
Varlet: Human-Centered Tool Support for
Database Reengineering

(Extended Abstract)

Jens H. Jahnke, Jörg P. Wadsack

AG-Softwaretechnik, Fachbereich 17, Universität Paderborn,
Warburger Str. 100, D-33098 Paderborn, Germany;

e-mail: [jahnke|maroc]@uni-paderborn.de

1 Background and motivation

Software evolution and maintenance problems might be caused by all kinds of new or changed requirements.
However, McCabe [McC98] has identified a number of requirements, which are currently of special
importance because they are responsible for significantmass changes in today’s business software. Among
these central requirements are theYear-2000problem [Mar97a], theEuro-conversion problem [Gro98], and
the ability to compete on a global, electronic market. The primary concern of all these requirements is the
issue of how business data should adequately be represented in software systems. The addressed problems
range from simple questions, e.g., for the number of digits that are necessary to represent a date (Year-2000
problem), up to complex architectural decisions, e.g., how to federate data maintained by diverse (formerly
autonomous) information systems and integrate these systems with the Web to facilitate electronic commerce.

If a legacy software system (LSS) has to be adapted to one of these requirements, a conceptual documentation
of its data structure (DS) is thus often a necessary prerequisite to achieve the maintenance goal. Moreover, a
conceptual DS is an excellent starting point for the migration to modern programming languages, as they are
usually data-oriented [GK93]. This is because the conceptual DS reflects major business rules but is fairly
independent from procedural application code.

The importance of a sound understanding of legacy DS in maintenance and migration projects has been
pointed out by several researchers and practitioners [Aik95,HEH+98,GK93]. Unfortunately, a corresponding
documentation is missing, obsolete, or inconsistent for many existing LSS. The process of recovering such a
documentation from a subject LSS is calleddata reverse engineering (DRvE) [Aik95]. In the case that some
kind of database management system (DBMS) is used as a platform for the LSS, this process is also more
specifically calleddatabase reverse engineering (DBRvE) respectively database reengineering (DBRE) if a
subsequent modification of the LSS is considered.

According to [Aik95], DBRvE processes are in general more structured than arbitrary DRvE processes.
Consequently, the potential for tool support and automation is much higher in DBRE. The main reason for
this is that the used DBMS already provides the reengineer with some basic information about the
implemented physical data structure in form of aschema catalog. Still, important structural and semantic
information about the data structure might not be explicit but indicators for this information might be found in
different parts of the legacy database (LDB), including its procedural code, stored data, and obsolete
documentation. Moreover, domain experts and developers might be able to contribute further valuable
information about the LDB. The DBRE problem is to find, weigh, and merge these indicators to yield a
consistent conceptual DS (cf. Figure1). In many cases heuristics and uncertain expert knowledge have to be
employed.

2 Limitations of current DBRE tools

In the last two decades, many researchers have developed concepts and techniques for automating certain
DBRE activities, in order to reduce the complexity of the DBRE task [vdBKV97]. Many of these approaches
have been implemented in computer-aided reengineering (CARE) tools and some of them have proven to be
useful for practical applications. CARE tools seem to have great potential to assist the reengineer, e.g., by
performing laborious analysis steps, browsing information about legacy software artifacts, and guiding the
DBRE process. However, such tools are rarely used in industry [Sto98, p.3]. Researchers and practitioners
have identified the most significant reasons for this as their lack ofcustomizability [MNB+94] and
human-awareness [JH98b, Sto98, JW99a]. Furthermore, they do not allow for incrementaland iterative
DBRE processes [WSK97].

2.1 Lack of customizability

Customizability is a crucial requirement on CARE tools, because LDBs are different with respect to many
technical and non-technical parameters. They are based on diverse (old) hard- and software platforms, use
miscellaneous programming languages, contain various optimization structures and arcane coding concepts
(idiosyncrasies [BP95, HHEH96]), and comprise different naming conventions. Furthermore, DBRE projects
may be driven by a great variety of different goals. Such goals range from fixing defects (e.g.,
Year-2000-Problem [Mar97b]), over extending or integrating data structures, up to completely changing the
architecture of an LDB, e.g., migrating from a procedural, monolithic, and autonomous legacy system to an
open, distributed, and object-oriented application.

Most existing CARE tools employ general-purpose programming languages to implement DBRE heuristics,
analysis operations, and processes. As a consequence, these environments can hardly be customized for
changing application contexts. Some more advanced approaches aim to tackle this problem by providing
application programming interfaces (APIs) [BM98] or interpreters for scripting languages [Rat98,TWSM94].
Such interfaces offer the flexibility to adapt the CARE tool with less effort or even without the need for

data

code

schema

developer

name

ApartmentTenant

Tenant

MainTenant

is a

rent

hires

is a

Tenant

ApHouse

house_id flats

street city

SubTenant

has

name

Apartment

Tenant

MainTenant

rent

SubTenant

has

street city

hires

is a is a

Tenant

Tenant

domain expert

?

documentation
obsolete

data
integration

migration

analyze
dynamic

parts

conceptual DS

developer

Figure 1. Conceptual DS as a starting point for subsequent RE activities

catalog

f
� � � � � � � � � � � � � � � 	
 � 	 �

�
 � � � � � � � � � � �
 � � � � � � � � � �
� � � � � � � � � � 	
 � � � � � 	 � �
� � � � � �
 � �
� � � � � � � � � ! " � � ! #
 �
� $ 	 � � " 	
 $ 	 � � % & �

recompilation. Still, a limitation of these approaches is their low level of abstraction: aspects like DBRE
heuristics and processes have to be programmed in form of procedural scripts, even though they would be
more adequately described in a declarative formalism, e.g., in form of rules [HK94, PS92] or graphical
networks [DG95, Loo88]. Other, mostly generative approaches employ a more abstract specification of the
legacy target platform (e.g., [KWDE98, MCAH95, Jar95, PP94]). They have proven useful for
fully-automatic activities like program pattern recognition [QYW98], schema transformation [MCAH95], and
code restructuring [SV98]. However, a CARE tool should also facilitate the customization of DBRE heuristics
(e.g., [SLGC94]) and the performed process (e.g., [HK94]). Moreover, it should provide anopen architecture,
i.e., it should allow the integration of other CARE tools (e.g., analyzers, extractors, and transformers).

2.2 Lack of human-awareness

One of the most valuable information sources in DBRE are humans. Developers, operators, and domain
experts might be able to contribute important knowledge about a subject LDB. Hence, CARE tools should be
human-aware, i.e., they should consider human knowledge and interaction in the supported DBRE process.
The human-awareness of existing CARE tools can be characterized according to two main aspects. The first
aspect regards therole of human knowledge in the DBRE process, while the second aspect regards its
representation.

A comparison of CARE tools according to the role of human knowledge concerns the question:at which point
in the supported DBRE process is human knowledge considered? We classify existing approaches as either
human-excluded, human-involved, orhuman-centered (cf. Figure2).

Human-excluded CARE tools perform fully-automatic analysis and conceptual translation operations on a
subject LSS (e.g., Hüs98, BGD97, Fon97, RH97, FV95, MCAH95, MN95, SLGC94, Wil94, RHSR94]). As
an output, they produce (a number of) analysis reports that can be used as a starting point for a manual
semantic abstraction and redesign activity. Human knowledge and intervention is not considered in these
batch-oriented tool processes.

Many CARE tools involve humans in partly interactive DBRE processes. Such approaches usually start with
an automatic analysis of the LSS in order to extract important structural information. Based on the analysis
results, the user can subsequently explore the LSS, and interactively add further semantic abstractions.
Examples for such more sophisticated approaches are [HEH+98, KWDE98, Hol98, LO98, Nov97, FHK+97,
ONT96, SM95, MAJ94, AL94, MWT94]. We call these toolshuman-involved as opposed tohuman-centered,
because human knowledge is only considered in the second stage of the supported DBRE process
(completion/redesign, cf. Figure2). Finally, we denote CARE tools ashuman-centered, if they enable
interactive DBRE processes including both kinds of activities, software analysis andabstraction/redesign,
e.g., [HEH+98, AG96, MNS95].

The second aspect ofhuman-awareness regards the way how human knowledge is represented in CARE
environments. DBRvE activities deal with various heuristics that deliver uncertain analysis results and
reengineers have uncertain assumptions about the internal realization of LDBs. Existing CARE tools do not
consider this human mental model and represent assumptions and analysis results without a measure for their
confidence. Furthermore, DBRvE activities generally have an evolutionary and explorative nature. It
frequently occurrs that heuristics deliver inconsistent analysis result, i.e., the reengineer discovers indicators
in favor of a given assumption as well as against it. Current CARE tools do not tolerate such inconsistencies
and most of them do not even indicate them. This is a severe limitation because in a later stage of the DBRvE
process it might become clear that the hypothesis that has been chosen in such a situation has to be refuted. In
this case, the knowledge about the indication of its alternative has been lost due to the inability to represent
“both sides of the coin”.

2.3 Insufficient support for iterations

Another problem of currently existing CARE tools is their limited support for process iterations. They usually
assume that the process of knowledge accumulation ismonotonic and prescribe a strictly phase-oriented
methodology. In practice this is an important limitation, as iterations between analysis and abstraction steps
occur frequently: When a reengineer learns more about the abstract design of an LSS, (s)he often refutes some
initial assumptions or does some further investigations. For example, as soon as an intermediate abstraction of
an LSS has been created it can be discussed with domain experts which might elicit additional information. In
many cases, this new information contradicts to some initial assumptions. Strictly phase-oriented tools do not
aid the reengineer in detecting and resolving such inconsistencies. In case of iterations to early analysis
activities the reengineer loses the work (s)he has performed interactively in later abstraction and redesign
activities.

3 The Varlet approach

We adopt a process that consists of two main phases, namelyschema analysis andconceptual abstraction
(and migration). In the first phase, the different parts of the LDB are analyzed to obtain a consistent and
complete logical data structure (logical DS) for the implemented physical schema. In the second phase
(abstraction), this logical DS is transformed into a conceptual DS that is the basis for subsequent modification

abstraction

intermediate
documentation

analysis

conceptual

human-centered tool support

human-involved tool support

human-excluded tool support

Figure 2. CARE tool classification according to the role of human knowledge

analysis

analysis

intermediate
documentation

conceptual
design

intermediate
documentation

conceptual
design

/ redesign

abstraction
/ redesign

abstraction
/ redesign

design
5 EXEC SQL DECLARE c8

CURSOR FOR

16SELECT d FROM

DOCUMENT d, KEYW k

5 EXEC SQL

DECLARE c8

CURSOR FOR

16SELECT d FROM

LSS

5 EXEC SQL DECLARE c8

CURSOR FOR

16SELECT d FROM

DOCUMENT d, KEYW k

5 EXEC SQL

DECLARE c8

CURSOR FOR

16SELECT d FROM

LSS

5 EXEC SQL DECLARE c8

CURSOR FOR

16SELECT d FROM

DOCUMENT d, KEYW k

5 EXEC SQL

DECLARE c8

CURSOR FOR

16SELECT d FROM

LSS

or migration activities. In this dissertation, we develop concepts and techniques that allow to build CARE
environments which overcome the aforementioned limitations of current approaches in the DBRE domain.

3.1 GFRN to achieve customizability

We propose a dedicated graphical language namedGeneric Fuzzy Reasoning Nets (GFRN) to customize
CARE tools according to their specific application context [JSZ97,JZ97,JH98a,JS99]. GFRN specifications
separate declarative knowledge from operational aspects. They provide a high level of abstraction and
extensibility. Analysis operations that have been developed in other DBRE approaches can easily be
integrated with GFRN specifications. We develop a prototype CARE environment that is parameterized by
GFRN specifications and includes a customization front-end for this purpose.

We reflect the mental model of the reengineer by representing DBRvE knowledge in the framework of
possibility theory [DLP94]. This approach allows to deal with uncertain and inconsistent analysis results. We
develop a non-monotonicinference engine (IE) that supports the reengineer in his/her DBRvE activities by
propagating and indicating measures of credibility and inconsistency. For this purpose the IE interprets the
declarative knowledge that is specified in the current GFRN specification. In addition, the IE is also capable of
executing the analysis operations that are specified in the GFRN. This is done automatically during the DBRE
process to search for indicators or validate intermediate hypotheses. With this approach, we obtain a CARE
tool that plays a moreactive role in the DBRE process than existing tools. A graphicaldialog component
visualizes the current knowledge about the persistent structure of an LDB to the user. This component
provides powerful abstraction and query mechanisms to focus the reengineers attention on the most
controversial parts of the legacy schema. It enables the reengineer to enter the results of manual investigations
or add new hypotheses that might be falsified or supported by the IE. Hence, our approach intertwines
automatic and manual analysis activities in an explorative and evolutionary process that is guided by the IE
until a consistent (and definite) logical DS is obtained.

3.2 Incremental consistency management

We applygraph grammars [Ros97] to map the analyzed logical DS into a conceptual (object-oriented) data
model. The resulting conceptual DS can interactively be enhanced and redesigned to exploit additional
abstraction mechanisms and migrate to new requirements. The available redesign operations are formally
defined by graph transformations. Based on this formalization we develop a consistency management
component that incrementally propagates modifications of the logical DS to the (redesigned) conceptual DS in
case of process iterations [JSZ97,JW99b,JZ99,JZ98]. This unburdens the reengineer from the error-prone and
time-consuming task to determine such inconsistencies manually. The developed consistency management
component can be viewed as an adaption of general techniques described in [Nag96] to the DBRE domain.

References

[AG96] D. C. Atkinson and W. G. Griswold. The design of whole-program analysis tools. InProc. of the 18th Int.
Conf. on Software Engineering, Berlin, Germany, pages 16–27, 1996.

[Aik95] P. Aiken.Data Reverse Engineering: Slaying the Legacy Dragon. McGraw-Hill, 1995. This is the first book
describing the process of recovering data architectures from existing information systems and using it to
develop a foundation for enterprise integration and other reengineering efforts.

[AL94] Daniel Aebi and Reto Largo. Methods and tools for data value re-engineering. InApplications of Databases
(ADB-94), volume 819 ofLNCS, pages 400–411. Springer, June 1994.

[BGD97] Andreas Behm, Andreas Geppert, and KlausR. Dittrich. On the migration of relational schemas and data to
object-oriented database systems. InProc. 5th International Conference on Re-Technologies for Information

Systems, Klagenfurt, Austria, December 1997.

[BM98] Elisa Baniassad and Gail Murphy. Conceptual module querying for software reengineering. InProceedings
of the 20th International Conference on Software Engineering, pages 64–73. IEEE Computer Society
Press, April 1998.

[BP95] Michael Blaha and William Premerlani. Observed idiosyncracies of relational database designs. InSecond
Working Conference on Reverse Engineering. IEEE, 1995.

[DG95] W. Deiters and V. Gruhn. Process management in practice - applying the FUNSOFT net approach to large
scale processes. Inicse17, Seattle, Washington, US, September 1995. submitted for publication.

[DLP94] D. Dubois, J.Lang, and H.Prade.Possibilistic Logic, pages 439–503. Clarendon Press, Oxford, 1994.

[FHK+97] P. J. Finnigan, R.C. Holt, I.Kalas, S.Kerr, K. Kontogiannis, H.A. Müller, J.Mylopoulos, S.G. Perelgut,
M. Stanley, and K.Wong. The software bookshelf.IBM Systems Journal, 36(4):564–??, 1997.

[Fon97] J.Fong. Converting relational to object-oriented databases.ACM SIGMOD Record, 26(1), March 1997.

[FV95] C. Fahrner and G.Vossen. Transforming Relational Database Schemas into Object-Oriented Schemas
according to ODMG-93. InProc. of the 4th Int. Conf. of on Deductive and Object-Oriented Databases 1995,
1995.

[GK93] Harald Gall and Ren’e Klösch. Capsule oriented reverse engineering for software reuse. InProceedings of
the European Conference on Software Engineering 1993, pages 418–433, 1993.

[Gro98] Kurt Grotenhuis. Crossing the euro rubicon.IEEE Spectrum, 35(10):30–33, October 1998.

[HEH+98] J.Henrard, V. Englebert, J.-M. Hick, D.Roland, and J.-L. Hainaut. Program understanding in database
reverse engineering. Technical Report RP-98-004, Institute d’Informatique, University of Namur, Belgium,
1998.

[HHEH96] J.-L. Hainaut, J.-M. Hick, V. Englebert, and J.Henrard. Understanding the implementation of IS-A rela-
tions.Lecture Notes in Computer Science, 1157:42–??, 1996.

[HK94] GeorgeT. Heineman and GailE. Kaiser. Incremental process support for code reengineering. InProceed-
ings of the International Conference on Software Maintenance1994, pages 282–290. IEEE Computer Soci-
ety Press, September 1994.

[Hol98] R.C. Holt. Structural manipulations of software architecture using tarski relational algebra. InWorking Con-
ference on Reverse Engineering, pages 210–219, Hawai, USA, October 1998. IEEE Computer Society,
IEEE Computer Society Press.

[Hüs98] F. Hüsemann. Eine erweiterte Schemaabbildungskomponente für Datenbank–Gateways. In10.Workshop
"‘Grundlagen von Datenbanken"’, pages 52–56, Konstanz, June 1998. Konstanzer Schriften in Mathematik
und Informatik Nr. 63, Universität Konstanz.

[Jar95] Stan Jarzabek. Pqtl: a language for specifying program transformations. InProc. of Intl. Conf. on Software
Engineering, Seattle, USA., 1995.

[JH98a] J.H. Jahnke and M.Heitbreder. Design recovery of legacy database applications based on possibilistic rea-
soning. InProceedings of 7th IEEE Int. Conf. of Fuzzy Systems (FUZZ’98). Anchorage, USA.. IEEE Com-
puter Society, May 1998.

[JH98b] Stan Jarzabek and Riri Huang. The case for user-centered case tools.Communications of the ACM,
41(8):93–99, August 1998.

[JS99] JensH. Jahnke and Christoph Strebin. Adaptive tool support for database reverse engineering. InProc. of
1999 Conference of the North American Fuzzy Information Processing Society, New York, USA, June 1999.
submitted.

[JSZ97] J.H. Jahnke, W. Schäfer, and A.Zündorf. Generic fuzzy reasoning nets as a basis for reverse engineering
relational database applications. InProc. of European Software Engineering Conference (ESEC/FSE), num-
ber 1302 in LNCS. Springer, September 1997.

[JW99a] JensH. Jahnke and Jörg Wadsack. Human-centered reverse engineering environments should support
human reasoning. InProc. of the 1st International Workshop on Soft Computing Applied to Software Engi-
neering (SCASE’99). Limerick, Ireland, April 1999.

[JW99b] JensH. Jahnke and Jörg Wadsack. Integration of analysis and redesign activities in information system
reengineering. InProc. of the 3rd European Conference on Software Maintenance and Reengineering
(CSMR’99). Amsterdam, NL, March 1999.

[JZ97] Jens Jahnke and Albert Zundorf. Rewriting poor design patterns by good design patterns. In Serge Demeyer
and Harald Gall, editors,Proceedings of the ESEC/FSE Workshop on Object-Oriented Re-engineering.

Technical University of Vienna, Information Systems Institute, Distributed Systems Group, September
1997. Technical Report TUV-1841-97-10.

[JZ98] J.H. Jahnke and A.Zündorf. Using graph grammars for building the varlet database reverse engineering
environment. InProc. of Theory and Application of Graph Transformations, Paderborn, Germany, LNCS.
Springer Verlag, Berlin, November 1998. to appear.

[JZ99] JensH. Jahnke and A.Zündorf.Handbook of Graph Grammars and Computing by Graph Transformation
- Application, volume2, chapter Applying Graph Transformations To Database Re-Engineering. World Sci-
entific, Singapore, 1999. to appear.

[KWDE98] B. Kullbach, A.Winter, P. Dahm, and J.Ebert. Program comprehension in multi-language systems. In
Working Conference on Reverse Engineering, pages 135–143, Hawai, USA, October 1998. IEEE Computer
Society, IEEE Computer Society Press.

[LO98] T. Lin and L.O’Brian. Fepss: A flexible and extensible program comprehension support system. InWorking
Conference on Reverse Engineering, pages 40–49, Hawai, USA, October 1998. IEEE Computer Society,
IEEE Computer Society Press.

[Loo88] C. G. Looney. Fuzzy petri nets for rule-based decisionmaking.IEEE Transactions on Systems, Man, and
Cybernetics, 18(1):178–183, February 1988.

[MAJ94] U. A. Johnen M.A. Jeusfeld. An executable meta model for re-engineering of database schemas. Technical
Report 94-19, Technical University of Aachen, Germany, 1994.

[Mar97a] RobertA. Martin. Dealing with dates: Solutions for the year 2000.Computer, 30(3):44–51, March 1997.

[Mar97b] RobertA. Martin. Dealing with dates: Solutions for the year 2000.Computer, 30(3):44–51, March 1997.

[MCAH95] P. Martin, J.R. Cordy, and R.Abu-Hamdeh. Information capacity preserving of relational schemas using
structural transformation. Technical Report ISSN 0836-0227-95-392, Dept. of Computing and Information
Science, Queen’s University, Kingston, Ontario, Canada, November 1995.

[McC98] ThomasJ. McCabe. Does reverse engineering have a future? Keynote of the 5th Working Conference on
Reverse Engineering, Honolulu, Hawaii, USA, October 1998.

[MN95] Gail C. Murphy and David Notkin. Lightweight source model extraction. InProc. of ACM SIGSOFT Sym-
posium on the Foundations of Software Engineering, October 1995.

[MNB+94] L. Markosian, P. Newcomb, R.Brand, S.Burson, and T. Kitzmiller. Using an enabling technology to reen-
gineer legacy systems.Communications of the ACM, 37(5):58–70, May 1994.

[MNS95] Gail C. Murphy, David Notkin, and Kevin Sullivan. Software Reflexion Models: Bridging the Gap between
Source and High-Level Models. InProceedings of SIGSOFT’95 Third ACM SIGSOFT Symposium on the
Foundations of Software Engineering, pages 18–28, October 1995.

[MWT94] HausiA. Müller, Kenny Wong, and ScottR. Tilley. Understanding software systems using reverse engineer-
ing technology. In Proceedings of the 62nd Congress of L’Association Canadienne Francaise pour
l’Avancement des Sciences (ACFAS ’94), pages 41–48, Montreal, PQ, "16–17 "# may 1994.

[Nag96] M. Nagl, editor. Building tightly integrated software development environments, volume 1170 ofLNCS.
Springer, Berlin, 1996.

[Nov97] Novera Software Inc., 3 Burlington Woods, Burlington, MA 01830, USA.Novera EPIC Database Builder
(TM), release 1.3 edition, September 1997.

[ONT96] ONTOS Inc., hree Burlington Woods, Burlington, MA, USA.ONTOS Object Integration Server for Rela-
tional Databases 2.0 - Schema Mapper User’s Guide, 2.0 edition, 1996.

[PP94] S.Paul and A.Prakash. A framework for source code search using program patterns.IEEE Transactions on
Software Engineering, 20(6):463–475, June 1994.

[PS92] B. Peuschel and W. Sch"afer. Concepts and Implementation of a Rule-based Process Engine. InProc. of the
14th Int. Conf. on Software Engineering, Melbourne, Australia, pages 262–279. IEEE Computer Society
Press, 1992.

[QYW98] Alex Quilici, Qiang Yang, and Steven Woods. Applying plan recognition algorithms to program understand-
ing. Journal of Automated Software Engineering, 5(3):1–26, 1998.

[Rat98] Rational Software Corp., 18880 Homestead Road, Cupertino, CA 95014, USA.Rational Rose 98 - Using
Rational Rose / Oracle 8, 1998.

[RH97] S.Ramanathan and J.Hodges. Extraction of object-oriented structures from existing relational databases.
ACM SIGMOD Record, 26(1), March 1997.

[RHSR94] Thomas Reps, Susan Horwitz, Mooly Sagiv, and Genevieve Rosay. Speeding up slicing. InProc. of ACM

SIGSOFT, New Orleans LA, USA., December 1994.

[Ros97] Grzegorz Rosenberg, editor. Handbook of Graph Grammars and Computing by Graph Transformation.
World Scientific, Singapore, 1997.

[SLGC94] O. Signore, M.Loffredo, M.Gregori, and M.Cima. Reconstruction of er schema from database applica-
tions: a cognitive approach. InProc. of 13th Int. Conference of ERA, Manchester, pages 387–402. Springer,
1994.

[SM95] M-A D Storey and H.Mueller. Manipulating and documenting software structures using SHriMP views. In
International Conference in Software Maintenance, pages 275–285. IEEE Computer Society Press, 1995.

[Sto98] M. A. D. Storey. A Cognitive Framework for Describing and Evaluating Software Exploration Tools. PhD
thesis, Simon Fraser University, Vancouver, B.C., Canada, 1998.

[SV98] Alex Sellink and Chris Verhoef. Native patterns. InWorking Conference on Reverse Engineering, pages
89–103, Hawai, USA, October 1998. IEEE Computer Society, IEEE Computer Society Press.

[TWSM94] S.R. Tilley, K. Wong, M-A.D. Storey, and H.A. Müller. Programmable reverse engineering.International
Journal of Software Engineering and Knowledge Engineering, 4(4):501–520, 1994.

[vdBKV97] Mark vanden Brand, Paul Klint, and Chris Verhoef. Reverse engineering and system renovation: an anno-
tated bibliography. ACM Software Engineering Notes, 22(1), January 1997.

[Wil94] LindaM. Wills. Using attributed flow graph parsing to recognize programs. InInt. Workshop on Graph
Grammars and Their Application to Computer Science, Williamsburg, Virginia, November 1994.

[WSK97] C. Welsch, A.Schalk, and S.Kramer. Integrating forward and reverse object-oriented software engineering.
In Proc of the 19th Int. Conf. on Software Engineering (ICSE 19), Boston, MA, USA. ACM Press, 1997.

