
Going from PIC 99 to PIC 999

|Extended Abstract|

Steven Klusener1 Ralf L�ammel2;3

Chris Verhoef3

1 Software Improvement Group, Amsterdam

2 Centrum voor Wiskunde en Informatica, Amsterdam

3 Vrije Universiteit, Amsterdam

Yet another Y2K-like problem We discuss a case study in software ren-
ovation. The case is about a range overow problem (like the Y2K problem).
Basically, the problem seems to be a very simple one, and it can be formulated
as follows: Data items of a certain kind|let us call them product codes|had to
be expanded. The original software application (programmed in COBOL with
embedded SQL for DB2 data management) was developed under the assump-
tion that 99 di�erent product codes are su�cient, and thus, the data type PIC
99 was used for these �elds, as in the following declaration:

01 PRODCODE PIC 99.

In the life-cycle of the software the range of product codes was about to see a
range overow (because the 99 product codes were almost exhausted). The new
requirement became that the software had to cope with 299 di�erent product
codes. Thus, the new data type PIC 999 would be appropriate, and the above
line of code had to be transformed as follows:

01 PRODCODE PIC 999.

We did this project for a large bank. The application at hand consisted of
about 100 programs with 100.000 lines of code. We developed a semi-automatic
solution to the problem.

Not such a little problem The formulation of the problem might suggest
that the problem was trivial. Note actually that the Y2K problem can be stated
in such simple terms, too, if we only abstracted from most complications. It
actually turned out that the problem was about much more than identi�cation
of product codes, and expansion of simple picture mask conversion. Let us just
indicate some complications. Firstly, the actual identi�cation process needs to
be made precise as we cannot rely on the fact that product codes are always �elds
with name PRODCODE. Secondly, picture mask expansion is just one conversion

rule. We also have to expand tables and literals. Again, precision is needed
here because we might invalidate the software if we miss infected patterns (false
negatives), or if we are too o�ensive (false positives). There are more of these
technical complications. Some �elds of product codes were used with a di�erent
type than PIC 99, namely longer �elds or alpha-numeric �elds, triggering all
kinds of special conversion problems. As a kind of extreme example serves the
following piece of real code which de�nes a memory area to store the indices of
product codes:

01 PRODKODES-PRIJSTABEL.

03 FILLER PIC X(40)

VALUE '0102030405060708091011121314151617181920'.

03 FILLER PIC X(40)

VALUE '2122232425262728293031323334353637383940'.

03 FILLER PIC X(40)

VALUE '4142434445464748495051525354555657585960'.

03 FILLER PIC X(40)

VALUE '6162636465666768697071727374757677787980'.

03 FILLER PIC X(38)

VALUE '81828384858687888990919293949596979899'.

01 PRODKODE-TABEL REDEFINES PRODKODES-PRIJSTABEL.

03 PRODKODE OCCURS 99 PIC X(02).

There are also numerous process characteristics one has to take into account,
e.g., the incompleteness of available sources, a �xed price requirement, and the
need for layout preservation.

Contribution We discuss all relevant details of the Y2K-like project, namely
details concerning requirements, problem speci�cation, design and implementa-
tion. Thereby, we supply a well-documented case study in software renovation.
The reported experience should be of value for many other mass maintenance
projects, in particular, to setup a software process, to �gure out the e�ort, to
decide on suitable means for design and implementation. One should not get
distracted by the rather small size of the code base underlying the reported
project. We have been involved in larger projects, and we see our conclusions
approved in those. We have chosen this not too large project for the sake of a
self-contained discussion, so that a complete picture is drawn.

Approach We �rst analyse the problem to de�ne a more detailed problem
speci�cation (as opposed to the simple statement to expand product codes by
one digit), and we explain how code exploration and others are used to de�ne the
e�ort for the project. In this state, we stick basically to the following problem
speci�cation process:

1. Do code exploration to learn about the problem.

2. Think of an operational model to address the scenarios at hand.

3. Make an estimation for e�ort and cost.

4. Find out about the limitations of the current model.

5. Discuss the results from 1.-4. with experts on the client site.

6. Repeat 1.-5. until you get con�dent in your estimation.

Then, we systematically design rules for analysis and transformation so that
we can later implement an automatic or semi-automatic conversion program.
Like in most software process models, the problem speci�cation and the design
phase are somewhat intertwined. De�ning the rules, we might also communicate
with the client, and rede�ne the problem speci�cation. Based on the design, we
describe the actual implementation of the rules, and we also discuss surrounding
issues such as documentation and testing. The overall idea here is to provide a
rational industry strength solution. We explain the actual approach taken, and
the reasons (say project constraints) for this choice. We conclude on the lessons
learned, alternative implementations, and on related work.

