
Applying Relation Partition Algebra for Reverse Architecting

André Postma, Marc Stroucken
Philips Research Laboratories

Prof. Holstlaan 4 (WL-01)
NL 5656 AA Eindhoven

The Netherlands
e-mail: {andre.postma, marc.stroucken}@philips.com

Abstract
The ever increasing complexity and ever more rapidly changing requirements for software systems create a need
for reuse and adaptation of existing software. An explicit description of the software architecture of a system
may help to get a high-level overview of the system, thus facilitating re-use and adaptation of the system.
Reverse architecting is a technique applied within Philips to make the module architecture of a software system
explicit. In this paper, the reverse architecting technique is briefly described. Furthermore, it is shown how
Relation Partition Algebra can be used for reverse architecting purposes as a formalism to describe the module
architecture of a system, and provide the architectural information with the right level of detail.

1. Introduction
Royal Philips Electronics N.V. is a world-wide company which develops professional systems (like
business communication and medical systems) as well as consumer systems (like television sets and
VCRs). The ever increasing complexity of the software, and the ever more rapidly changing
requirements for these systems create a need for easily extendible, flexible, configurable, testable and
maintainable systems. Because the time between two subsequent generations of a system becomes
shorter and shorter, re-use and adaptation of existing software has become a necessity. For this
purpose, a good overview of existing software is required. An explicit description of the architecture
of a software system may help to get a high-level overview of that system.

In literature, several different definitions of software architecture exist (see, e.g., [BaCK98, ClNo96]).
In this paper, we conform to the definition of Soni et al. (in [SoNH95]) who state that software
architecture is concerned with capturing the structures of a system and the relationships among the
elements both within and between structures [SoNH95]. Besides this structural information, software
architecture also includes constraints on the system or on elements of the system. Depending on the
engineering concerns involved, several different structures can be distinguished. Kruchten (in
[Kruc95]) and Soni et al. (in [SoNH95]) introduce similar approaches to categorize these structures.
Soni et al. (in [SoNH95]) distinguish between several categories of structures: conceptual architecture,
module (interconnection) architecture, code architecture, and execution architecture. Kruchten (in
[Kruc95]) defines different views (logical view, development view, process view, physical view)
based around requirements in the form of scenarios. The two approaches are similar, and both provide
a possibility for separation of engineering concerns in the description of the software architecture of a
system.

Most of our work has been based on the module architecture of a system. The module architecture
captures the functional decomposition of the system (i.e., the decomposition of the system into
subsystems, modules, and abstract program units), and the system's subdivision into a number of
hierarchical layers. Furthermore, it describes the interrelationships between the various components of
the system [SoNH95]. In a number of projects within Philips, relation partition algebra [FeKO98,
FeOm94, FeOm99, Krik97] has been used as a formalism to describe, analyse and manipulate the
module architecture of a system. A brief description of relation partition algebra will be given below.

In this paper, we focus on a technique called reverse architecting [Krik97], which we apply in order to
make the module architecture of existing systems explicit. The described reverse architecting

technique consists of three steps: extraction, abstraction, and presentation, each of which will be
explained below. See also Figure 1.

Repository

abstract

extract present

System
Software

text
describing
the structure
of the
system

System
History

System
Experts

Figure 1 Extract - abstract - present paradigm

The remainder of this paper is structured as follows. First, an overview is given of the reverse
architecting technique used to make the module architecture of existing software systems explicit.
Then, a brief description of relation partition algebra is given and its application in reverse
architecting is demonstrated.

2. Reverse architecting
In [ChCr90], reverse engineering is defined as the process of analysing a subject system to identify the
system’s components and their relationships and create representations of the system in another form
or at a higher level of abstraction. The main goal of reverse engineering is to increase
comprehensibility of the system for maintenance and new development. Reverse architecting [Krik97]
is the flavour of reverse engineering that concerns all activities for making existing software
architectures explicit.

Just like reverse engineering, reverse architecting can be subdivided into three subsequent steps:
extraction, abstraction, and presentation (Figure 1).

The extraction phase is concerned with extraction of architectural information from the source code
and storing the architectural information in a repository. The architectural information is stored as a
collection of sets and relations between the elements of the sets. Although the architectural
information is extracted solely from the system software (i.e., source code, directory structure,
configuration management), consulting the system documentation and the system architects will
generally be required to obtain information about how the architectural information is mapped onto
the source code (e.g., by means of naming conventions, directory structures, and so on). However, in
some cases, the configuration management of a system is done in such a way, that the required
architectural information can be extracted without the help of system documentation or system
architects (see, e.g., [BFGK99, KJMF99]). Since the systems we consider usually contain millions of
lines of code, automation of the extraction process is required. For this process, extraction tools like
scripts, source browsing tools, etcetera are needed. Generally, the extraction tools are specific for the
system from which the information is extracted.

In the description of the module architecture of a system, we can distinguish between different levels
of abstraction. I.e., the system architecture can be described in terms of large course-grained elements
(e.g., units, modules) at a high level of abstraction, but also in terms of smaller fine-grained elements

(e.g., methods, classes) at a lower level of abstraction. Usually, the architectural information extracted
from the system software yields a description of the system in terms of fine-grained elements (i.e. at a
low abstraction level). In general, the elements at a higher level of abstraction are conceptual entities
which can not be directly extracted from the system software. The abstraction phase consists of
grouping and filtering extracted information, so as to obtain a manageable set of information at the
desired level of abstraction. In this step, the so-called lift-operator plays an important role, which is
used to ’lift’ relations to a higher level of abstraction. See also Section 3.

Finally, the presentation phase consists of presenting the architectural information in a way that
appeals to the architects and system developers. Both graphical and textual (web-based, browsable)
representations are being used. Usually, the graphical representations are used for obtaining a global
insight in the system architecture, whereas the textual representations are used to get more detailed
information.

3. The use of Relation Partition Algebra for reverse architecting
Relation partition algebra (RPA) is an algebra defined on sets and relations. All kinds of operators on
sets and/or relations are defined within RPA: set / relation inclusion (⊆), composition (;), intersection
(∩), union (∪), converse ((-1)), transitive closure (+), to only mention a few. For a detailed description
of RPA, we refer to [FeKO98, FeOm94, FeOm99, Krik99]. In order to increase the expressiveness of
RPA, it has also been extended with so-called multi-sets and multi-relations, in which for each
element in the multi-set or multi-relation, the number of occurrences of this element has also been
indicated. For more information on multi-sets and multi-relations in RPA, we refer to [FeKr99,
Krik99]. In this paper, we will restrict the use of RPA to sets and relations. We introduce RPA by
means of an example in which we show how RPA can be used for reverse architecting.

When applying RPA for reverse architecting, our extraction step consists of expressing the module
architecture of a system in terms of sets and relations. In architecture descriptions, sets are used to
define important architectural entity types, like, e.g., units, modules, and functions. In the examples
below, the sets of units, functions, and modules will be denoted by U, M, and F, respectively. In RPA,
a (basic) set is defined simply by enumerating the elements that it contains, e.g.:

U = {unit1 , unit2 , unit3 }
M = {m1 ,m2 ,m3 ,m4 }

F = {f1 , f2 , f3 , f4 , f5 , f6 }

More sets can be derived by using set expressions in RPA (E.g., the set of all relevant architectural
entities of the above example could be defined by U ∪ M ∪ F).

We use relations to express the dependencies that exist between elements of the architectural entity
types. In our work we have restricted ourselves to binary relations. A binary relation is a set of tuples.
In architecture descriptions, binary relations consist of tuples of architectural entities. A binary relation
is determined by its name and a specification of its domain and range. We give some examples to
make things clear. In these examples, the usage relation between functions is denoted as UF,F, and the
part-of relation between functions and modules as PF,M.

UF,F = {<f1 , f2>,<f1 , f3>,<f1 , f4>,<f3 , f5>,<f4 , f6>}
PF,M = {<f1 , m1 >,<f2 , m2 >,<f3 , m3 >,<f4 , m4 >,<f5 , m1 >,<f6 , m2 >}

In Figure 2, we have depicted the various relations that play a role in this example. The modules m1

through m4, and the functions f1 through f6 have been indicated with boxes. The part-of relation has
been implicitly depicted by positioning each function within the module that it is part of. The usage
relation between functions is indicated by thin arrows, whereas the usage relation between modules is
indicated with thick arrows.

Part-of relations play an important role in RPA. They describe the partitioning of the system into
subsystems and components. Characteristic of such a part-of relation is that it is acyclic and
functional. It describes a partition, i.e., each domain element occurs at most once in the relation.

For reverse architecting purposes, several basic relations can be directly extracted from the system
(during the extraction phase). Other relations (especially those with respect to high-level conceptual
entities in the system) can be calculated during the abstraction phase from the extracted sets and/or
relations and stored in the repository. For the purpose of abstraction, the lift operator (↑) has been
defined. The lift operator lifts relations to a higher level of abstraction, which may be helpful in
obtaining the right level of abstraction. The lift operator can be expressed in terms of the composition
and converse operators as follows:

U ↑ P = P (-1) ; U ; P

Here, U represents a low-level usage relation (i.e. a usage relation between fine-grained elements of
the system). P represents a part-of relation which describes a partitioning (i.e., it describes which fine-
grained elements are part of which coarse-grained entities). U ↑ P describes a usage relation at a
higher level of abstraction.

m2m1

m3 m4

 f1

 f5

 f2

 f6

 f3 f4

Usage relation between modules

Usage relation between functions

Figure 2 Example of part-of and usage relations

To clarify the meaning of the operators just mentioned, we will now give examples of the converse,
composition and lift operator for the above relations:

PF,M (-1) = {<m1 , f1>, <m2 , f2>, <m3 , f3>, <m4 , f4>, <m1 , f5>, <m2 , f6>}

I.e., the converse operator alternates the domain and the range of a relation.

UF,F ; PF,M =
UF,M =

{<f1 , m2>,<f1 , m3>,<f1 , m4>, <f3 , m1>,<f4 , m2>}

I.e., the composition of two relations R1 and R2 yields all tuples with a domain element of a tuple of
the R1 and the range element of a tuple of R2, for which it holds that the range element of the tuple of
R1 is identical to the domain element of the tuple of R2. I.e., <f1 , m2> is part of UF,F ; PF,M, since UF,F

contains a tuple <f1 , m1> and PF,M contains a tuple <m1 , m2>. The composition operator is
associative, i.e., for any relations P, Q, R, it holds that P ; Q ; R = (P ; Q) ; R = P ; (Q ; R).

UF,F ↑ PF,M =
PF,M (-1) ; U F,F ; PF,M =

 PF,M (-1) ; (U F,F ; PF,M) =
 PF,M (-1) ; U F,M =

U M,M =
{<m1 , m2>, < m1 , m3>, < m1 , m4>, < m3 , m1>, < m4 , m2>}

From the last example, it is clear that by using the lift-operator, it is possible to calculate the uses
relation between modules from the uses relation between functions and the part-of relation between
modules and functions.

After the abstraction phase, the repository contains both the extracted sets and relations and the sets
and relations calculated during the abstraction phase. In the presentation phase, the system architect or
developer can select the sets and/or relations that he/she wants to be presented from the repository. In
this way, the architect or developer can choose the right level of abstraction to gain more insight in the
system’s architecture. In the presentation tools used within Philips, the user may interactively change
the level of abstraction at which the architectural data is presented.

4. Conclusion
In this paper, we have indicated that reverse architecting, as it is currently being applied within
Philips, is a useful technique for gaining insight in the structure of existing software systems. We have
briefly described the reverse architecting technique, which consists of three phases: extraction,
abstraction, and presentation. Finally, we have shown that relation partition algebra can be used as an
underlying formalism for abstraction.

5. Acknowledgements
The authors would like to thank Reinder Bril, Wim Christis, and Jaap van der Heijden for carefully
reading this manuscript and for providing useful suggestions to improve this paper.

6. References
[BaCK98] Bass, L., Clements, P., and Kazman, R., Software Architecture in Practice, SEI Series in

Software Engineering, Addison Wesley, Reading, Massachusetts, 1998, ISBN 0-201-19930-0.
[BFGK99] Bril, R.J., Feijs, L.M.G., Glas, A., Krikhaar, R.L., and Winter, T., Maintaining a legacy:

towards support at the architectural level, Manuscript NL-MS-20209, submitted for
publication, 1999.

[ChCr90] Chikofsky, E.J., Cross II, J.H., Reverse Engineering and Design Recovery: A Taxonomy, in:
IEEE Software, January 1990, pp. 13-17.

[ClNo96] Clements, P.C., and Northrop, L.M., Software Architecture: An Executive Overview, SEI,
Technical Report, CMU/SEI-96-TR-003, ESC-TR-96-003, Pittsburgh, February 1996.

[FeKO98] Feijs, L., Krikhaar, R., and van Ommering, R., A Relational Approach to Software
Architecture Analysis, in: Software Practice and Experience, Vol. 28, No. 4, April 1998, pp.
371-400.

[FeKr99] Feijs, L.M.G., and Krikhaar, R.L., Relation Algebra with Multi-Relations, in: International
Journal Computer Mathematics, Vol. 70, 1999, pp. 57-74.

[FeOm94] Feijs, L.M.G., and van Ommering, R.C., Theory of Relations and its Applications to Software
Structuring, Philips internal report, Philips Research, 1994.

[FeOm99] Feijs, L.M.G., and van Ommering, R.C., Relation Partition Algebra - mathematical aspects of
uses and part-of relations -, in: Science of Computer Programming, Vol. 33., 1999, pp. 163-
212.

[KJMF99] Krikhaar, R.L., Jong, R.P. de, Medema, J.P., and Feijs, L.M.G., Architecture Comprehension
Tools for a PBX System, in: Proceedings of the 3rd European Conference on Software

Maintenance and Reengineering, March 3-5, 1999, Amsterdam, IEEE Computer Society,
ISBN 0-7695-0090-0, 1999, pp. 31-39.

[Krik97] Krikhaar, R.L., Reverse architecting approach for Complex Systems, in: Proceedings of the
International Conference on Software Maintenance (ICSM’97), IEEE Computer Society,
1997, pp. 4-11.

[Krik99] Krikhaar, R.L., Software Architecture Reconstruction, Ph.D. thesis, University of Amsterdam
(UvA), ISBN 90-74445-44-6, 1999.

[SoNH95] Soni, D., Nord, R.L, and Hofmeister, C., Software Architecture in Industrial Applications, in:
Proceedings of the ICSE’95, ACM Press, 1995, ISBN 0-89791-708-1, pp. 196-207.

