
Querying as an Enabling Technology in Software Reengineering∗

Bernt Kullbach Andreas Winter
University of Koblenz-Landau

Institute for Software Technology
Rheinau 1, D-56075 Koblenz, Germany

(kullbach|winter)@informatik.uni-koblenz.de

Abstract

In this paper it is argued that different kinds of reengi-
neering technologies can be based on querying. Several
reengineering technologies are presented as being inte-
grated into a technically oriented reengineering taxonomy.
The usefulness of querying is pointed out with respect to
these reengineering technologies.

To impose querying as a base technology in reengineer-
ing examples are given with respect to theEER/GRAL ap-
proach to conceptual modeling and implementation. This
approach is presented together withGReQL as its query
part. The different reengineering technologies are finally
reviewed in the context of theGReQL query facility.

1. Introduction

Reengineering may be viewed as any activity that either
improves the understanding of a software or else improves
the software itself [2].

According to this view software reengineering can be
”partitioned” into two kinds of activities. The first kind of
activities is concerned with understanding such as source
code retrieval, browsing, or measuring. The second kind
of activities aims at evolutionary aspects like redocumenta-
tion, restructuring and remodularization. We will refer to
the former kind of activities asunderstanding and to the
latter asrenovation in the following. Understanding and
renovation refer to both, whole software systems and single
programs or source code fragments.

Both of the two classes of reengineering activities may
be further subdivided into several types of reengineering

∗This work has partially been performed within theGUPRO (Generic
Understanding of PROgrams) project which has been supported by the
Bundesminister f¨ur Bildung, Wissenschaft, Forschung und Technologie,
national initiative on software technology, No. 01 IS 504. Information on
GUPRO including the technical reports cited in this paper is available
from http://www.uni-koblenz.de/ ∼ist/gupro.html

techniques as shown in figure 1. Understanding covers base
technologies like browsing, measurement, and cross refer-
encing, as well as advanced technologies like slicing, object
recovery or design recovery. Accordingly, renovation tech-
nology can be subdivided into remodularization, restructur-
ing, redocumentation, data reengineering and so on. This
subdivision of reengineering technology is not necessarily
disjoint. In particular understanding techniques provide the
basis for renovation tasks.

Interrogation

Browsing

Measurement

Remodularization

Restructuring

Redocumentation

Renovation

Understanding

Reengineering

Q
u
e
r
y
i
n
g

Figure 1. A reengineering taxonomy

In the following it will be argued that understanding as
well as renovation technology to a large extent can be based
on querying source code representations. This does not
cause any conflict with the fact that querying is convention-
ally used in interactive program understanding. We will re-
fer to this interactive program understanding technique as
interrogationwhereas the termsqueryor queryingare used
to denote the underlying base technology. The need for in-
terrogation tools has e. g. been reported by Biggerstaff in
terms of a ”conceptual grep” [3]. Prakash and Paul also
noticed that there is a need for an interactive query facil-
ity [37]. Querying not only lets a user interactively retrieve

a source code representation. It can also be used within
most of the above-mentioned reengineering tasks. This is
witnessed by a lot of work that has been performed in the
software reengineering domain.

In order to convey our message this paper is organized
as follows. The next section identifies uses of queries in
understanding and renovation. Our query tool approach is
presented in section 3 within a common framework. The
use of this query approach in reengineering is outlined in
section 4. Here the use of querying in program understand-
ing and software renovation is described. The paper ends
with a conclusion.

2. Querying and reengineering technology

Querying constitutes a base technology which can be ef-
ficiently used in most reengineering applications.

As said before interactive program understanding is the
conventional application domain for query tools. Manyin-
terrogation approaches have been proposed while being
based on different conceptual modeling techniques, data
structures and analysis mechanisms.

Paul and Prakash have proposed a Source Code Alge-
bra (SCA) a as basis for querying abstract syntax tree like
program representations [37]. The SCA query evaluator is
embedded in the ESCAPE prototype query system which
is based on an object-oriented database source code repos-
itory. An object-oriented database is also used as part of
the Refine toolset [39] to represent source code information.
Here, syntax-tree representations can be queried (and trans-
formed) using program specification and pattern matching
capabilities. Jarzabek has proposed a Prolog-based static
program analyzer (SPA) which is based on the program
query language PQL [26]. ASTLOG [11] also has de-
fined a Prolog-based query language which is intended for
analyzing abstract syntax tree representations. Within the
OMEGA experimental system [32] a relational model of a
Pascal-like language called ”Model” has been implemented.
QUEL is used as query language. The C information ab-
straction system (CIA) [7] also uses a relational database to
store extracted information. Information is retrieved using
the INGRES query language. An information abstractor for
the C++ programming language is also available [22].

Besides the use of queries in interrogation the other
reengineering technologies are often also based on query
facilities.

Browsing can be used to explore connections between
related parts of a system and multiple system views [8]. If
browsing is driven by a conceptual model every navigation
step may be viewed as a query with respect to the object cur-
rently in focus. So it can be straightforwardly determined
which path can be followed from a certain object. Browsing
may be additionally integrated with query in that an entry

point for a browsing session can calculated by a query.
In software measurementone attempts to map certain

characteristics of software systems onto numerical values.
Many kinds of metrics have so far been proposed address-
ing different types of software characteristics [25]. From
a query point of view a metric an aggregate function that
counts occurrences of certain software artifacts, takes aver-
age values, calculates quotients, and so on. A query-based
approach used for software measurement has e. g. been pro-
posed by Mendelzon and Sametinger [34] who use the Hy+
system together with the underlying Graphlog visual query
language [10] to investigate object-oriented systems.

Cross referencingrefers to finding out relationships be-
tween the components of a software system. In this context
one is in particular interested in call and use relationships.
Cross references may be straightforwardly established us-
ing queries that relate two types of objects in a certain way.

Slicing as originally introduced by Weiser [44] was
based on iterative solution of dataflow equations. Newer ap-
proaches operate on dependence graph representations (e g.
[24]). Especially in this graph-based context slicing may be
supported by queries, i. e. a query may be used to identify a
subgraph that corresponds to a slice with respect to a given
vertex in a control flow based representation.

Object recovery, aims at synthesizing objects from pro-
cedural code. A lot of work has been investigated in this
reengineering technology. Object recovery is normally used
to migrate procedural systems into object-oriented, e. g.
to transform procedural COBOL-II into OO-COBOL [20].
Because an object normally is a kind of regular repository
substructure it may also be identified by queries. The same
thing holds if a design has to be recovered from a system. In
design recovery, higher abstractions of a system are gener-
ated, normally using domain knowledge or external infor-
mation. Such external information can be provided by so
called clichés e g. in form of graph patterns [46].

As with program understanding techniques, software
renovation techniques may be also based on query mecha-
nisms. In particular, the analysis components of renovation
technology are candidates for query technology. Moreover,
also synthesis resp. transformational components may also
utilize queries.

Restructuring normally refers to changing the source
code control structure in order to make a software easier to
understand and easier to change [1]. Although this reengi-
neering technology is rather old [4] it is today still needed,
e. g. in maintenance of legacy COBOL [43]. Because re-
structuring like control flow normalization includes a signif-
icant analysis share query technology may help a lot here.

In remodularization one attempts to change the mod-
ule structure of a system according to common criteria like
information hiding [36]. This reengineering technology is
mostly based on cluster analysis [40] [45]. Queries may

be used here in several ways. In particular the analysis of
mavericks can be performed using queries.

Redocumentationmeans creating or updating informa-
tion about the source code of a subject system [2]. Re-
documentation originally concerned the embedding of com-
ments [23]. Nowadays designs or specifications have also
to be considered. Redocumentation can also be essentially
supported by queries. Strictly speaking any information that
can be queried from a software can be annotated as a com-
ment.

In order to show how reengineering technology may be
supported by querying we will give some query examples
in section 4.

3. The query approach to reengineering

In the following we will introduce our approach to
querying as being embedded into a common framework.

The query approach shall be introduced along with the
three step framework to source code that has been intro-
duced by Tilley [42]. This approach proposes model, ex-
tract and abstract as the characteristic phases in source code
analysis.Modeling refers to constructing a model of an ap-
plication domain using conceptual modeling techniques [5].
Extraction means gathering data from the subject system
using an appropriate extraction mechanism andabstraction
refers to creating abstractions from these data that facilitate
the actual reengineering task to be performed.

ExtractionModeling Abstraction

Figure 2. The three step approach to source
code analysis

As a consequence to this three step approach a query
facility has to come along with an adequateformal basis.
This has to cover all phases of the source code analysis pro-
cess in figure 2 in aconsistent and seamlessmanner. So
extraction should be done according to a conceptual model
defined in the modeling phase and the abstraction facility,
i. e. the query engine has to work on a repository structure
defined by the model. A formal basis is also important if
a query facility shall be extended or if it has to be embed-
ded into other applications. In addition a query facility has
to bepowerful enough to support a given task. E. g. if it
is required to pursue indirect function calls, a language has
to allow the closure of the call relationship to be calculated
efficiently.

3.1 TheEER/GRAL approach

In the following the query approach that has been used in
theGUPRO project [16] will be sketched. This approach
provides a seamless and consistent framework for querying
source code representations.

In GUPRO modeling is enabled by the definition of
graph classes. Graphs constitute a vivid formal mathe-
matical model as well as an efficient data structure with
time-tested algorithms providing a seamless approach to
modeling and implementation [18][19]. Classes of graphs
are specified using extended entity-relationship (EER) di-
agrams [6] that can be annotated by additional constraints
in the Z-like GRAL specification language [21]. Such
EER/GRAL models are used to specify the underlying
graph data structure. This consists of a rather general kind
of graphs, calledTGraphs [15]. These are directed, typed,
attributed, and ordered. Entity types in the model refer to
vertex types of aTGraph while relationship types refer to
edge types. There is support for attribute structures as well
as for advanced modeling concepts like generalization and
aggregation. The semantics of the EER models is formally
defined by specifying the class of graphs that suit to a given
EER model [13]. The graph data structures are stored in the
GraLab graph repository [14].

An example of an EER model is presented in figure 3.
Here a fraction of the abstract syntax of the C programming
language is shown. The complete declaration part is omitted
due to its size and complexity.1

Theextraction of source code information into theGra-
Lab graph repository is enabled by parsers that for the most
part are generated using thePDL parser generator [12].
PDL extends the Yacc parser generator [27] by EBNF syn-
tax and by notational support for compiling textual lan-
guages intoTGraphs.

In GUPRO abstraction is gained using theGReQL
query language [28], which seamlessly suits the overall ap-
proach. Within theGUPRO project a generic toolset for
program understanding has been developed. This can be
parameterized by a specification of the actual maintenance
problem, i. e. anEER/GRAL conceptual model, in order to
derive concrete program understanding tool instances. An
instance of theGUPRO toolset has been especially tailored
to the multi-language software environment of a German
insurance company [31]. This toolset provides the mainte-
nance engineer with query and browsing facilities that can
be used to explore cross references between the job con-

1In the EER dialect used vertex types are represented by rectangles,
edge types are represented by (directed) arcs. Generalization is depicted
by the usual triangle notation but also by graphically nesting object types.
Within both notations an abstract generalization is symbolized by hatching.
Aggregation is depicted by a rhomb at the vertex type rectangle. Relation-
ship cardinalities are given by an arrow notation at the participating vertex
types.

isType
NameIn

isCasted
ExprIn

Constant

Selection
Expression

Expression

Conditional
Expression

Statement

LabeledStatement

Default
Statement

JumpStatement

Continue
Statement

Break
Statement

Case
Statement

Label
Statement

Return
Statement

Goto
Statement

Compound
Statement

Iteration
Statement

kind: {while, do, for}

Selection
Statement

kind: {if, switch}

isLabelIn

isGoalIn

isExprInisExprIn
isExprIn

isStmtIn

isCompoundStmtIn

isStmtIn

isStmtIn

isStmIn
isExprIn

isIndex
ExprIn

isSelectorIn

isIndexed
ExprIn

isSelected
ExprIn

isStmtIn

Vector
Expression

isExprIn

Function
Call

String

isArg
ExprIn

isFunction
NameIn

Cast
Expression

Type
Name

Operator
Expression

isOperandIn
isOperatorIn

Operator

isExprIn

Identifier

name: string

Identifier

name: string

Function
Definition

Declaration

Expression
Statement

isDecla-
rationIn

isStmtIn

isExprIn

Identifier

name: string

isFunctionIdentifierIn

isDecla-
rationIn

isDeclaration
IdentifierIn

Figure 3. Concept model of the C programming language (extract)

trol languages, programming languages, and database lan-
guages.

Within GUPRO the extract-transform-rewriteETR ap-
proach [17] represents a conceptual framework for soft-
ware renovation that allows source codes to be consistently
changed on a schema level. Within the prototype implemen-
tation form-oriented manual changes have been explored.
Support for arbitrary automatic changes as they are needed
in complex renovation tasks are possible too.

The results of theGUPRO project are related to general
reengineering technology in section 4. Both, understanding
an renovation techniques are based on theGReQL query
facility which shall now be introduced.

3.2 TheGReQL query language

In order to retrieve information about software sys-
tems theTGraph repository is analyzed using theGReQL
(GUPRO Repository Query Language) query language.

GReQL is an expression language that is especially suited
to querying graph structures. Predicates inGReQL can be
formulated using first order logic. Predicates may also con-
tain path expressions to describe regular path structures, i. e.
sequences, alternatives and iterations (including transitive
and reflexive closures) of paths in the repository. Path ex-
pressions can be used to collect sets of objects that can be
reached via a specific kind of path from a designated object
as well as to test whether a path exists between two objects.

The most important language element inGReQL is the
FWR expression (FWR = FROM-WITH-REPORT). Within
the FROMpart the variables to be used in a query are de-
clared by specifying their name and type. In theWITH
clause the set of possible variable assignments is restricted
to those specified by a predicate. The expressions specified
in theREPORTpart of a query are calculated and returned
by the query. Because FWR expressions return values, i. e.
FWR expressions may be nested.

A simple example of aGReQL query is shown in fig-

ure 4. Within the outerFROMpart a variablea with type
A is introduced. The outerWITHpart restricts the possible
assignments toa to those objects with value42 for attribute
x . TheREPORTpart specifies thenameattribute ofa to be
considered together with the result of an inner FWR expres-
sion. This introduces a second variableb of typeB which
is restricted to those objects being related toa by a possi-
bly empty sequence of edges of typeC and a single edge
of typeD in opposite direction. The name attribute of each
such objectb is reported.

FROM a : V{A}

WITH a.x = 42

REPORT a.name,

FROM b : V{B}

WITH b -->{C}* <--{D} a

REPORT b.name

END

END

Figure 4. A simple GReQL example

A query in GReQL is evaluated by an EVAL/APPLY
mechanism using an automaton-drivenstrategy for calculat-
ing path expressions efficiently (with respect to repository
content). Queries can be statically optimized [38].

3.3 Types of interfaces

TheGReQL query language is accessible through differ-
ent kind of interfaces each providing a certain level of com-
fort and functionality. According to Codd [9] three types
of query interfaces may in general be distinguished. A low-
levelprogramming language interfacethat is used by pro-
fessionals, e. g. to write application programs that operate
on the data, or, in the current context, are embedded into
other reengineering techniques. A programming language
interface normally provides the most expressive power to-
gether with the lowest level of comfort. The second type of
interface is a high-level,stand-alone query interface. This
is normally used by technical or semi-technical users for ad-
hoc retrieving the data. Non-technical users are in general
confronted with additionaluser-friendly interfaces. These
include form- or screen-oriented interfaces as well as natu-
ral language front ends.

In the context ofGReQL there is support for each of
these interface types. Aprogramming language interface
to GReQL (referred to asinlineGReQL) is available as an
appropriate C++ class.InlineGReQL can be used by any
program. Astand-alone query facility is available with the
GUPRO query user interface. This provides the user with
textual editing facilities and with support for loading and
saving of queries and query results. The query user inter-
face supports theGReQL query language to its full extent.

A user-friendly interface to theGReQL query facilities
comes along withMeGGI (Menu GuidedGReQL Inter-
face) [41]. MeGGI is a query interface that lets the user
click his or her queries guided by schema information. The
user is enabled to specify paths in the repository, logical
combinations, aggregate functions, output options and sim-
ple constraints.

4. Applications for queries in reengineering

In the following it shall be shown how reengineering
technology is supported by querying within our approach.
Therefore some query examples for understanding and ren-
ovation techniques mentioned in section 2 are given as
GReQL queries to theGUPRO repository. Furthermore
it is shown how the extraction step of the query framework
in figure 2 is supported by queries.

4.1 The use of queries in understanding

As pointed out in section 2 query mechanisms can be a
useful support in understanding technology.

In GUPRO interrogation is enabled by a query user
interface as well as by a user friendly interface as described
in section 3.3.

In browsing query technology can be straightforwardly
used to determine paths and goals for navigation. A
hypertext-like browsing component has been developed as
part of the GUPRO project [16]. This interacts with the
query user interface such that the results of an interrogation
are used as an entry point for browsing. So interrogation
results can be viewed in terms of source code and they can
be used as the basis for further investigations.

As said before insoftware measurementcertain char-
acteristics of a software are aggregated to numerical values.
As part of the participation in the source code analysis en-
gineering demonstration project [47] a large set of the met-
rics has been implemented for the C programming language
[30] by applyingGReQL queries to the repository.

As an example the number of decisions [33] shall now be
introduced as a rather simple metrics. With respect to the C
programming language (cf. figure 3) this can be expressed
by the query given in figure 5.

cnt (FROM i : V {IterationStatement }
REPORT i END) +

cnt (FROM s : V {SelectionStatement }
REPORT s END) +

cnt (FROM c : V {ConditionStatement }
REPORT c END)

Figure 5. Calculating the number of decisions

In this query thecnt aggregate function is used to count
the relevant objects in the repository. The arithmetic opera-
tors+ is used to calculate the intended result.

Cross referencesare of major importance in the under-
standing of programs and system. In the context of the C
instance of the GUPRO toolset (cf. figure 3) e. g. indirect
calls can be queried as shown in figure 6.

FROM caller, callee : V {Identifier }
WITH caller

(
--> {isFunctionIdentifierIn }
<-- {isCompoundStmtIn }
<-- {isStmtIn }*
<-- {isExprIn }*
<-- {isFunctionNameIn }

)+
callee

REPORT caller.name AS Caller,
callee.name AS Callee

END

Figure 6. Determining indirect call relation-
ships

Here the relationship between acaller object and a
callee object is established by the path expression in the
WITHclause. Because indirect calls have to be considered
as well, the whole path expression is iterated.

Other program understanding technologies likeslicing,
object recovery, or design recoverymay based on the
same query mechanisms. An adequate backend has to be
provided for visualizing resp. saving the referring query re-
sult. Some serious effort has already been undertaken in
basing slicing on query technology. In this context queries
are used to infer additional edges resulting in a program
dependence graph (PDG). Based on a PDG representation
queries can again be used to calculate slices.

FROM v, w : V{PDGNode}
WITH v.linenumber = 1249 AND

v <-- {PDG}* w
REPORT w
END

Figure 7. Computing a backward slice

In figure 7 a backward slice is computed for the state-
ment or expression in line 1249 in that all vertices in the
PDG representation from that the corresponding vertex can
be reached are reported.

4.2 The use of queries in renovation

Software renovation has been introduced as improving
a software system in order to increase its quality, under-
standability and maintainability. Restructuring, remodular-

ization, and redocumentation have been presented as reno-
vation technologies.

Within our approach the renovation aspect of reengi-
neering is represented by the extract-transform-rewrite cy-
cle [17]. A source document is parsed into its internal graph
representation. Anextract operation on this representation
is performed. The extract information can betransformed
automatically or by form-based textual editing. A modi-
fied extract structure is integrated with the original source
in a rewrite step. A final unparse step yields a source code
document that reflects the change(s) performed. In particu-
lar extracting but also transformation and rewriting are es-
sentially based onGReQL queries. TheETR cycle has
been implemented as a prototype for the C programming
language.

To illustrated the use of queries in the context of the
ETR approach the form-based renaming of identifiers is
used as an example. Again we refer to the conceptual
model in figure 3. The query in figure 8 may be used to
extract the identifiers that are locally defined in a function
namedprintHeaderLabels . The path expression of
that query starts with the object representing the referring
function. It collects all identifier objects that are defined in
a declaration that belongs to the function block or a block
nested in this.

FROM f : V{FunctionDefinition },
i, j : V {Identifier }

WITH f <-- {isFunctionIdentifierIn } i AND
i.name = ’printHeaderLabels’ AND
f <-- {isCompoundStmtIn }

<-- {isStmtIn }*
<-- {isDeclarationIn }
<-- {isDeclarationIdentifierIn } j

REPORT j
END

Figure 8. Extraction of local identifiers

If an identifier shall be renamed then it has to be ensured
that no identifiers of the same name exist within the same
scope and name space. Also no identifier from an outer
scope must be overwritten if it is used in the same or an
inner scope. This second condition may be checked using
the query in figure 9 which collects all identifier objects that
may cause a referring rename conflict. The query is strongly
simplified by the use of inferred edges that relate identifier
objects, scopes and name spaces. These inferred edges have
been defined by queries [35].

A conflicting object has to belong to an outer scope, it
has to belong to the same name space, it has to be used
in the same or an inner scope, and it has to have the same
name.

There is evidence that other renovation techniques as
remodularization, restructuring, redocumentation that have
not been implemented so far can also be supported by

FROM i, j : V {Identifier }
WITH i --> {belongsToScope }

(<-- {isContainedInScope })+
<-- {belongsToScope } j AND

(i --> {belongsToNameSpace }
<-- {belongsToNameSpace } j) AND

(i --> {isUsedInScopeOf }
<-- {belongsToScope } j }) AND

(i.name = j.name)
REPORT j
END

Figure 9. Checking a conflict in renaming

queries.

4.3 The use of queries in extraction

As soon as a reengineering technology is confronted
with multiple languages or multiple files or systems the
parsing strategy has to include some support for integration.
If a repository is filled incrementally or if it has to be up-
dated with new source code versions local updates become
necessary. Within an update the referring components have
to be identified and removed first. It has to be guaranteed
that no other components are affected by a removal. Now
the newly parsed component has to be integrated into the
repository. Such an integration is normally based on some
kind of anchoring objects. Additionally the relationships to
the components in the repository are inferred from the ex-
isting information. Within our approach this general pars-
ing strategy is essentially based on queries to the repository
[29].

In order to motivate an integration example the model
from figure 3 shall now be extended with embedded SQL as
depicted in figure 10. Here an SQL statement is modeled as
a subtype of a C statement. It refers to some DB2 table via
theusesTablerelationship.

If multiple C sources are to be parsed into the repository
it has to be ensured that the objects of typeDb2Tablewhich
refer to the same DB2 table are merged into each other. In
parsing this can be described using the merge rule in fig-
ure 11.

Starting with a designated anchor objectanchor of a
newly parsed C source this query collects allDb2Tableob-
jects contained in the newly parsed graph and reports all
otherDb2Tableobjects from the repository having the same
name. In an integration step these have to be merged in
pairs.

5. Conclusion

In this paper we worked out the usefulness and impor-
tance of querying in reengineering technology. In this con-
text a general reengineering taxonomy has been presented

Statement

SqlStmt

name: string

Db2Table

Compound
Statement

Iteration
Statement

kind: {while, do, for}

Selection
Statement

kind: {if, switch}

isStmIn isStmtIn

Expression
Statement

isStmtIn

usesTable

Figure 10. Embedding SQL with C

USING anchor

FROM new : V{Db2Table}

WITH anchor -->{}* -->{usesTable} new

REPORT SET

FROM old : V{Db2Table}

WITH old.name = new.name

REPORT old

END,

new

END

Figure 11. Merging DB2 table objects

that subdivides existing reengineering technology into un-
derstanding technology and renovation technology. We
tried to identify the query aspects of the existing reengi-
neering technology from these two branches.

Our general approach to graph-based conceptual model-
ing and implementation has been presented together with
GReQL as the accompanying query facility. The applica-
tion of GReQL within reengineering technology has been
shown with respect to the understanding branch as well as
with respect to the renovation branch.

Acknowledgement

We would like to thank all people working inGUPRO.
Special thanks to J¨urgen Ebert for valuable discussions that
improved this work very much.

References

[1] R. S. Arnold. Software Restructuring.Proceedings of the
ACM, 77(4):607–617, April 1989.

[2] R. S. Arnold. A Roadmap Guide to Software Reengineering
Technology. InSoftware Reengineering. IEEE Computer
Society Press, 1993.

[3] T. J. Biggerstaff, B. G. Mitbander, and D. Webster. The
concept assignment problem in program understanding. In
Proceedings of the 15th International Conference on Soft-
ware Engineering, pages 482–498. IEEE Computer Society
Press, Apr. 1993.

[4] C. Böhm and G. Jacopini. Flow diagrams, Turing machines,
and languages with only two formation rules.Communica-
tions of the ACM, 9(5):366–372, May 1966. Presented as an
invited talk at the 1964 International Colloquium on Alge-
braic Linguistics and Automata Theory.

[5] M. Brodie, J. Mylopoulos, and J. W. Schmidt, editors.On
Conceptual Modelling, Perspectives from Artificial Intelli-
gence, Databases and Programming Languages. Springer,
New York, 2 edition, 1986.

[6] M. Carstensen, J. Ebert, and A. Winter. Deklara-
tive Beschreibung von Graphsprachen (Erweiterte Kurzfas-
sung). In F. Simon, editor,Tagungsband zum Workshop
”‘Deklarative Programmierung und Spezifikation”’, der GI-
Fachgruppe 2.1.4 Alternative Konzepte f¨ur Sprachen und
Rechner, 9.-11. Mai 1994, Bad Honnef, number Bericht
9412. Kiel, September 1994.

[7] Y.-F. Chen, M. Y. Nishimoto, and C. V. Ramamoorthy. The
C information abstraction system.IEEE Transactions on
Software Engineering, 16(3):325–334, Mar. 1990.

[8] L. Cleveland. A program understanding support environ-
ment. IBM Systems Journal, 28(2):324–344, 1989.

[9] E. F. Codd. Seven steps to rendezvous with the casual user.
In J. W. Klimbie and K. L. Koffeman, editors,Data Base
Management, pages 179–200. North-Holland, 1974.

[10] M. Consens and A. Mendelzon. TheG+/GraphLog Visual
Query System. SIGMOD Record (ACM Special Interest
Group on Management of Data), 19(2):388–388, June 1990.

[11] R. F. Crew. ASTLOG: A language for examining abstract
syntax trees. InProceedings of the Conference on Domain-
Specific Languages (DSL-97), pages 229–242, Berkeley,
Oct.15–17 1997. USENIX Association.

[12] P. Dahm. Parser Description Language — An Overview. In
[16] , pages 137–156. 1998.

[13] P. Dahm, J. Ebert, A. Franzke, M. Kamp, and A. Winter.
TGraphen und EER-Schemata — Formale Grundlagen. In
[16] , pages 51–66. 1998.

[14] P. Dahm and F. Widmann. Das Graphenlabor. Fachberichte
Informatik 11/98, Universit¨at Koblenz-Landau, Institut f¨ur
Informatik, Koblenz, 1998.

[15] J. Ebert and A. Franzke. A Declarative Approach to Graph
Based Modeling. In E. Mayr, G. Schmidt, and G. Tin-
hofer, editors,Graphtheoretic Concepts in Computer Sci-
ence, number 903 in LNCS, pages 38–50, Berlin, 1995.
Springer.

[16] J. Ebert, R. Gimnich, H. Stasch, and A. Winter, editors.
GUPRO — Generische Umgebung zum Programmverste-
hen. Koblenzer Schriften zur Informatik. F¨olbach, Koblenz,
1998.

[17] J. Ebert, B. Kullbach, and A. Panse. The Extract-Transform-
Rewrite Cycle - A Step towards MetaCARE. In P. Nesi and

F. Lehner, editors,Proceedings of the 2nd Euromicro Con-
ference on Software Maintenance & Reengineering, pages
165–170, Los Alamitos, 1998. IEEE Computer Society.

[18] J. Ebert, A. Winter, P. Dahm, A. Franzke, and
R. Süttenbach. Graph Based Modeling and Implementa-
tion with EER/GRAL. In B. Thalheim, editor,15th Inter-
national Conference on Conceptual Modeling (ER’96), Pro-
ceedings, number 1157 in LNCS, pages 163–178, Berlin,
1996. Springer.

[19] G. Engels, C. Lewerentz, M. Nagl, W. Sch¨afer, and
A. Schürr. Building integrated software development en-
vironments part I: Tool specification.ACM Transactions of
Software Engineering and Methodology, 1(2):135–167, Apr.
1992.

[20] H. Fergen, P. Reichelt, and K. P. Schmidt. Bringing Ob-
jects into COBOL, MOORE - A tool for migration from
COBOL85 to object-oriented COBOL. InProccedings
of the Conference on Technology of Object-Oriented Lan-
guages and Systemes (TOOLS 14), pages 435–448. Prentice
Hall, Santa Barabara, August 1994.

[21] A. Franzke. GRAL: A Reference Manual. Fachbericht In-
formatik 3/97, Universit¨at Koblenz-Landau, Fachbereich In-
formatik, Koblenz, 1997.

[22] J. E. Grass. Object-oriented design archaeology with
CIA++. Computing Systems, 5(1):5–67, Winter 1992.

[23] K. Heninger, J. Kallander, D. Parnas, and J. Shore. Software
Reuqirements for the A-7E Aircraft. NRL Memorandum
Report 3876, Nov. 1978.

[24] S. Horwitz, T. Reps, and D. Binkley. Interprocedural slicing
using dependence graphs.ACM Transactions on Program-
ming Languages and Systems, 12(1):26–60, Jan. 1990.

[25] D. Ince. An Annotated Bibliography of Software Metrics.
ACM SIGPLAN Notices, 25(8):15–23, Aug. 1990.

[26] S. Jarzabek. PQL: A language for specifying abstract pro-
gram views. In W. Sch¨afer and P. Botella, editors,Soft-
ware Engeneering - ESEC ’95. Proceedings, volume 989 of
LNCS, pages 324–342, Berlin, 1995. Springer.

[27] S. C. Johnson. YACC — Yet another compiler - compiler.
Computing Science Technical Report No. 32, Bell Labora-
tories, Murray Hill, N.J., 1975.

[28] M. Kamp. GReQL-Sprachbeschreibung. In[16] , pages
173–202. 1998.

[29] M. Kamp. Managing a Multi-File, Multi-Language Soft-
ware Repository for Program Comprehension Tools – A
Generic Approach. In U. D. Carlini and P. K. Linos, edi-
tors, 6th International Workshop on Program Comprehen-
sion, pages 64–71, Washington, June 1998. IEEE Computer
Society.

[30] B. Kullbach. Approaching WELTAB III using GUPRO. The
6th Reengineering Form, March 8-11, Firenze, Italy, 1998,
1998.

[31] B. Kullbach, A. Winter, P. Dahm, and J. Ebert. Program
Comprehension in Multi-Language Systems. InProceed-
ings of the 5th Working Conference on Reverse Engineering
1998 (WCRE’98), 1998. to appear.

[32] M. A. Linton. Implementing Relational Views of Programs.
Proceedings ACM SIGSOFT/SIGPLAN Software Engineer-
ing Symposium on Practical Software Developement Envi-
ronments, pages 132–140, May 1984.

[33] T. J. McCabe. A Complexity Measure.IEEE Transac-
tions on Software Engineering, SE-2(4):308–320, December
1976.

[34] A. Mendelzon and J. Sametinger. Reverse Engineering by
visualizing and querying.Software—Concepts and Tools,
160(4):170–182, 1995.

[35] A. Panse. Konzeption und Realisierung eines
Reengineering-Werkzeugs. Eine Fallstudie des ETR-
Zyklus. Diplomarbeit, Universit¨at Koblenz-Landau,
Fachbereich Informatik, Koblenz, Januar 1998.

[36] D. L. Parnas. On the Criteria to Be Used in Decompos-
ing Systems into Modules.Communications of the ACM,
15(12):1053–1058, Dec. 1972.

[37] S. Paul and A. Prakash. A Query Algebra for Program
Databases. IEEE Transactions on Software Engineering,
22(3):202–217, Mar. 1996.

[38] D. Polock. Ein statischer Optimierer f¨ur GRAL-
und GReQL-Ausdr¨ucke. Diplomarbeit D 414, Univer-
sität Koblenz-Landau, Fachbereich Informatik, Koblenz,
September 1997.

[39] Reasoning Systems. REFINE User’s Guide, 1989.
[40] R. W. Schwanke. An Intelligent Tool for Re-engineering

Software Modularity. InProceedings of the 13th Interna-
tional Conference on Software Engineering, pages 83–92,
May 1991.

[41] N. Südkamp and R. Gimnich. Benutzeroberfl¨achen für den
GUPRO-Prototyp. In[16] , pages 205–218. 1998.

[42] S. R. Tilley. Domain-Retargetable Reverse Engineering.
PhD thesis, Department of Computer Science, University of
Victoria, January 1995.

[43] M. van den Brand, A. Sellink, and C. Verhoef. Control
Flow Normalization for COBOL/CICS Legacy Systems. In
P. Nesi and F. Lehner, editors,Proceedings of the 2nd Eu-
romicro Conference on Software Maintenance & Reengi-
neering, pages 11–19, Los Alamitos, 1998. IEEE Computer
Society.

[44] M. Weiser. Program slicing. InProceedings of the 5th Inter-
national Conference on Software Engineering, Mar. 1981.

[45] T. A. Wiggerts. Using Clustering Algorithms in Legacy Sys-
tems Remodularization. In I. Baxter, A. Quilici, and C. Ver-
hoef, editors,Proceedings of the 4th Working Conference on
Reverse Engineering, pages 33–43, Los Alamitos, Califor-
nia, 1997. IEEE Computer Society Press.

[46] L. M. Wills. Using Attributed Flow Graph Parsing to Rec-
ognize Clichés in Programs. In J. Cuny, H. Ehrig, G. En-
gels, and G. Rozenberg, editors,Proc. Fifth Intl. Workshop
on Graph Grammars and Their Application to Comp. Sci.,
volume 1073 ofLecture Notes in Computer Science, pages
170–184. Springer, 1996.

[47] WorldPath Information Services. Reverse Engineering De-
monstration Project. http://www.worldpath.com/reproject/,
1998.

