
03.04.2009

1

Jürgen Ebert
University Koblenz-Landau
http://www uni koblenz de/ ebert

METAMODELS TAKEN SERIOUSLY
THE TGRAPH APPROACH

http://www.uni-koblenz.de/~ebert



03.04.2009

2

GOALS OF THIS TALK

lightweight tutorial on metamodeling

consistent basis for generic tools/services

powerful and rigorous approach
seamless and efficient implementation

OVERVIEW

Reverse Engineering Tools/ServicesReverse Engineering Tools/Services
Artifacts (Modeling)
Artifact Languages (Metamodeling)
TGraphs and their Formalization
TGraphs and their ImplementationTGraphs and their Implementation
Applications
Conclusion



03.04.2009

3

REVERSE ENGINEERING TOOLS/SERVICES

REVERSE ENGINEERING

… the reconstruction of (more) abstract 
knowledge from given software engineering 
artifacts



03.04.2009

4

REVERSE ENGINEERING TASKS

The CSMR community is dealing with several
concrete reverse engineering tasks:concrete reverse engineering tasks:

recognition of class candidates
identification of subsystems
detection of clones
slicingg
pattern detection
…

ARTIFACTS

Reverse engineering services work on concrete
artifacts:artifacts:

source code comments
class diagrams requirement statements
shell scripts database schemas
svn scripts ...p

Integrated into ONE system description



03.04.2009

5

EXTRACT-ABSTRACT-VIEW

Reverse Engineering Tools follow the
extract-abstract-view-metaphor

REPOSITORY SERVICES

Reverse Engineering Tasks are supported by
repository services

analysis concept analysis
querying cluster analysis
abstraction transformationabstraction transformation
visualization …



03.04.2009

6

REPOSITORY TECHNOLOGIES

Representation of facts can be done in 
different ways:

relational databases
logical fact bases
sets and relations
XML files
graphs

GRAPHS

Graphs are a versatile means for representing
facts in tool repositories

Graphs are the „most general representation“

All other representations can be mapped
on graphs (see GXL)



03.04.2009

7

ARTIFACTS

12

ARTIFACT LANGUAGES

All software engineering artifacts are written in 
their respective language:

textual, visual, or natural languages
formal, semiformal, or informal languages

The artifacts are instances of their language



03.04.2009

8

MODELING

The fact repository contains models of the
artifacts, i.e. abstractions suitable to the
reverse engineering task to be solved, 
depending on

the language of the artifact
the viewpoint addressed by the task
the granularity needed

EXAMPLE



03.04.2009

9

EXAMPLE

language: Java
viewpoint: syntaxviewpoint: syntax
granularity: fine

USE CASE DIAGRAM



03.04.2009

10

EXAMPLE

language: Use Case Diagram
viewpoint: syntaxviewpoint: syntax
granularity: fine

ASPECTS

Languages
Java, C, C++, …, RSL, Class Diagrams,
Logs, Traces, …

Viewpoints (Perspectives)
Syntax, Controlflow, Dataflow, Usage, 
Containment  Containment, …

Granularity
fine, medium, coarse



03.04.2009

11

ARTIFACT LANGUAGES

20

SCHEMAS

A program is an instance of a grammar
A diagram is an instance of a metamodel

A graph is an instance of a schema

Schemas are (slightly restricted) metamodels



03.04.2009

12



03.04.2009

13

SCHEMA-INSTANCE-DICHOTOMY

Grammar and Program Schema and Graph

isInstanceOf isInstanceOf

METAMODEL ENGINEERING

It is helpful to develop (and agree upon) 
reference metamodels for reverse engineering
tasks which are widely usable wrt

Language
ViewpointViewpoint
Granularity



03.04.2009

14

TGRAPHS AND THEIR FORMALIZATION

25

TGRAPHS

TGraphs are
d  i d d h  typed: vertices and edges have a type

attributed: (depending on the type)
vertices and edges have valued attributes

ordered: the vertices, the edges, and the
incidences are ordered

directed: edges have a start and an end vertex

Multiple type inheritance is allowed



03.04.2009

15

EXAMPLE

PROPERTIES

TGraphs have powerful properties:TGraphs have powerful properties:
Edges are first class citizens
Traversal is supported in both directions
Graphs as a whole are subject to algorithms
…
Entities are modeled by vertices
Occurrences are modeled by edges
Sequences are expressed by edge order



03.04.2009

16

TGRAPHS AND SCHEMAS

A schema is a metamodel whose instances areA schema is a metamodel whose instances are
graphs

Schemas describe TGraph classes
TGraphs are models of artifactsp

isInstanceof
Metamodel (Schema)

isAbstractionOf

ArtifactModel (Graph)



03.04.2009

17

METAMODELING

The isInstanceOf relation is precisely defined

The isAbstractionOf relation is formalized by
Extractors (Parsers, Scanners)

that generate the graph from the artifact
Editors

that keep the graph as the internal model that keep the graph as the internal model 
of the artifact

Renderers
that generate the artifact from the graph

isInstanceof Metametamodel (MetaSchema)

isInstanceof
Metamodel (Schema)

isAbstractionOf

Metamodel (Graph)

isAbstractionOf

ArtifactModel (Graph)



03.04.2009

18

METAMODELING HIERARCHY

This metamodeling hierarchy has several
properties:

It is conceptually identical to MOF (M1-M3)
Everything is abstracted to the same formalism

FORMALIZATION

The TGraph-based metamodeling approach can
be formalized, thus leading to a rigorous
technology

Generic TGraph tools can be applied withoutGeneric TGraph tools can be applied without
additional effort (as long as a schema is given)



03.04.2009

19

MATHEMATICAL DEFINITION

GRUML DIAGRAMS

TGraphs can be specified by a subset of UMLTGraphs can be specified by a subset of UML-
class diagrams (grUML):

Classes: Vertex Types
Associations: Edge Types
Attributes: Element Attributes
SSpecialization: Type Inheritence
Multiplicities: Degree Restrictions

(slightly more than EMOF)



03.04.2009

20

COMPATIBILITY

A TGraph compatible to a schema
if the element types and the attribute
assignments in the graph respect the schema, 
if the incidences of the edges respect the
schema, and
if the vertex degrees respect the multiplicities

(under inheritance)

GRALAB-METAMODELL



03.04.2009

21

GENERIC ALGORITHMS

Given a set of graph classes, transformation
algorithms can be defined and implemented
generally on a reference schema

SLICING

Syntax

Program
Dependence
Graph

Sliced
PDG Code

Code
Syntax
Graph

Controlflow
Graph

Dataflow
Graph

Slicing can be refined into several subtasks
transforming one graph class into another



03.04.2009

22

SLICING

Sliced

Code SG

CFG

DFG

PDG
Sliced
PDG Code

TGRAPHS AND THEIR IMPLEMENTATION

40



03.04.2009

23

GRALAB

There is an elaborated API (JGraLab) 
which supplies all operations forwhich supplies all operations for

creating, 
manipulating, and
traversing

TGraph schemas and TGraphs (wrt schema)TGraph schemas and TGraphs (wrt schema)

http://userpages.uni-koblenz.de/~ist/JGraLab

JGRALAB

JGraLab is
based on symmetric incidence lists, 
supplies all operations derivable from its
metametamodel, and
allows pseudocode-like programming of graph
algorithms

Graphs may contain several millions of elements



03.04.2009

24

SYMMETRIC INCIDENCE LISTS

The implementation is efficient wrt traversal

JE37

API

The JGraLab API is derived from the JGraLab
MetametamodelMetametamodel



Folie 47

JE37 Ich weiß nicht, ob das gut, dass ich die Implementation schon hier anspreche
Jürgen Ebert; 28.03.2008



03.04.2009

25

SAMPLE GRALAB CODE

The GraLab-API that allows creation, 
manipulation and traversal of schemas andmanipulation and traversal of schemas and
graphs according to the metametamodel



03.04.2009

26

ADVANCED FEATURES (ACCESS LAYER)

JGraLab contains a tool that also generates
Java classes from grUML diagrams

Thus graph-algorithms and object-oriented
programming are combined

QUERYING

Many reverse engineering tasks rely heavily on Many reverse engineering tasks rely heavily on 
information extraction, i.e. querying the fact
repository:

Software metrics
Cross referencing
Program Slicing
Impact AnalysisImpact Analysis
Traceability determination

JGraLab comes with a schema sensitive graph
query language: GReQL



03.04.2009

27

GREQL EXAMPLE

GRAPH-BASED TOOLS

50



03.04.2009

28

APPLICATIONS

The TGraph approach has been applied in 
several toolsseveral tools

Kogge (MetaCase)
Gupro (Program Understanding)
ReDSeeDS (Requirements-based ReUse)
Pl i f T tPlanning of Transports

GUPRO

GUPRO = Generic Understanding of Programs



03.04.2009

29

GUPRO

GUPRO works on heterogenous software on 
different levels on abstraction:different levels on abstraction:

C
C++ via Columbus
Java
UML via XMI

(including preprocessor support for C/C++)
JE34



Folie 58

JE34 vtl. mehr zu Gupro
Jürgen Ebert; 02.04.2008



03.04.2009

30

CONCLUSION

55

„MESSAGE“ OF THIS TALK

Use a rigorous approach (seamlessly formal and
efficiently implemented) to support:efficiently implemented) to support:

engineering of metamodels
representation and handling of facts
implementation of reverse engineering
services (by coding and/or querying) services (by coding and/or querying) 



03.04.2009

31

STEPS

Identify the reverse engineering taskIdentify the reverse engineering task
Build a metamodel M of the relevant information
(depending on language, viewpoint, granularity)
Write (or generate) extractors from artifact
languages to M
Design and implement the solution using
algorithms and or queries

METAMODEL ENGINEERING

Metamodelling becomes the central activity.
A metamodeling style guide is neededA metamodeling style guide is needed.

Which concepts are entities/attributes?
When to use inheritance?
When to use associations/aggregations?
Which cardinality constraints are enforced?y
…
Avoid cloning and duplication!
Use edge order!



03.04.2009

32

TGRAPH APPROACH

The TGraph Approach consists of
A f l h  TG hA powerful graph type: TGraph
A UML sublanguage with TGraph semantics: gruML
A Java API with Java Access Layer: GraLab
A query language: GReQL
Several utility tools: y
scripting language, GXL export, …

… and is being developed further
JE27



Folie 63

JE27 URL eintragen
Jürgen Ebert; 31.03.2008


