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Abstract. The accurate segmentation of liver vessels is an important
prerequisite for creating oncologic surgery planning tools as well as med-
ical visualization applications. In this paper, a fully automatic approach
is presented to quickly enhance and extract the vascular system of the
liver from CT datasets. Our framework consists of three basic modules:
vessel enhancement on the graphics processing unit (GPU), automatic
vessel segmentation in the enhanced images and an option to verify and
refine the obtained results. Tests on 20 clinical datasets of varying con-
trast quality and acquisition phase were carried out to evaluate the ro-
bustness of the automatic segmentation. In addition the presented GPU
based method was tested against a CPU implementation to demonstrate
the performance gain of using modern graphics hardware. Automatic
segmentation using graphics hardware allows reliable and fast extraction
of the hepatic vascular system and therefore has the potential to save
time for oncologic surgery planning.

Keywords: Segmentation, Automation, Computed Tomography, Graph-
ics Hardware, Hepatic Vessels.

1 Introduction

Shape and location of the intrahepatic vessels are of significant importance to
liver surgery. Modern minimal invasive operation methods like laser surgery as
well as established surgical intervention techniques require the detection of ves-
sels with a diameter down to 2 mm to decide whether an operation can be
realised or not.

In order to develop oncologic operation planning tools it is necessary to seg-
ment the vessel systems of the liver in a pre-computing step. Therefore, contrast
agents are injected in the bloodstream to raise the opacity of those structures and
make them appear bright in the CT scan. However, the distribution of the agent
and hence the quality of the contrast between the vessels and the liver-tissue
depends on the point of time the scan is started. This leads to heavily varying
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results regarding the amount of contrast in the image. Usually filter based meth-
ods are used to enhance the quality of CT images since they can be applied as
soon as the image comes out of the machine and require no user interaction. In
[1] gaussian/median filters are used to intensify the liver vessels. However, those
filters are insufficient to enhance low contrasted CT images since image details
and therefore small vessels may get lost. A common approach is to model the
vessels locally as tube like objects and applying hessian based eigenanalysis to
find those structures in the images [2,3,4,5,6]. Such methods have proven to yield
good results on the extraction of vessel systems like pulmonary vessels as well
as coronary and retinal arteries. However, often several parameters need to be
set that do not have a direct geometrical meaning and have to be statistically
determined by testing a large amount of representative datasets. Our filter is
based on a reduction of the parameter space by creating a vesselness function
that is directly calculated from a pre-defined vessel model, thus supporting a
fully automatic solution.

There are few fully automatic approaches for vessel segmentation from hes-
sian based filter outputs. Often the result is thresholded based on either semi-
automatically or statistically found values. Selle et al. [1] use an automatic and
iterative algorithm after applying their gaussian and laplace like filters. How-
ever, hessian based filter outputs fundamentally differ from the results of pure
denoising algorithms. Our method is therefore based on two principles: We first
calculate a threshold based on a pre-defined ideal vessel model. Then an iterative
region growing is used directly on the filter output to ensure that only tube like
structures are segmented.

As described earlier, clinical datasets often considerably vary in their contrast
quality which can make it impossible to segment the whole vessel tree without
any artefacts attached. Therefore we implemented a real time preview function
that allows the user to visually verify and refine the segmentation before render-
ing the result.

Recent advances in the development of graphics processors (GPUs) have in-
creased their programmability and performance, making them interesting for
non-graphical applications especially in the field of medical imaging. Owens et
al. [7] give an exhaustive overview of current ”General Purpose GPU” research
and applications. Especially filtering processes are highly suited for a GPU im-
plementation since GPUs are by their architecture massively parallel processors,
as shown for example in Langs et al. [8]. In order to evaluate the benefit of
using graphics hardware we present a CPU-GPU performance comparison of
components of our filter implementation.

In what follows, we outline our approach towards segmenting liver vessels from
CT datasets. Section 2 shows the methods used to enhance and automatically
extract the vessels as well as the previewing option to verify and manually select
a segmentation in low contrast CT images. Section 3 shows the results regarding
performance on CPU and GPU as well as robustness of the extraction process
on clinical datasets. In 4 we discuss the obtained results and give an outlook of
future work on the proposed approach.
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2 Methods

2.1 Tube Detection

First, the vessels in the CT images have to be enhanced in order to handle low
contrast datasets. For this purpose, a hessian based filter is developed since this
kind of filters have proven to yield good results in terms of 3D vessel detection.
Following [2] we compose the filter h(r) as a linear combination of second order
derivatives of a gaussian g(r)(r = (x, y, z)):

h(r) = α1gxx(r) + α2gxy(r) + α3gxz(r) + α4gyy(r) + α5gyz(r) + α6gzz(r), (1)

i.e. the filter consists of 6 basis filters given by h1 = gxx, .., h6 = gzz.
The goal is now to tune the filter to a certain vessel model in order to design

a vesselness function that can be applied without setting any parameters in
advance. Therefore we model the vessel v(r) locally by a cylinder along the
x-axis with a radial Gaussian intensity profile:

v(r) = b + (a − b)e
− y2+z2

2σ2
v , (2)

with a and b denoting the intensity at the vessel center and boundary respec-
tively. The standard deviation σv is chosen to be the same as the standard
deviation of the gaussian basis filters h1, .., h6. The coefficients αn can now be
determined analytically solving the optimization problem given by the maxi-
mization of the convolution of filter and vessel signal:

S = v ∗ h =
∫
�3

v(r)h(r)dr, (3)

The solution of S using the mathematical framework of Lagrange multipliers
yields:

h(r) = c ·
(

2
3
gxx(r) − gyy(r) − gzz(r)

)
, (4)

where c =
√

3

5π
3
2

· √
σv.

To attain a maximum response, the filter has to be oriented along the vessel.
This direction can be obtained by eigenvalue analysis of the Hessian H since the
eigenvector corresponding to the largest eigenvalue λ1 = max(λ1, λ2, λ3) points
in direction of the biggest local change of grey values (i.e. from vessel center to
the vessel boundary). Applied to (4) the optimal filter output can be computed
as:

Sopt = v ∗ hrot =
2
3
λ1 − λ2 − λ3. (5)

In order to avoid the detection of very bright, plate-like structures, i.e., regions
where the cross-sectional intensity decreases rapidly in one direction but remains
almost constant in the orthogonal one, we multiply (5) by an isotropy factor

κ = 1 − ||λ2| − |λ3||
|λ2| + |λ3|

∈ [0, 1]. (6)
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The factor κ approaches 1 if |λ2| ≈ |λ3|, i.e. the intensity decreases uniformly
with increasing radial distance from the center, which is typically the case for
vessels.

The filter output is maximal if the size of the filter mask matches the vessel
thickness (i.e. have same standard deviations). Multiscale results are therefore
obtained by selecting the maximum response over the range of all scales. In our
tests 4 different (σv = 1–4) scales turned out to be sufficient for covering most
liver vessels. Fig. 1(a) and (b) show the result of the 3D filtering procedure.

(a) (b) (c)

Fig. 1. Contrasted CT dataset of the liver. (a) Original. (b) Filter result. (c) Lower filter
response on branches due to deviation from the tube-shaped vessel model (synthetic
dataset).

2.2 GPU Implementation

As mentioned in the introduction, current commodity graphics hardware is able
to outperform software implementations by several orders of magnitude due to
their parallel architecture. In order to investigate how advanced filtering of vol-
ume data can be accelerated by hardware we have implemented the filtering steps
described above in shader programs. These small programs are executed for ev-
ery primitive (vertex, geometry, or fragment), depending on the type of program.
In our framework, these shaders perform computations on special 2D textures
to exploit the two-dimensional memory layout of commodity graphics hardware
also for volumetric data. To utilize also the vector-processing capabilities (SIMD)
we employ an additional packing scheme that combines four subsequent volume
slices in one RGBA texture slice (i.e., tile in our representation).

Although our framework is designed for building complete workflows to pro-
cess medical volume data while visualizing the (intermediate) results, we have
implemented the aforementioned computations in one shader. This fragment pro-
gram is executed for every voxel and writes the results into an equally sized tex-
ture. Depending on the available hardware multiple execution units (pipelines)
perform the computations in parallel. However, using the GPU requires to trans-
fer the data to the video memory and, if successive computations are not also
performed in hardware, load the results back to the host. In table 1 we have
therefore listed the timings for computations and transfer seperately. Although
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current CPUs provide facilities for parallel computation like SIMD units or mul-
tiple cores as well, their design is not as data-processing oriented as graphics
hardware. In addition, the price/performance ratio for GPU-based implementa-
tions is clearly superior to multi-CPU systems.

The algorithm first fetches the voxels from the texture depending on the
current neighborhood size. Then, all partial derivatives are computed according
to equation (1) by convolving the voxels with 1D gaussian kernels. In order to
compute the filter response, the eigenvalues are determined by using the closed
solution for symmetric 3 × 3 matrices. After the last computations according to
the equations above the results are finally written into the target memory.

2.3 Vessel Segmentation

The enhanced vessels are now extracted by applying an automatic region grow-
ing algorithm directly on the filter output. The idea behind this is to guarantee
that all segmented vessels are connected to each other. Furthermore no post
processing is required to remove outlying artefacts that usually appear on tis-
sue borders with high gradients. To operate on the filter output only implicates
problems when the vessel splits into two or more branches. In those areas the
vessel deviates from the ideal tube-like model and forms a blob-like structure
(compare Fig. 1(c)). A possibility to alleviate that problem is to adapt the ves-
selness function to detect blob-like structures as well as tubes [9]. However, we
found that such an approach amplifies the false positive rate of the segmentation
procedure in noisy regions with small vessels too heavily. Therefore we rely on
the described tube vesselness function alone. As a consequence, the region grow-
ing thresholds have to be automatically determined in a way that all vessels and
branches are sufficiently segmented while artefacts should be avoided as much
as possible.

Fig. 2(a) shows the automatic region growing algorithm used to segment the
vessels. First, the volume is divided into layers and seed points are automatically
placed on local maxima of the filter output in order to evenly distribute the seeds
on the data. Then, the thresholds are initialized with the response value for the
ideal vessel model defined in (2). That response can be computed analytically as

v ∗ h = (a − b)κ

√
6
5
π

3
4 σ

3
2
h , (7)

where σh denotes the standard deviation of the filter analysis window.
Since real vessels will deviate from the ideal model to a certain degree, the

thresholds are iteratively refined. For this task, the original unfiltered data is
comprised, because it is not feasible to decide from the filter output alone
whether any detected structure is a real vessel or just appeared due to local
noise. The reason for this lies in the aim of the Hessian based filters to detect
tubular structures. Therefore the filter output will show many small tubular pat-
terns, that cannot be directly classified as vessels. As a result, the region growing
shows no clearly identifiable leaking from the vessels into the background like it
is given on an ordinary dataset.



408 M. Erdt, M. Raspe, and M. Suehling

(a) (b)

Fig. 2. (a) Automatic region growing algorithm on the filter output. (b) Continous
segmentation on a low contrast dataset. A connection between two adjacent vessels
needs to be refined by manual interaction (arrow).

The iterative refinement of the region growing thresholds using the original
data works as follows: For the given threshold the mean value of the pixels in
the original data corresponding to the detected pixels in the filter output is
computed. This value is compared to the mean intensity of the dataset. If 80%
of the pixels are above that value the threshold is lowered and the procedure is
applied anew. Otherwise the iteration stops and the current threshold is taken as
the final threshold. This automatic approach allows the continous segmentation
of vessels that are disconnected in the original dataset while preventing the
segmentation of noisy structures. However in the case of very low contrasted
datasets, unwanted connections between vessels may appear Fig. 2(b).

2.4 Real Time Preview of Parameter Variations

As an enhancement of the automatic approach of the last section our framework
gives the opportunity of a manual refinement of the segmentation result by
implicitly adjusting the underlying parameters. Especially for people who do not
have a computer science background, it is favorable to have a simple and intuitive
dialog that gives the user the opportunity to manipulate the segmentation result
without the need to manually adjust any parameters. By introducing a parameter
free vesselness function in section 2.1 the threshold of the region growing is the
only variable value in the segmentation process. In order to give the user a
direct feedback of adjusting the threshold a real time preview of pre-computed
segmentations is provided.

Starting with the automatically determined threshold, the region growing is
applied with slightly varying values leading to different segmentation results. The
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(a) (b)

Fig. 3. Real time preview of manual parameter refinement. (a) A dynamic transfer
function is used to visually seperate the pre-computed segmentation results. (b) The
desired view is selected by the user and then rendered as a 3D mesh.

computed results are all stored in a single tagged volume separated by differ-
ent values. This procedure can already be partly realized during the refinement
process of 2.3 by storing the segmentation results of each iteration. The tagged
volume is then visualized by direct volume rendering. In order to display all seg-
mentations separately a dynamic transfer function is applied which only maps
values to an opacity > 0 that correspond to the current threshold. Because the
manipulation of the transfer function does not require to change or reload the
dataset representation in memory it is very fast and therefore a real time preview
of the different segmentation results is possible. Fig. 3(a) shows the results of
adjusting the thresholds by moving a slider for the 3D case. After selecting the
desired view the segmentation can be rendered as a 3D mesh using the marching
cubes algorithm (Fig. 3(b)).

3 Results

We applied the segmentation method to 20 clinical CT datasets (14 for portal-
venous phase, 6 for arterial phase) with an in-plane-resolution of 5122 (0.613 to
0.84 mm voxel size) and an axial spacing of 1.0 to 2.5 mm. For the tests the

Table 1. Comparison of CPU and GPU performance. The first two columns show the
computation time of the filter response in seconds on an AMD 1.8 GHz CPU using a
7 × 7 × 7 kernel. The last two columns present the results of the GPU implementation
performed on an Nvidia Geforce 8800 GTS with 640 MB of VRAM.

Dataset 278 × 271 × 139 278 × 308 × 99 278 × 271 × 139 278 × 308 × 99
Partial derivative (×6) 3.27(19.62) 2.72(16.32) 0.23(1.38) 0.19(1.14)
Filter response 11.93 9.87 0.11 0.09
Transfer to/from VRAM × × 0.28/0.20 0.21/0.16
Total 31.55 26.19 1.97 1.59
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liver was manually segmented in a pre-processing step (resulting in a region of
300 × 300 × 120 on average).

3.1 Comparison CPU – GPU

Table 1 shows a comparison between CPU (VisualStudio 6.0 compiler) and
graphics hardware implementation of the filter. It can be seen that the GPU
is approximately 15 times faster than the CPU concerning the pure filtering
task and 100 times faster in the case of filter response calculation. This perfor-
mance gain is partly attenuated by the time needed to transfer the data to the
video RAM and back to the host. Although this transfer takes about 1/4 of total
computation time the GPU implementation is still 15 times ahead.

3.2 Segmentation

A region growing (manual settings of seeds and thresholds) running on the un-
filtered datasets was used for a visual comparison with the automatic approach.
Hereby, the parameters of the region growing were chosen to prevent a leaking
to the liver tissue while segmenting as much vessels as possible at the same time.
Fig. 4(a)-(d) shows an exemplary result for the portal venous phase. With the

(a) (b)

(c) (d)

Fig. 4. Comparison of a manual region growing segmentation with the automatic
method (portal venous phase). (a) Volume rendering of the original dataset. (b) and
(c) Rendered masks of region growing with different thresholds. (d) Our approach.



Automatic Hepatic Vessel Segmentation Using Graphics Hardware 411

(a) (b)

Fig. 5. (a) Arterial phase: manual region growing (top) and automatic segmentation
with an artefact attached (bottom, arrow). (b) Illustration of an operation planning
prototype using the proposed approach.

proposed approach more and better defined vessels can be segmented compared
to the manual region growing. In fig. 5(a) an artefact appeared, because the
automatic threshold was slightly too low. In such a case the preview function
described in section 2.4 has to be used to refine the result. In order to detect
falsely segmented structures, our operation planning prototype is providing a vi-
sual comparison with Maximum Intensity Projection, transparence and transfer
function refinement. Fig. 5(b) illustrates a tumor resection scenario build with
the proposed methods.

4 Discussion

We proposed an automatic hepatic vessel enhancement and segmentation ap-
proach together with a user friendly real time preview function to manually
refine the resulting masks. A comparison with a manual region growing showed
the potential of the method to save surgery planning time while providing ac-
curate segmentations at the same time. An implementation on the GPU showed
that a hardware implementation is able to perform the filter operations approx-
imately 15 times faster, even for larger neighborhoods. The overall performance
could be increased by the same factor.

Future work includes the isolation of portal and hepatic veins. For that task,
knowledge about the tree structure of the vascular systems has to be incorpo-
rated. In addition, this procedure is promising to further reduce artefacts on
low contrasted images. Also, we will further investigate on extending the use of
graphics hardware to the other steps of the procedure.
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