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Abstract

Bauhaus is a research collaboration between the
department for programming languages and compilers at
the University of Stuttgart and the Fraunhofer institute for
experimental software engineering in Kaiserslautern. At
last year’s Bad Honnef workshop [2], we have outlined
future research topics of Stuttgart’s Bauhaus group. This
year, we summarize the achievements of the last 12 months
and elaborate our research directions in more detail. This
paper specifically addresses continued research in compo-
nent recovery based on previous work [7] that additionally
leverages our new infrastructure for control and data flow
analyses. The paper introduces also relatively new
research to recover protocols for the identified compo-
nents.

1. Improved Component Recovery via Static
Control and Data Flow Analyses

A component is a computational unit of a system.
Components consist of an interface, which offers the
resources (types, variables, subprograms) of the compo-
nent, and the implementation of these resources. The
resources of the component coherently contribute to the
purpose of the component. Aninterface has a syntactic
part that declares the resources provided by the component
and a semantic part that describes how the component is to
be used correctly. Any possible use of a resource provided
by the interface is said to be anoperation of the compo-
nent. Operations, hence, range from subprogram calls,
variable accesses, instance creations to accessing individ-
ual record components of types provided by the compo-
nent.

Component recovery has been studied extensively
within Bauhaus [7]. The overall result is that current tech-
niques that use coarse information about the relationships
among types, variables, and subprograms fall short of
needed precision. Leveraging our new infrastructure for
control and data flow analyses we want develop better
techniques based on more fine-grained information. An
avenue, for instance, is to refine the so-called accessor
classification approach by Würthner and Girard [8], in
which subprograms are classified into one or more of the
following classes (while Würthner and Girard have just
looked at the subprogram signature to decide these cases,
we are planning to analyze the subprogram body as
described as hints in the following):

• constructor: the subprograms creates a new (instance
of the) component (hints: call to memory allocation
routines likemalloc, setting record components with
literals)

• destructor: releases an existing (instance of the) com-

ponent (hints: call to memory deallocation routines lik
free)

• modifier operation: changes the state of an existing
(instance of the) component (hints: the data of the com
ponent are changed)

• accessor operation: returns information about an
existing (instance of the) component without changin
it (hints: the data of the component are not changed)

A subprogram can play different roles with respect t
different types, and the classification could be used
assign the subprogram to the type for which it plays
closer related role according to the following priority: con
structor/destructor > modifier > accessor.

Program slicing techniques and points-to analyses
function pointer for more acurate call graphs may be a
avenue to come to finer-grained analyses with more re
ability. Moreover, component recovery can be combine
with other architectural research in Bauhaus, such as f
ture location and connector recovery [9] in order to iden
tify subsystems.

2. Protocol Validation

During design, a system architect decomposes a lar
software system into smaller and more manageable co
ponents. For each component, he or she defines an in
face of exported declarations. Likewise, by sem
automatic component recovery, we may be able to ident
the components and, given these, the externally us
resources of the components can be identified as the p
vided interface. However, semi-automatic compone
recovery can only identify the syntactic interface. Sim
larly, in forward engineering, often the semantic part
only described with some informal comments. Consid
Figure 1 as an example of a syntactic interface of a co
ponentStack.

With only the syntactic interface, it is not clear how th
component is to be used correctly. Generally, the export
declarations of an interface entails constraints that can

Figure 1. Interface of Component Stack.

typedef struct {Item contents[100];
int top; } Stack;

Stack Init (); // constructor

void Push (Stack *S, Item i);
// pushes i onto S as top element

void Pop (Stack *S);
// removes top element from S

Item Top (Stack S);
// return top element of S

int Empty (Stack S);  // true if S is empty

void Release (Stack *S); // destructor
1
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be specified by conventional programming languages. For
instance, the subprograms offered in the interface may be
subject to certain restrictions of allowed call sequences. If
an actual call sequence violates the given restrictions, a
failure at run-time may occur. Such failures are often hard
to find, because they may become visible only long after
the actual fault happened.

For this reason, the allowable way of using a compo-
nent needs to be explicitly specified. This specification is
called theprotocol of the component. Without protocol
specification, the programmer does not know how to use
the component. Likewise will a technical auditor without
specification not be able to validate the component. If such
an specification does not exist or if it is obsolete, it needs
to be derived. Hints on the correct usage of the component
may be derived from its implementation directly. We call
this glass-box understandingbecause the implementation
of the component is investigated. Complementary, or even
alternatively if the implementation is too difficult to under-
stand or not available, one can also look at the actual
usages of the component in – preferably correct – pro-
grams. The strategy to derive hints on a component by
looking on how it is used without looking at the imple-
mentation will be calledblack-box understanding.

2.1. On Static and Dynamic Traces

The actual use of a component may be derived by
dynamic or static analysis. For a dynamic derivation, one
would prepare use cases that require a certain component,
instrument the source or object code, execute the program,
and then use a profiler to extract the executed operations
of a component asdynamic tracesfor each program run.
The advantage of dynamic analysis is that it yields pre-
cisely what has been executed. The problem of aliasing,
where one does not exactly know at compile time what
gets indirectly accessed via an alias, does not occur for
dynamic analysis. Moreover, infeasible paths, i.e., pro-
gram paths for which a static analysis cannot decide that
they can never be taken, are excluded by dynamic analysis,
too. On the other hand, dynamic analysis lacks from the
fact that it yields results only for one given input or usage
scenario. In order to find all possible dynamic traces of the
component, the use cases have to cover every possible pro-
gram behavior. However, full coverage is generally impos-
sible because there may be principally endless repetitions
of operations.

Static analysis may derive all possible traces - so-called
static traces- regardless of the actual input. Static traces
represent the statically derived potential execution
sequences of a component’s operations. As operation, we
consider any usage of a resource exported by the compo-
nent, including subprogram calls, access to a global vari-
able of the component’s interface, and access to a record
component of any type provided by the component. The
connection between static and dynamic traces is that each
dynamic trace is an instance of a static trace. To put it dif-
ferently, static traces can be viewed as a grammar and a
dynamic trace is a word derived from this grammar.

However, in many cases, static analysis can only safely
extract static traces by making conservative assumptions
on the program because many questions relevant to traces,

like aliasing and infeasible paths, are generally undec
able at compile time. In the view of static traces as a gra
mar, one may, hence, state that static traces may often
considered a grammar that defines a superset of the a
ally possible dynamic traces. A static trace that wa
extracted via infeasible paths or an overestimation of alia
ing and that cannot really occur at runtime will be calle
an infeasible static trace in the following. One must also
note, that due to the problem of reaching full coverage
all possible inputs is neither feasible in practice, dynam
analysis neither gives the set of all possible dynam
traces. Both static and dynamic analysis are, thus, appro
mations where static analysis yields the upper bound of
possible traces and dynamic analysis the lower bound.

2.2. Protocol Validation

The purpose ofprotocol validation is to validate that
each traces conforms to the specified protocol. Protoc
are typically checked at run-time. However, to be on th
safe side, one has to validate protocols statically. Sta
protocol validations has to check that every static trace
either infeasible or is covered by the protocol specific
tion. It goes without saying that protocol validation ca
only be done semi-automatically since many questio
related to protocol validation are generally undecidab
However, it would still be very useful for large systems t
at least identify the potential mismatches between sta
traces and the specified protocol and then let the u
decide whether the static traces actually do not conform
the protocol. Again, both static traces and protoco
describe a language. Thus, for such a validation, one ba
cally has to show that the language described by the sta
traces is a subset of the language described by the pro
col. Unfortunately, verifying this property is only possible
for regular languages in general. Consequently, differe
authors have proposed to use finite state automata to sp
ify protocols [1, 8]. These protocols express the sequen
ing constraints on a component’s operations on
Constraints on the data passed to the components,
instance, are not part of sequencing constraints. For exa
ple, it cannot be expressed with finite state automata t
the element that is currently being retrieved from a co
tainer component must have been added before.

In order to validate a static trace against a protocol, o
can simply carry out the following procedure:

1. represent the static trace and protocol by two det
ministic finite state automata,T andP, respectively,

2. combine these two automata by adding one new sta
ing node,S, plus two epsilon transitions fromS to the
starting nodes ofT andP; where the accepting states
of the new combined automata is the union of th
accepting states ofT andP,

3. minimize the combined automata using Moore’s alg
rithm [5],

4. and check whether every state,t, of T has at least one
equivalent state,p, of P in the minimized combined
automata and, ift is an accepting state,p is also an
accepting state.

An alternative approach was proposed by Olender a
2
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Osterweil, who use a data flow framework in which state
transitions are propagated through the control flow graph
[8]. The advantage of their approach is that it does not
only check universally quantified but also existentially
quantified constraints.

2.3. Static Trace Extraction

In order to validate static traces against a protocol, both
static traces and protocol must exist. While static traces
can be extracted automatically, the protocol needs to be
specified by the programmer. However, if the original pro-
grammer did not properly specify the protocol, it needs to
be derived by someone who might not be familiar with the
component. This section describes how we extract static
traces. Section 2.4 depicts how protocols can be semi-
automatically ascertained using these extracted traces and
other information derived from source code.

If the component’s interface consists of global variables
and subprograms only, deriving the static traces is a simple
traversal of the interprocedural and intraprocedural control
flow graph that collects the accesses to the global variables
belonging to the component and the calls to the subpro-
grams provided by the component in the order in which
they occur in the control flow.

If the component exports types, a programmer may cre-
ate an arbitrary number of values of these types by declar-
ing instances as global or local variables or formal
parameters or via dynamically created instances on the
heap. In case of instances, the static traces need to be
extracted for each instance individually. Actually, these
instances are only carriers for values of these types and we
are rather interested in the operations executed on the val-
ues. For example, a stack instance may be declared, then
initialized, some elements may pushed on it, and finally it
is passed as an actual parameter to another subprogram.
The formal parameter, in turn, that receives this stack
value now carries an initialized non-empty stack and,
hence, may apply at least onepop to it. Consequently,
assignments and parameter passing need to be treated
properly. If there is a full assignment ofa to b, like “b :=
a”, b inherits the state ofa and, hence, the static trace ofa
that led to this state. The former value ofa is overwritten
and its lifetime ends. A new lifetime begins for the value
that has newly been assigned toa, characterized by the
inherited static trace ofb. Note that partial assignments are
not treated that way but considered an operation and will
be part of the static trace. One may argue thata.c := b.c for
all components,c, of a andb is equivalent to a total assign-
menta := b. However, we do not really expect many exam-
ples in which a programmer completely assigns a value by
enumerating assignments of all parts.

Parameter passing with both value and reference
semantics are just special cases of assignments. In order to
explicitly represent passing values between carriers as
subprogram parameters, we simply link the current static
trace of the actual parameter to the formal input parameter
and – in case of output parameters – back from the end of
the static trace of the formal parameter to the actual
parameter. This representation allows maximal sharing for
formal parameters of subprograms called more than once.
Copying the static traces to and from formal parameters is

neither compact nor feasible for cycles in the call graph
The individual intraprocedural static trace of a loca

variable or a parameter can be ascertained by a traversa
the control flow graph that collects all operations in whic
the instance is passed as an argument and all operat
that return a value assigned to the instance. For glo
variables as instances, an analogous traversal of the
graph is needed combined with an intraprocedural tr
versal of the visited subprograms (excluding operations
the component, of course, as they are considered atom
Instances can also be introduced as record component
composite variables but they can be handled analogou
to regular local or global variables or formal parameter
depending upon the scope of the enclosing variable.

A problem exists for instances that occur in an arra
For arrays, we can not decide which elements are rea
accessed in run-time determined subscripts. For validat
purposes, we have to treat the array as an atomic insta
and to collect all operations that involve the array itself o
any of its elements. Generally, this leads to impreci
results and the maintainer or auditor needs to be notifie
For protocol recovery based on extracted static traces, o
could also ignore arrays. An even more difficult problem
exists for instances created on the heap. Similarly
arrays, we can combine all instances created at a cer
heap allocation. The particular heap allocation then serv
as an atomic instance. Additionally, we have to track th
pointers referring to the instance created on the heap
order to identify operations that involve the instanc
Hence, a points-to analysis is needed. Points-to analysi
also required to precisely keep track of references to
value via aliases.

The combination of static traces of all instances an
further operations provided by the component make up t
static traces for the component as a whole. If there are
dependencies between individual traces of instances a
other operations of the component, one can simply un
the static traces. If one cannot exclude dependencies,
static trace for the component as a whole is the seque
of all operations disregarding which instance is passe
which is basically an interleaving of all individual static
traces and further operations. For instance, if the sta
constructor crashes if a certain limit of instances has be
exceeded and, therefore, requires that a certain operat
may_create, is called that checks that the number o
instance is still below that limit, then any valid static trac
is expected to havemay_createbefore it constructor call,
even thoughmay_createhas not an argument of type
Stack.

Our current prototypical static trace extraction is a co
trol-flow oriented traversal that is ignoring aliasing [3]
Only recently, we have finished a points-to analysis bas
on Wilson’s dissertation [10], which we now started t
integrate with the static trace extraction. The new preci
static trace extraction will be along our static singl
assignment form and be analogous to interprocedural s
ing [6], where only def-use data dependencies of instanc
and control dependencies are relevant. An interesti
result will be to compare the static traces extracted by t
different approaches.
3
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2.4. Protocol Recovery

Although research has answered the question on how
protocols (limited to sequencing constraints that can be
described by finite state automata) can be validated [8],
there is no research on how to get these protocols if the
original programmer did not specify them – at least to our
best knowledge.

Principally, there are three different sources of informa-
tion in order to find hints on the actual protocol for an
undocumented component:

• intra-component information, i.e., the source code of
the component itself,

• extra-component information, i.e., how the component
is being used,

• and domain knowledge, i.e., how components of a par-
ticular domain are typically organized.

Intra-component information may be used to identify
dependencies between operations of a component and may
help to decide whether individual traces of instances may
be considered independent and, hence, need not be col-
lapsed into an interleaved static trace for the component as
a whole. We intend to use our side-effect analysis for gath-
ering information on additional dependencies.

Extra-component information is based on the static
traces that we extract for uses of the component.

Domain knowledge is needed to relate the operations to
the application domain and to understand their semantics.
Since our protocol recovery is semi-automatic, domain
knowledge is integrated by way of the user who recovers
the protocol.

Our method to recover protocols is an iterative interac-
tive process using the extracted static traces as a starting
point and unifies them into protocols [4]. The user triggers
automatic analyses that identify (potential) opportunities
where static traces can be unified and validates them.
Since both static traces and protocols are finite state
automata according to our point of view and, hence, basi-
cally graphs, the unification is a set of graph transforma-
tion rules, where the semantics of these transformations
can be specified in terms of the underlying language the-
ory for finite state automata. We can identify two alterna-
tive transformations:

• semantically preserving transformations, i.e., transfor-
mations that do not change the language of the finite
state automata,

• and transformations that do change the language of the
finite state automata but that could still be allowable.

In the class of semantics-preserving transformations
fall conversion of non-deterministic automata into deter-
ministic ones and minimization of the finite state automata
by way of Moore’s algorithm. If two static traces are not
completely equivalent or subsume each other, Moore’s
algorithm at least identifies common suffixes. A reversed
version of Moore’s algorithm is also able to identify com-
mon prefixes.

In the category of transformations that do not maintain
the semantics but that could still be allowable, we can
offer, for instance, reordering of operations if they do not
have any data dependency according to intra-component

data flow analysis. Note the absence of data dependenc
not always sufficient to decide whether reordering do
not effect the semantics of the program, as exemplified
the following example of two operations, in which
is_initializedmust be called beforeis_emptyeven though
there is no data dependency between these functions:

Another non-semantics-preserving transformation
for instance, marking an operation that does not chan
the state of a component as optional if no other operati
is control-dependent on it, which may trigger furthe
transformations. Additional examples can be found in [4

The user can add information on semantic equivalen
of certain operations, opening new opportunities for fu
ther graph transformations.
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int is_initialized
(Stack *s) {
  return s != NULL; }

int is_empty (Stack *s) {
  return s->size > 0;
}

4


	Component Recovery, Protocol Recovery and Validation in Bauhaus
	Rainer Koschke, Yan Zhang
	www.bauhaus-stuttgart.de
	{koschke, zhangyan}@informatik.uni-stuttgart.de
	Abstract
	1. Improved Component Recovery via Static Control and Data Flow Analyses
	2. Protocol Validation
	Figure 1. Interface of Component Stack.
	2.1. On Static and Dynamic Traces
	2.2. Protocol Validation
	1. represent the static trace and protocol by two deterministic finite state automata, T and P, r...
	2. combine these two automata by adding one new starting node, S, plus two epsilon transitions fr...
	3. minimize the combined automata using Moore’s algorithm [5],
	4. and check whether every state, t, of T has at least one equivalent state, p, of P in the minim...

	2.3. Static Trace Extraction
	2.4. Protocol Recovery

	References
	[1] Butkevich, S., Renedo, M., Baumgartner, G., and Young, M., ‘Compiler and Tool Support for Deb...
	[2] Czeranski, J., Eisenbarth, T., Kienle, H., Koschke, R., and Simon, D., ‘Wiedergewinnung von A...
	[3] Hanssen, S., ‘Extraktion statischer Traces zur Wiedergewinnung von Protokollen’, Studienarbei...
	[4] Heiber, T., ‘Semi-automatische Herleitung von Komponentenprotokollen aus statischen Verwendun...
	[5] Hopcraft, J.E., and Ullman, J.D., ‘Introduction to Automata Theory, Languages, and Computatio...
	[6] Horwitz, S., Reps, T., Binkley, D., ‘Interprocedural slicing using dependence graphs’, ACM Tr...
	[7] Koschke, R., ‘Atomic Architectural Component Recovery for Program Understanding and Evolution...
	[8] Olender, K.M., and Osterweil, L.J., ‘Interprocedural Static Analysis of Sequencing Constraint...
	[9] Simon, D., and Eisenbarth, T., ‘Feature Location and Connector Recovery: New Approaches for S...
	[10] Wilson, R.,’Efficient, Context-Sensitive Pointer Analysis for C Programs’, Dissertation, Sta...
	[11] Girard, J.-F., Würthner, M., ‘Evaluating the Accessor Classification Approach to Detect Abst...




