soccer players, this user interaction is sent to the server. On the
server our graph presentation system could use the new interface to ask
whether further information to the clicked vertex is available. For such
a request we could deliver all the instances of the clicked vertex to the
SmartWeb system and receive thereupon all their outgoing relations and the
instances these relations are leading to. If this information is not already
part of the presented graph, the graph will be expanded by it.

For the integration of our graph-based user interface (figure 7.3) into the
original SmartWeb GUI (figure 7.2), we have to specify how a switch be-
tween both graphical representations could be performed. The user could,
for example, switch between these interfaces by clicking on a certain but-
ton, one for each representation. If the user switches from one interface
to another, the information represented by the first interface has to be in
accordance with the information represented by the second one. That way
both graphical user interfaces stay up to date, even if the user expands the
displayed information, changes the focus or asks a complete new question.
The user would have the impression of interacting with only one information
source rather than with two. So the interfaces would serve as two different
points of view on the same thing.

100 7. CONCLUSION

Figure 7.2: The original GUI of the
SmartWeb system. The user has
asked the question “Who was the
world champion 1990?” and the
given answer is “Germany”.

Figure 7.3: This is how an inte-
gration of the semantic graph-based
GUI into the original GUI could
look like.

Furthermore, the results of the second evaluation showed that the attain-
ment of the implementation objective regarding the dependencies between
related active instances (section 6.3) had not improved in comparison to the
results of the first evaluation. One suggestion to counter this stagnation is
to increase the intensity of the visual effect in case of an update of active
instances in the graph. Increasing the intensity of the visual effect could
gain the attention of the users in case of an update and thereby help to
better understand the dependencies between related active instances.

Another suggestion for further improvement mentioned in the second
evaluation was to offer an interactive tutorial to assist users in learning
how to use our graph-based user interface. In such an interactive tutorial,
the user could follow on-screen instructions, whereupon he could do the
tutorial exercises and get feedback depending on his actions. That way, the
user would become familiar with the interaction forms and misuse would be
prevented.

A suggestion for an additional functionality could be the expansion of the
interaction forms by speech or other input and output modes. This would fit
perfectly in the multimodal user interface of the SmartWeb system, where
users can use speech and gestures to ask for information. On a mobile device
with a small visual interface and keypad, a word may be difficult to type
but very easy to express by speech. Systems that integrate complemen-
tary modalities to yield a highly synergistic blend potentially can function

7.2. OUTLOOK 101

more robustly than unimodal systems that involve a single recognition-based
technology such as speech, pen, or vision [38].

A promising field for multimodality in our graph-based user interface is
the movement through the graph structure. Here the involvement of speech
commands to navigate through the graph could be of special advantage for
the user. This is because of the mobile aspect of the device as well as the
mobile aspect of the SmartWeb scenario, described in section 1.2.1. So if
the user cannot spare a second hand to click with the pen on the screen of
the handheld, he could use speech as another input mode. Using speech to
move the focus of the fisheye view and thereby navigate through the graph
could be realized in several ways.

One way could be to just state directions to move to, as for example
”left” or ”down”. In response to such a user utterance, the fisheye focus
could move on to the next best vertex that fits the stated direction best.
Additionally, there could also be the possibility to undo such a movement
by saying something like ”back” or ”undo”.

Another way to move through the graph structure by speech command
could be to specify the direct goal of the movement, a label of a concrete
vertex. When the user says a label of an existing vertex in the graph, the
focus would move to this vertex. However, distant vertices can possibly
not be readable for the user because of the shrinking due to the fisheye
distortion. Therefore it could be impossible for the user to state the label
of the goal vertex. Our graph presentation system can be easily expanded
by missing functionalities like mulimodal interaction forms, especially due
to the use of Design Patterns (section 2.3.1) like the Model-View-Controller
and the Observer.

102 7. CONCLUSION

Questionnaire

i

ii . QUESTIONNAIRE

Ausgangssituation:

Stellen Sie sich vor, Sie wären an dem nächsten WM-Spiel
der deutschen Nationalmannschaft interessiert und wollen
wissen, wie die Begegnungen in der Vergangenheit verlaufen
sind.
Dafür haben Sie über den PDA die folgende Frage an ein
allwissendes Fußballhirn gestellt „Wie spielte Deutschland
gegen Argentinien bei einer Weltmeisterschaft?“ und die
Antwort in Form eines Graphen erhalten.

Bitte versuchen Sie die folgenden drei Fragen indem Sie
durch den Graphen navigieren zu beantworten.

Frage 1: Nennen Sie für eine beliebige Begegnung zwischen
Argentinien (ARG) und Deutschland (GER) das
Endergebnis.

Frage 2: Nennen Sie das genaue Spieldatum einer
beliebigen Begegnung zwischen Argentinien und
Deutschland.

Frage 3: Nennen Sie das Endergebnis der Begegnung
Argentinien gegen Deutschland bei der WM 1966 in
England.

Figure 4: The introductory directions that are given in order to explain the
situation to the participants of the evaluation, plus the three task, the user
tries to solve by using the semantic graph on the handheld client.

iii

Institut für ComputervisualistikFachbereich 4: Informatik

Fragebogen Autor: Philipp Heim

Fragen: Trifft zu Trifft nicht zu

1) Das Navigieren durch den Graphen ist eine
gute Möglichkeit der Informationsaufnahme.

2) Die Interaktion ist zu mühsam.

3) Der Graph vermittelt eine Übersicht über die
verschiedenen Informationen

4) Die Möglichkeit, den Graphen zu verändern
ist gut.

5) Das Verhalten des Graphen ist schwer
vorherzusagen.

6) Die Knotenbeschriftungen sind verständlich.

7) Die Schrift ist zu klein und unleserlich.

8) Die gewünschten Informationen aus dem
Graph zu extrahieren ist schwierig.

9) Ich kann mir vorstellen, einen solchen
Graphen zur Informationengewinnung zu
nutzen.

Alter:

Geschlecht:
(m, f)

Erfahrung mit Computern:
(sehr gut, gut, normal, schlecht)

Erfahrung mit PDAs:
(sehr gut, gut, normal, schlecht)

Figure 5: The questionnaire consists of nine questions about the usability
and the usefulness of the semantic graph-based interface. Additionally it
asks about particulars, like the age and gender, and about the knowledge of
computers, particularly of PDAs.

iv . QUESTIONNAIRE

Frage: Was hat Ihnen an der Interaktionsform besonderst gut gefallen?

Antwort:

Frage: Was muss unbedingt verändert werden?

Antwort:

Figure 6: The back side of the questionnaire gives participants the possibility
to write down some general remarks on the prototype.

List of Algorithms

1 propagate(newActiveInst, newV ersion, newDistance) . . . 30
2 runUpdate(consistentInstances, version1, distance1) 31
3 commit(instances, vertex) 31
4 computeFisheyePosition(x:Number,y:Number,focus:Object) . 40
5 transform(x:Number) . 40
6 relateVertices(problem,x1,x2,y1,y2) 77
7 buildConstraint(problem,x1,x2,y1,y2,limitX,limitY ,max) . . 78

v

vi LIST OF ALGORITHMS

List of Figures

1.1 RDF knowledge expressed as a directed graph for the exam-
ple: Michael Ballack plays for Chelsea Football Club. 4

1.2 W3C XML format to encode RDF for the example: Michael
Ballack plays for Chelsea Football Club. 5

1.3 Abbreviated RDF representation of the answer to the ques-
tion: “How was Germany playing against Argentina in a
world championship?” found by the SmartWeb system 6

1.4 Distributed dialog processing in the SmartWeb system. 8
1.5 The current GUI for the SmartWeb system on a handheld

client. The user has asked the question: “Who was the world
champion 1990?” . 9

1.6 The response to this question is presented on the mobile de-
vice. The answer is “Germany”. 9

1.7 IsaViz is a visual environment for browsing and authoring
RDF models represented as graphs. 10

1.8 The MoSeNa-Approach aims at modeling complex, role-based
and integrated navigation structures for structured and semi-
structured data. 10

2.1 A data flow diagram, giving a survey of the data processing
that has to be implemented in this diploma thesis. 15

2.2 A flowchart of the new graphical user interface. The data out
of the RDF file is structurally mapped and visualized. The
user can interact with the graphical interface displayed on the
handheld client. Additionally the user has the opportunity to
request for new information, using this graph as starting point. 16

2.3 Observer pattern. 17
2.4 The MVC communication cycle. 19
2.5 The Delegation-Event Model communication cycle. 20
2.6 When the user clicks a vertex view, the event source broad-

casts this event to all registered listeners (Controller), then
the controller can modify their models if necessary and finally
all modified models update their observers (Views). 21

vii

viii LIST OF FIGURES

3.1 A data flow diagram, showing the use of dummy graph layout
to simulate wide parts of the data processing. 23

3.2 Visualization of a relation by an edge between two groups of
instances. 25

3.3 A data flow diagram to illustrate the visualization of the
graph layout to the user. 25

3.4 Visualization of a relation by edges for every pair of instances. 26
3.5 Visualization of a relation by an edge between only one active

instance per vertex. 26
3.6 Roll out menu with several instances of the concept date.

The user defines the instance “29.06.1986” as the new active
instance for this vertex. 28

3.7 The data flow diagram extended by the consistency check. . . 28
3.8 Every vertex in the graph propagates changes to related ver-

tices until all vertices are consistent again. 29
3.9 The data flow diagram extended by a new user interaction,

the change of relations. 32
3.10 A relation vertex with a close button. 33
3.11 The active relation “Endergebnis” (final results) is replaced

by the relation “in Runde” (in round). 33
3.12 With the two articulated joints “rvertex 12” and “rvertex

13”, complex structures become clearly arranged. 34
3.13 Every vertex organizes its outgoing relations, represented by

rvertices, itself. 35
3.14 A graph structure distorted by a fisheye view. 37
3.15 A distorted graph structure with “1.GER - ARG” as the cur-

rent focus vertex. 38
3.16 A distorted graph structure with “Tor 0:1” as the current

focus vertex. 38
3.17 The data flow diagram extended by a new user interaction,

the choose of the current focus vertex. 39
3.18 Using a flashlight is a metaphor for offering some stubs to

reach more information in a specific direction. 41
3.19 The graph from the point of view of information about certain

world championships. 44
3.20 Changing the active tournament leads to updates of active

instances throughout the graph. 44

4.1 Out of this graph the user needs to get the information to
name an arbitrary result for a soccer match between Germany
and Argentina. 51

4.2 The data out of the questionnaire about the computer skills
of the participants. 53

LIST OF FIGURES ix

4.3 42 percent of all participants did not agree with the first ob-
jective: The possibilities to interact with the graph are easily
to understand. 53

4.4 59 percent of all participants with bad computer skills did not
match with the objective: It is possible to extract information
out of the graph structure and the vertex labels. 54

4.5 If the relation “Spieldatum” (happens at) is the current fo-
cus, it is almost impossible to read the date in the upper left
corner, because the vertex is too small. 55

4.6 If the date itself has the focus, the connected relations are too
tiny for visual inspection. 55

4.7 67 percent of all participants with low computer skills dis-
agreed with the objective: The user realizes the dependencies
between related active instances. 55

5.1 Two loose vertices, left and right, without any connection to
other vertices, but still visible. 60

5.2 The focus vertex has a special color to be more visible. 62
5.3 The user has changed the active scored goal from “Tor 1:1”

to “Tor 0:1”. All the updated vertices are marked with a
special color, here light blue. 63

5.4 The propagation and visualization of the consistency of inac-
tive instances, possible due to the refinement of the consis-
tency check. 65

5.5 In the rollout menu with the soccer matches, all inactive in-
stances are visible even if they are inconsistent. Inconsistent
inactive instances are dark blue. The label “Ereignis” refers
to the scored goals. 66

5.6 In the rollout menu with the scored goals, only the consistent
inactive instances are visible. Consistent are all goals that
were scored in the active soccer match. Consistent inactive
instances are white. 66

5.7 The text size of the player “Corbatta”, who has scored the
goal (“geschossen von”), is increased due to the refinement of
the fisheye distortion. 67

5.8 With the primary fisheye distortion, the player is almost in-
visible. 67

5.9 The integration of the graph presentation system into the
SmartWeb system as a data flow diagram. 68

5.10 The Data flow diagram extended by a structure mapping. . . 69
5.11 The graph layout for arbitrary graph data is found automat-

ically and, in case of a relation change, it is updated appro-
priately. 71

x LIST OF FIGURES

5.12 A rough approach to set a minimum separation distance (mindist)
between two points (P1 and P2). 76

5.13 To place related points (P3 and P4) next to each other, we
additionally set a maximal separation distance (maxdist) be-
tween them. 76

5.14 The automatic layouter tries to maximize the total distance
between all not related vertices to distribute vertices uniformly. 79

5.15 If a vertex (marked with the black box in STEP 1) has not
been clicked recently, it releases its position easily (marked
with the red box in STEP 2) in case of an update. 80

5.16 If a vertex has been clicked recently, the automatic layouter
tries to hold its position (red box in STEP 2) in case of an
update, here a change of relations (new relation: “Spielort”). 80

5.17 The data flow diagram of the whole graph presentation system
extended by a server client communication. 82

5.18 The XML structure to deliver the graph layout from the
server to the client. 83

5.19 The XML structure to deliver the user interaction, to choose
a new focus vertex, from the client to the server. 84

5.20 The XML structure to deliver the user interaction, to change
a relation, from the client to the server. 84

5.21 Four screenshots of our graph-based user interface and the
way it handles inconsistent constraints. 86

5.22 An illustration of the distances between four vertices con-
strained by fife active relations. The constraint of the sixth
relation “Test1” can not be satisfied. 87

6.1 The possibilities to interact with the graph are easily to un-
derstand. This objective was attained in case of 84 percent
of the participants in the second evaluation. 92

6.2 The user gets aware of the difference between an instance and
a relation. Only 5 percent disagreed with this third objective
in the second evaluation. 93

7.1 For the integration of our graph-presentation system into the
SmartWeb system we have to implement an interface, which
makes it possible to request information from the SmartWeb
system and receive the answer. 98

7.2 The original GUI of the SmartWeb system. The user has
asked the question “Who was the world champion 1990?”
and the given answer is “Germany”. 100

7.3 This is how an integration of the semantic graph-based GUI
into the original GUI could look like. 100

LIST OF FIGURES xi

4 The introductory directions that are given in order to explain
the situation to the participants of the evaluation, plus the
three task, the user tries to solve by using the semantic graph
on the handheld client. ii

5 The questionnaire consists of nine questions about the usabil-
ity and the usefulness of the semantic graph-based interface.
Additionally it asks about particulars, like the age and gen-
der, and about the knowledge of computers, particularly of
PDAs. iii

6 The back side of the questionnaire gives participants the pos-
sibility to write down some general remarks on the prototype. iv

xii LIST OF FIGURES

Bibliography

[1] C Alexander, S. Ishikawa, and M. Silverstein. A Pattern Language.
Oxford University Press, Oxford, UK, 1977.

[2] Grigoris Antoniou and Frank van Harmelen. A Semantic Web Primer.
The MIT Press, 2004.

[3] Josh Barnes and Piet Hut. A hierarchical o(n log n) force-calculation
algorithm. Nature, pages 446–449, 1986.

[4] Kent Beck and Ward Cunningham. Using pattern languages for object-
oriented programs. Technical Report CR-87-43, Apple Computer, Inc.,
http://c2.com/doc/oopsla87.html, 1987.

[5] C. Becker, J.and Brelage, K. Klose, and M. Thygs. Conceptual model-
ing of semantic navigation structures: The mosena-approach. In Pro-
ceedings of the Fifth ACM International Workshop on Web Information
and Data Management, pages 118–125, 2003.

[6] Dirk Beyer. Co-change visualization. In ICSM (Industrial and Tool
Volume), pages 89–92, 2005.

[7] Alan Borning. The programming language aspects of thinglab, a
constraint-oriented simulation laboratory. ACM Trans. Program. Lang.
Syst., pages 353–387, 1981.

[8] Alan Borning, Robert Duisberg, Bjørn N. Freeman-Benson, Axel
Kramer, and Michael Woolf. Constraint hierarchies. In OOPSLA, pages
48–60, 1987.

[9] Roberto Boselli and Flavio De Paoli. Semantic navigation through
multiple topic ontologies. Semantic Web Applications and Perspectives,
SWAP 2005, 2005.

[10] Franz J. Brandenburg, Michael Himsholt, and Christoph Rohrer. An
experimental comparison of force-directed and randomized graph draw-
ing algorithms. In Graph Drawing, pages 76–87, 1995.

xiii

xiv BIBLIOGRAPHY

[11] Steve Burbeck. Applications programming in smalltalk-
80(tm): How to use model-view-controller (mvc).
www.math.rsu.ru/smalltalk/gui/mvc.pdf, 1987.

[12] Jon Christensen, Joe Marks, and Stuart Shieber. An empirical study
of algorithms for point-feature label placement. ACM Transactions on
Graphics, pages 203– 232, 1995.

[13] Rogier Van Dalen and Mike Spaans. On automated graph layout.
http://www.tech.port.ac.uk/ addist/Layout.pdf, 2001.

[14] Ron Davidson and David Harel. Drawing graphs nicely using simulated
annealing. ACM Transactions on Graphics, pages 301–331, 1996.

[15] G. Di Battista, P. Eades, R. Tamassia, and I. G. Tollis. Algorithms for
drawing graphs: an annotated bibliography. Technical report, Brown
Univ., 1993.

[16] G. Di Battista, P. Eades, R. Tamassia, and I. G. Tollis. Graph Drawing:
Algorithms for the Visualization of Graphs. Prentice Hall, 1999.

[17] Nikos Drakos. Application challenges to computational geometry: Cg
impact task force report. Technical report, Princeton University, 1996.

[18] P. Eades. A heuristic for graph drawing. Congressus Numerantium,
pages 149–160, 1984.

[19] M. Formann and F. Wagner. A packing problem with applications
to lettering of maps. In Proceedings of the 7th ACM Symposium on
Computational Geometry, pages 281–288, 1991.

[20] Arno Formella and Jörg Keller. Generalized fisheye views of graphs. In
Graph Drawing, pages 242–253, 1995.

[21] H. Freeman. Computer name placement, pages 445–456. Longman,
London, 1991.

[22] Thomas M. J. Fruchterman and Edward M. Reingold. Graph drawing
by force-directed placement. Software - Practice and Experience, pages
1129–1164, 1991.

[23] G. W. Furnas. Generalized fisheye views. In CHI ’86: Proceedings of
the SIGCHI conference on Human factors in computing systems, pages
16–23. ACM Press, 1986.

[24] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides.
Design Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley, New York, NY, 1995.

BIBLIOGRAPHY xv

[25] Derek Gerstmann. Advanced visual interfaces for hierarchical struc-
tures. In Human Computer Interaction, March 2001.

[26] James A. Gosling. Algebraic Constraints. PhD thesis, Carnegie-Mellon
University, 1983.

[27] Winfried Graf. Constraint-based graphical layout of multimodal pre-
sentations. In Advanced Visual Interfaces, pages 356–387, 1992.

[28] Alan C. Kay. The early history of smalltalk. In HOPL Preprints, pages
69–95, 1993.

[29] Ying K. Leung and Mark D. Apperley. A review and taxonomy of
distortion-oriented presentation techniques. ACM Trans. Comput.-
Hum. Interact., pages 126–160, 1994.

[30] John M. McQuillan and David C. Walden. The arpa network design
decisions. Computer Networks, 1:243–289, 1977.

[31] Colin Moock. Essential ActionScript 2.0. O’Reilly Media, 2004.

[32] Gary R. Morriwon, Steven M.Ross, and Jerrold E. Kemp. Designing
Effective Instruction. John Wiley and Sons, 2004.

[33] B.A. Myers and et al. The garnet toolkit reference manuals: Support
for highly-interactive, graphical user interface in lisp. Technical report,
Carnegie Mellon University, Computer Science Department, 1990.

[34] David G. Myers. Psychology. Worth Publishers, 2004.

[35] Greg Nelson. Juno, a constraint-based graphics system. In SIGGRAPH,
pages 235–243, 1985.

[36] D. Oberle, A. Ankolekar, P. Hitzler, P. Cimiano, M. Sintek, M. Kiesel,
B. Mougouie, S. Vembu, S. Baumann, M. Romanelli, P. Buitelaar,
R. Engel, D. Sonntag, N. Reithinger, and et al. Dolce ergo sumo:
On foundational and domain models in swinto (smartweb integrated
ontology). Technical report, AIFB, University of Karlsruhe, July 2006.

[37] R. Oppermann, B. Murchner, H. Reiterer, and M. Kock. Softwareer-
gonomische Evaluation. Der Leitfaden EVADIS II. de Gruyter Verlag,
Berlin, 1992.

[38] Sharon Oviatt. Ten myths of multimodal interaction. In Communica-
tions of the ACM, pages 74–81, November 1999.

[39] E. Pietriga. Isaviz: A visual authoring tool for rdf.
http://www.w3.org/2001/11/IsaViz/, 2001-2006.

xvi BIBLIOGRAPHY

[40] E. Pietriga. Isaviz, a visual environment for browsing and authoring
rdf models. In WWW 2002 - The 11th World Wide Web Conference
(Developer’s day), May 2002.

[41] Emmanuel Pietriga, Christian Bizer, David Karger, and Ryan Lee. Fres-
nel: A browser-independent presentation vocabulary for rdf. In Inter-
national Semantic Web Conference, pages 158–171, 2006.

[42] J. Preece. Human-Computer Interaction, chapter 27: Prototyping,
pages 537–565. Addison-Wesley, 1994.

[43] Dennis Quan, David Huynh, and David R. Karger. Haystack: A plat-
form for authoring end user semantic web applications. In International
Semantic Web Conference, pages 738–753, 2003.

[44] Norbert Reithinger, Simon Bergweiler, Ralf Engel, Gerd Herzog, Nor-
bert Pfleger, Massimo Romanelli, and Daniel Sonntag. A look under
the hood: design and development of the first smartweb system demon-
strator. In ICMI, pages 159–166, 2005.

[45] Norbert Reithinger and Daniel Sonntag. An integration framework for
a mobile multimodal dialogue system accessing the semantic web. In
Interspeech 2005, 2005.

[46] J. Rudd, K. Stern, and S. Isensee. Low vs. high fidelity prototyping
debate. ACM Press, pages 76–85, 1996.

[47] Stuart J. Russell and Peter Norvig. Artificial Intelligence: A Modern
Approach (2nd Edition). Prentice Hall, 2002.

[48] Michael Sannella, John Maloney, Bjørn N. Freeman-Benson, and Alan
Borning. Multi-way versus one-way constraints in user interfaces: Expe-
rience with the deltablue algorithm. Softw., Pract. Exper., 23:529–566,
1993.

[49] Manojit Sarkar and Marc H. Brown. Graphical fisheye views of graphs.
In CHI, pages 83–91, 1992.

[50] R. Storey, M.A.and Lintern, N.A. Ernst, and et al. Visualization and
protégé. In 7th International Protege Conference, 2004.

[51] Ivan E. Sutherland. Sketchpad: A man-machine graphical communi-
cation system. In Spring Joint Computer Conference, pages 329–345,
1963.

[52] R. Tamassia and I. F. Cruz. Graph drawing tutorial.
http://www.cs.brown.edu/ rt/papers/gd-tutorial/gd-constraints.pdf.

BIBLIOGRAPHY xvii

[53] Joshua Tauberer. What Is RDF.
http://www.xml.com/pub/a/2001/01/24/rdf.html, July 2006.

[54] E. Tsang. Foundations of constraint satisfaction. Academic Press, New
York, 1993.

[55] Wolfgang Wahlster. Smartweb: Mobile applications of the semantic
web. In KI 2004: Advances in Artificial Intelligence, pages 50–51.
Springer, 2004.

	Introduction
	Motivation
	Starting Point
	SmartWeb Project
	Semantic Web
	Resource Description Framework
	Meta-Data
	SmartWeb Architecture

	Task Description
	Related Work
	Outline

	Specification and Architecture
	Prototyping
	Ergonomic Principles

	Software Specification
	Software Architecture
	Design Pattern
	Conclusion

	Prototype Implementation
	Dummy Data
	Dummy Graph Data
	Dummy Graph Layout

	Visualization
	Visualizing Instances and Relations
	Visualizing Many Edges

	Interaction
	Changing Instances
	Changing Relations

	Limited Space
	Perspective Techniques
	Fisheye View

	Semantic Navigation

	First Evaluation
	Evaluation Framework
	First Prototype
	Implementation Objectives
	Evaluation Questions
	Context of the Evaluation

	Evaluation Procedure
	Sources of Information
	Information Needed and Methods Used

	Evaluation Results
	Insights Gained From Free-Text User Input

	Further Development
	Consequences Arising out of the FirstEvaluation
	Visual Improvements
	Refinement of the Consistency Check
	Refinement of the Fisheye Distortion

	Integration into SmartWeb
	Structure Mapping
	Automatic Graph Layout
	Force Directed Method
	Constraint-based Method
	Perturbation Model
	Refinement Model

	Server Client Communication
	Data Structure
	Conclusion

	Limits of the Constrained-based Method

	Second Evaluation
	Evaluation Framework
	Second Prototype
	Implementation Objectives
	Evaluation Questions
	Context of the Evaluation

	Evaluation Procedure
	Evaluation Results
	Conclusion

	Conclusion
	Summary of Results
	Outlook

	Questionnaire

