
Identifying Similar Code with Program Dependence Graphs

Jens Krinke
Lehrstuhl Softwaresysteme

Universiẗat Passau

Abstract

We present an approach to identify similar code in pro-
grams based on finding similar subgraphs in attributed
directed graphs. This approach is used on program de-
pendence graphs and therefore considers not only the
syntactic structure of programs but also the data flow
within (as an abstraction of the semantics). As a re-
sult, there is no tradeoff between precision and recall—
our approach is very good in both. An evaluation of
our prototype implementation shows that our approach
is feasible and gives very good results despite the non
polynomial complexity of the problem.

1 Introduction

Duplicated code is common in all kind of software sys-
tems. Although cut-copy-paste (-and-adapt) techniques
are considered bad practice, every programmer is using
them. Code duplication is easy and cheap during soft-
ware development, but it makes software maintenance
more complicated:

• Errors may have been duplicated together with the
duplicated code.

• Modifications of the original code often must also
be applied to the duplicated code.

Especially for software renovation projects, it is desir-
able to detect duplicated code; a number of approaches
have been developed [3, 2, 5, 7]. These approaches
are text-based (and language independent) [3], syntax-
based [2] or are based on metrics (syntax- and/or text-
based) [5, 7]. Some approaches can only detect (textual
or structural) identical duplicates, which are not typical
in software systems as most duplicates are adapted to
the environment where they are used.

In Figure 1 two similar pieces of code inmain.c
from theagrep program are shown, which have been

detected as duplicates by our prototype tool. Let us as-
sume that the left part is the original and the right part
is the duplicate. We can identify some typical modifi-
cations to the duplicate:

1. Parts of the code will be executed under different
circumstances (lines 742 and 743 have been moved
into anif statement in lines 473-476).

2. Variables and/or expressions are changed (lines
743/478, 747/483, . . .).

3. Parts of the code are inserted or deleted (“lasti
= i-1” in line 758).

4. Code is moved (“j++” in line 481/748).

Modifications disturb the structure of the code and du-
plicated code is more complicated to identify. This
causes a tradeoff between precision (amount of false
positives) and recall (amount of undiscovered dupli-
cates) in text- or structure-based detection methods.
To also detect not identical but similar duplicates (in-
creased recall), the methods have to ignore certain prop-
erties. However, this may lead to false positives (re-
duced precision). This tradeoff has been studied in [5].

We have developed an approach which does not suf-
fer under the tradeoff between recall and precision and
where modified duplicates can still be detected. Such
an approach cannot just be based on text or syntax, but
has to consider semantics too. Our approach is based
on fine-grained program dependence graphs (PDGs)
which represent the structure of a program and the data
flow within it. In these graphs, we try to identify simi-
lar subgraph structures which are stemming from dupli-
cated code. Identified similar subgraphs can be directly
mapped back onto the program code and presented to
the user.

740 if(c != Newline)

741 {
742 r1 = Init1 & r3;

743 r2 = (Next[r3] & CMask) | r1;

744 }
745 else {
746 r1 = Init1 & r3;

747 r2 = Next[r3] & CMask | r1;

748 j++;

749 if(TAIL) r2 = Next[r2] | r2 ;

750 if((r2 & 1) ^ INVERSE) {
751 if(FILENAMEONLY) {
752 num_of_matched++;

753 printf("%s\n", CurrentFileName);

754 return;

755 }
756 r_output(buffer, i-1, end, j);

757 }
758 lasti = i - 1;

759 r3 = Init0;

760 r2 = (Next[r3] & CMask) | Init0;

761 }
762 c = buffer[i++];

763 CMask = RMask [c];

472 if(c != Newline)

473 { if(CMask != 0) {
474 r1 = Init1 & r3;

475 r2 = ((Next[r3>>hh] | Next1[r3&LL]) & CMask) | r1;

476 }
477 else {
478 r2 = r3 & Init1;

479 }
480 }
481 else { j++;

482 r1 = Init1 & r3;

483 r2 = ((Next[r3>>hh] | Next1[r3&LL]) & CMask) | r1;

484 if(TAIL) r2 = (Next[r2>>hh] | Next1[r2&LL]) | r2;

485 if((r2 & 1) ^ INVERSE) {
486 if(FILENAMEONLY) {
487 num_of_matched++;

488 printf("%s\n", CurrentFileName);

489 return;

490 }
491 r_output(buffer, i-1, end, j);

492 }
493 r3 = Init0;

494 r2 = (Next[r3>>hh] | Next1[r3&LL]) & CMask | Init0;

495 }
496 c = buffer[i++];

497 CMask = Mask [c];

Figure 1: Two similar pieces of code fromagrep

2 Identifying similar subgraphs

An attributed directed graphis a is a 4-tupleG =
(V,E,µ,ν) whereV is the set of vertices,E ⊆ V ×
V is the set of edges,µ : V → AV maps vertices
to the vertex attributes andν : E → AE maps edges
to the edge attributes. Let∆ : E → Av × AE × Av

be the mapping∆(v1,v2) = (µ(v1),ν(v1,v2),µ(v2)).
A path is a finite sequence of edges and ver-
tices v0,e1,v1,e2,v2, . . . ,en,vn where ei = (vi−1,vi)
for all 1 ≤ i < n. A k-limited path is a path
v0,e1,v1,e2, . . . ,en,vn with n≤ k.

Two attributed directed graphsG1 = (V1,E1,µ1,ν1)
andG2 = (V2,E2,µ2,ν2) are isomorphic, if a bijective
mappingφ : V1 →V2 exists with:

(vi ,v j) ∈ E1 ⇐⇒ (φ(vi),φ(v j)) ∈ E2,

∆1(vi ,v j) = ∆2(φ(vi),φ(v j))

This means that two graphs are isomorphic if every
edge is bijectively matched to an edge in the other graph
and the attributes of the edges and the incident vertices
are the same. The questionwhether two given graphs
are isomorphicis NP-complete in general.

In Figure 2 two simple attributed graphs are shown,
where the edge labels represents the complete attribute-
tuple of the vertex and edge attributes. At least two

maximal isomorphic subgraphs exists with six vertices
each. We are interested insimilar subgraphs which do
not have to be isomorphic. We define similarity (which
is always tricky) between graphs by relaxing the map-
ping between edges: We consider two graphsG andG′

as similar, if for every pathv0,e1,v1,e2, . . . ,en,vn in one
graph there exists a pathv′0,e

′
1,v

′
1,e

′
2, . . . ,e

′
n,v

′
n in the

other graph and the attributes of the vertices and the
edges are identical if the path are mapped against each
other (∀1≤i≤nei ,e′i : ∆(ei) = ∆′(e′i)). The second restric-
tion is that all paths have to start at a single vertexv in
G and atv′ in G′ (v0 = v,v′0 = v′ for all such paths).

A naive approach to identify the maximal similar
subgraphs would now calculate all (cycle free) paths
starting atv andv′ and would do a pairwise compari-
son afterwards. This is infeasible: even if the paths are
length limited, the length would be unusable small.

Our approach is constructing the maximal similar
subgraphs by induction from the starting verticesv and
v′ and is matching length limited similar paths. What
makes this approach feasible, is that it considers all pos-
sible matchingsat once. This is seen at the example:

1. The algorithm starts withv= 1 andv′ = 10. These
vertices are considered the endpoints of matching
paths of the length zero.

1 2

3

4

5

6

7

10

11

12

14

15

16
17

13

16

8

A

A
B

B

B

C

D

E A

E

A

A

C

B

B

B
C

D

E
A

F

Figure 2: Two simple graphs

2. Now, the matching paths are extended: The inci-
dent edges are partitioned into equivalence classes
based on the attributes. There is only one pair
of equivalence classes that share the same at-
tributes in both graphs:{(1,2),(1,3),(1,4)}A and
{(10,11),(10,12),(10,16)}A.

3. The reached vertices are now marked as being part
of the maximal similar subgraphs and the algo-
rithm is continuing with the sets of reached ver-
tices{2,3,4} and{11,12,16}.

4. Again the incident edges are partitioned
into the first pair {(2,5),(3,5),(3,6)}B and
{(11,14),(12,15),(12,16)}B and the second pair
{(4,7)}C and{(11,13),(12,17)}C. For both pairs
the algorithm continues recursively.

5. The reached vertices{5,6} and {14,15,16} are
marked as parts of the maximal similar subgraphs.
No edges are leaving these vertices.

6. The other set pair of reached vertices{7} and
{13,17} are marked. No edges are leaving.

7. No more set pairs exists, the algorithm terminates.

In the end, the algorithm has marked
{1,2,3,4,5,6,7} and {10,11,12,13,14,15,16,17}
which induce the maximal similar subgraphs.

A simplified version of the algorithm is is shown in
Figure 3. It calculates the maximal similar subgraphs

propagate(V1,V2, l):
If l ≤ k:

Let V1 ⊂V andV2 ⊂V be the the endpoints
of similar paths.

Let E1 andE2 be the edges that are leaving
the vertices ofV1 andV2.

PartitionE1 andE2 into equivalence classes
E1i andE2i based on∆.

For allE1i with their correspondingE2i :
Add edges fromE1i andE2i to Gv1 andGv2

Let V1i andV2i be the vertices that are
reached by the edges inE1i andE2i

Call propagate(V1i ,V2i , l +1)

generate(v1,v2,k):
Call propagate({v1},{v2},1)
ReturnGv1 andGv2 as result.

Figure 3: Algorithm to generateGv1 andGv2

G1 andG2 which are induced byk-limited paths start-
ing at the verticesv1 in G1 and v2 in G2. We call
these graphsmaximal similar k-limited path induced
subgraphs Gkv1

and Gk
v2

.
Before maximal similark-limited path induced sub-

graphsGk
v andGk

v′ can be found, the possible pairs(v,v′)
have to be detected. A naive approach would be to
check all pairsV ×V which leads to a complexity of
O(|V|2) (independent of the complexity of the gener-
ation of the subgraphs them self). Even with smarter
approaches, this complexity cannot be reduced. There-
fore, only a subset ofV should be considered as “start-
ing” vertices, as other vertices are probably reached
during the construction of the maximal subgraphs.

3 Implementation

The presented technique has been implemented in a
prototype on top of our infrastructure to analyze ANSI-
C programs [6]. This infrastructure represents ana-
lyzed programs inprogram dependence graph (PDG)
[4], which are directed attributed graphs whose vertices
represent the assignment statements and control predi-
cates that occur in a program. Some of the vertices have
an attribute that marks them as entry vertices, which
represent the entry of functions. The edges represent
the dependencesbetween the components of the pro-
gram. They have two attributes: the first is separating
the edges intocontrol anddata dependence edgesand

the second istrue or false for control dependence
edges. A control dependence edge from vertexv1 to
v2 represents that if the predicate that is represented by
v1 is evaluated to the second attribute of the edge, the
component that is represented byv2 will be executed.
A data dependence edge from vertexv1 to v2 represents
that the component represented byv1 assigns a value to
a variable which may be used at the component repre-
sented byv2.

3.1 Fine-grained PDGs

Our fine-grainedPDG is a specialization of the tradi-
tional and is similar to both the AST and the traditional
PDG. On the level of statements and expressions, the
AST vertices are almost mapped one to one onto PDG
vertices. The definitions of variables and functions have
special vertices. The vertices may be attributed with
a class, an operator and a value. The class specifies
the kind of vertex: statement, expression, function call
etc. The operator further specifies the kind, e.g. binary
expression, constant etc. The value carries the exact
operator, like “+” or “–”, constant values or identifier
names. Between vertices that represents components of
expressions we have also specialized edges, which are
attributed with their class (control, data, etc.) and label.

To find similar code based on identifying maximal
similar subgraphs in fine-grained PDGs we first had to
find the subset of the vertices which are used in the
pairwise construction of the subgraphs. One possibility
would have been to use entry vertices, which would find
similar functions. We decided to use predicate vertices
instead, because we also want to find similar pieces of
code independent of functions. For every pair of pred-
icate vertices(v1,v2) the maximal similarGk

v1
andGk

v2
are generated. The generation is basically a recursive
implementation of the induction from Figure 3.

3.2 Weighted subgraphs

If we take the subgraphs as direct result, they just repre-
sentstructuralsimilarity which can also be achieved via
less expensive techniques like [2]. The subgraphs can
be large even if they do not even have a similar seman-
tic. The reason is that the data dependence edges may
not match and the subgraphs are only or mostly induced
by control dependence edges. Only if the data depen-
dence edges are considered special it is guaranteed that
the subgraphs have a similar semantic. Therefore the
constructed subgraphs have to be weighted. A simple

criterion is just the number of data dependence edges
in the subgraphs. As our evaluation in the next section
shows, this criterion is good enough. However, other,
more sophisticated criterions are possible like the per-
centage of data dependence edges or the amount and
the length of paths induced by data, value and reference
dependence edges.

4 Evaluation

Like any otherk-limited technique, the presented work
had to be “tuned” to find an appropriate value fork. We
therefore checked a set of test programs stemming from
different sources for duplicated code. The results can
be seen for some examples in Figure 4. The size of the
programs are given in terms of lines of code and the
number of vertices and edges in the PDG. For different
limits k between 10 and 50 the running times are given
(measured in seconds of user time spent). A direct rela-
tion between the size of a program and the running time
does not exists as the running time is mostly dependent
on the size and the amount of similar subgraphs within
a program. However, due to the pairwise comparison
we expect a quadratic complexity overall. In the same
table, the last three columns show the amount of dis-
covered duplicates with a minimum weight of 10, 20
and 50. The limit used wask = 20 and only minimal
differences exists for largerk (except fortwmc). Due to
lack of time it was impossible to manually verify all re-
ported duplicates. However, all reported duplicates we
checked were correct (100% precision).

Due to the complexity of the data flow analysis used
in our infrastructure, we are only able to construct
PDGs up to a limited size of programs. This does not
mean that the presented technique has the same limit—
we need a reimplementation on top of a different infra-
structure to fully evaluate for big programs.

4.1 Optimal limit

To insure highest possible recall, a very highk-limit
is desirable. However, this is not possible due to the
exponential complexity of the graph comparison. Our
claim is that a smallk is sufficient and that a limit above
this small value will not increase recall. We found this
claim to be true for almost any test case. A typical case
is bison, for which the results are shown in Figure 5.
All test cases were repeated for limits 0≤ k ≤ 30 (y-
axis). Also shown is how many duplicates (z-axis) are

Project LOC Edges Vertices Time f. limit k (sec) Duplicates
k=10 k=20 k=30 k=40 k=50 ≥10 ≥20 ≥50

agrep 3968 69032 22588 43.6 368.4 2662.9 - - 155 95 14
bison 8303 79030 28071 15.9 73.6 382.7 1111.1 1446.68 36 22 0
cdecl 3879 40578 12939 0.8 0.9 0.9 0.9 0.9 0 0 0
compiler 2402 99219 16497 467.6 482.3 482.4 482.4 482.4 95 57 40
diff 17485 169508 43518 3.9 13.2 53.0 126.1 141.2 40 10 6
fft 3242 35701 16446 12.3 77.7 388.1 1272.4 1899.78 16 12 3
flex 7640 124730 37073 5.0 6.0 6.5 6.6 6.5 16 0 0
football 2261 63833 18718 55.4 104.6 111.8 111.9 112.0 50 2 0
larn 10410 817432 158077 612.4 12883 15321.4 - - 107 59 6
patch 7998 196106 29766 8.2 9.7 11.7 12.6 12.6 2 0 0
rolo 5717 50816 17438 1.1 1.1 1.1 1.1 1.1 0 0 0
spim 19739 1338294 122819 768.5 991.1 1108.7 1107.53 1125.68 40 23 6
twmc 24950 1605532 181281 1387.9 37387 - - - 1417 785 380

Figure 4: Sizes and running times1 for some test cases

bison

 100
 50

0 5 10 15 20 25 30 35 40 45
minimum weight 0

5
10

15
20

25
30

limit k

0
20
40
60
80

100
120
140

duplicates found
with min. weight

1

10

100

1000

0 5 10 15 20 25 30 35

tim
e

se
c

limit k

bison

Figure 5: Results1 for bison

reported that are above a specific minimum weight (y-
axis). As we can see, for very smallk (< 5− 10) al-
most no duplicates are reported. For bigger (but still
small)k (< 15−20) the amount of reported duplicates
is increasing fast. For biggerk (> 20) the amount of re-
ported duplicates is not changing any more. We have
found this to be the same for almost any other test
case—ak-limit around 20 seems to be sufficient for
highest recall.

4.2 Minimum weight

The other “tunable” parameter in our technique is the
minimum weight of a similar subgraph before it is re-
ported. This value is not critical like thek-limit, as
it does not influence the comparison itself. Normally,
all possible duplicates are identified independent of
their weights and the minimum weight just changes the
amount ofreportedduplicates. Thebison test case is
an ideal example: for small minimum weights, many
duplicates are reported. For bigger minimum weights
this changes quickly, which shows that the majority of
duplicates are small pieces of codes. For minimum
weights between 10 and 40, around 40 duplicates are re-
ported. For minimum weights above 45, no duplicates
are reported, which shows that the maximum weight of
all duplicates is less than 45.

We have found that there is no “ideal” minimum
weight, as every test case has different amounts of re-

1Variations in time results are due to parallel running tasks.

10

100

1000

0 5 10 15 20 25 30 35

tim
e

se
c

limit k

compiler

compiler

 150
 100
 50

0 5 10 15 20 25 30 35 40 45 50
minimum weight 0

5
10

15
20

25
30

limit k

0
20
40
60
80

100
120
140
160
180

duplicates found
with min. weight

Figure 6: Results1 for compiler

ported duplicates with varying minimum weights. This
is not unexpected, as duplication is different in every
program.

4.3 Running time

Figure 5 also shows the times for thebison exam-
ple, which are increasing exponential for largek. We
claimed that ak-limit around 20 is ideal for recall: we
need 73 seconds to analyzebison under this limit.
For some test cases we have found an interesting
behavior—the running time is not increasing exponen-
tial but reverse logarithmic for increasedk. This is
shown in Figure 6 for the test casecompiler. As you
can see, fork-limits bigger than ten the amount of re-
ported duplicates stays the same: there are more than
50 duplicates with a weight bigger than 50. This means
that there are no similar paths longer than 10 edges in
that software and the limit is not reached for larger lim-
its: The time needed to calculate the similar graphs is
independent ofk for k bigger than 10. Therefore, the

T-W-MC

 2000
 1500
 1000
 500

0 5 10 15 20 25 30 35 40 45 50
minimum weight 0

5
10

15
20

25

limit k

0
500

1000
1500
2000
2500

duplicates found
with min. weight

Figure 7: Results fortwmc

overall needed time is not changing above that. The
same behavior can be seen for the test cases of Fig-
ure 4 with few duplicates: half of the test cases have
no big difference in running time for the limitsk = 40
andk = 50.

One of our test case (see Figure 7) was different than
all others: First of all, we could not test fork-limits big-
ger than 22, as the running time was already at 26 hours.
Also, the amount of reported duplicates was incredibly
high: more than 500 with a weight bigger than 50 and
more than 1000 with a weight bigger than 20. These
extreme high numbers are stemming from massive code
duplication in that particular software. We have found
a high amount of files, which just have been copied and
slightly changed for slightly different purpose.

5 Related Work

To our knowledge, our approach is the first that obeys
the data flow in a program and not only the (syntactical)
structure. Nearest to our work is probably [2], where a
program under observation is transformed to an AST,
for every subtree in the AST a hash value is computed
and identical subtrees are identified via identical hash
values. To also detect similar not identical subtrees,
the subtrees have to be pairwise compared. The authors
suggest many improvements as future work which are
similar to our approach.

Another approach which obeys syntactical structure
is [7], where metrics are calculated from names, layout,
expression and (simple) control flow of functions. Two
functions are considered as clones if their metrics are
similar. This work can only identify similar functions

but not similar pieces of code. A language independent
approach is [3] which is looking for specific patterns in
a comparison from every line to every other. Another
text-based approaches is [1].

An application in the same setting is the detection of
plagiarism: Given two programs, one has to detect if
one program is in part or completely duplicated in the
other. Most plagiarism ldetecting systems like [8] are
comparing the lexical structure of the programs. Other
system are again based on metrics; however, studies
show that metrics-based systems are only partly suc-
cessful because of the tradeoff between recall and preci-
sion, both for detection of plagiarism [9] and detection
of similar code [5].

6 Summary and future work

We have presented a technique for identifying similar
code based on finding maximal similar subgraphs in
fine-grained program dependence graphs. As this prob-
lem is not solvable in polynomial time, ak-limiting
technique is used. A prototype implementation shows
that this approach is feasible even with the non poly-
nomial complexity of the problem and results in high
precision and recall.

This is work in progress and some obstacles remain
to be solved: First off all, high amounts of duplicated
code cause exploding running times. Secondly, large
duplicated code sections cause many duplicates to be
reported, as duplicates are basically reported for every
predicate within. These duplicates are overlapping and
have to be merged before reported to the user.

Our future plans include:

• A reimplementation on top of a simpler infrastruc-
ture to enable an evaluation for large programs.
Due to the underlying infrastructure, our prototype
is only able to analyze programs up to limited size.

• An adaption of our prototype for detection of pla-
giarism. We are using JPlag [8] in education with
great success. However, a manual check is still
needed as students are aware of our tool usage and
try to hinder the detection through simple modifi-
cations. A plagiarism detection tool based on our
approach should not be so easily confused.

• An automatic substitution of identified duplicated
code through new functions or macros. As the

underlying infrastructure contains enough seman-
tic information in the PDGs, theisomorphicsub-
graphs can be identified and replaced by new pa-
rameterized function calls which do not change the
semantic of the program.

References

[1] B. S. Baker. On finding duplication and near-
duplication in large software systems. InSec-
ond Working Conference on Reverse Engineering,
1995.

[2] I. D. Baxter, A. Yahin, L. Moura, M. Sant’Anna,
and L. Bier. Clone detection using abstract syn-
tax trees. InInternational Conference on Software
Maintenance, 1998.

[3] S. Ducasse, M. Rieger, and S. Demeyer. A lan-
guage independent approach for detecting dupli-
cated code. InIEEE International Conference on
Software Maintenance, 1999.

[4] S. Horwitz, T. Reps, and D. Binkley. Interprocedu-
ral slicing using dependence graphs.ACM Trans-
actions on Programming Languages and Systems,
12(1), 1990.

[5] K. Kontogiannis. Evaluation Experiments on the
Detection of Programming Patterns Using Software
Metrics. InFourth Working Conference on Reverse
Engineering, 1997.

[6] J. Krinke and G. Snelting. Validation of measure-
ment software as an application of slicing and con-
straint solving.Information and Software Technol-
ogy, 40(11-12), 1998.

[7] J. Mayrand, C. Leblanc, and E. Merlo. Experi-
ment on the automatic detection of function clones
in a software system using metrics. InInternational
Conference on Software Maintenance, 1996.

[8] L. Prechelt, G. Malpohl, and M. Philippsen. JPlag:
Finding plagiarisms among a set of programs.
Technical Report 2000-1, Fakultät für Informatik,
Universiẗat Karlsruhe, Germany, 2000.

[9] K. L. Verco and M. J. Wise. Plagiarism̀a la mode: a
comparison of automated systems for detecting sus-
pected plagiarism.The Computer Journal, 39(9),
1996.

