
The derivation of object behavior from
source code

Dominik Rauner−Reithmayer

The derivation of object behavior from source code 2

Outline

= Motivation
= States, events and source−code
= Class behavior
= Object behavior
= The derivation of object behavior from source code
= Conclusion and Outlook

The derivation of object behavior from source code 3

Motivation
Reverse engineering and object−orientation

= Three different aspects within object−orientation:
1) structural aspect

2) dynamic aspects

3) functional aspect

= Reverse engineering covers only two aspects:
1) structural aspect with object−identification

2) functional aspect with program−understanding

The derivation of object behavior from source code 4

Motivation
Dynamics on code level

= How can we identify the dynamics of a class or
object on the code level?
1) How can we identify a state on the code level?

2) How can we identify an event on the code level?

3) How are states and events connected on the class
(object) level?

4) How can we interpret the so identified dynamics on a
higher level of abstraction?

The derivation of object behavior from source code 5

States, events and source−code
States (1)

= Two typical methods to implement states:

1. explicit state
O The state of an object depends directly on the values of

some or all attributes.

2. implicit state
O The state of an object depends on the relation to other

objects.

The most natural implementation →

explicit state

The derivation of object behavior from source code 6

States, events and source−code
States (2)

Definition 1 (State−indicator): A state−indicator for a class C
is an attribute of C for which both off the following conditions

hold:
1) The value of the attribute is used or defined in at least two

methods of C.
2) The attribute appears in at least one condition, which is

controlling state−indicator defining statements.

Definition 2 (State): A state is the set of tuples containing the
state−indicator values, for which the same state indicator
defining statements can be performed.

The derivation of object behavior from source code 7

States, Events and Source−code
Events

What is an event in procedural source−code?

 Method Call ⇔ Event
1.(+) A method call depends not on the state of the object.
2.(+) Within the method the state of an object can be

changed.
3.(+/−) Compared with the lifetime of an object, the time a

method needs to perform its work is not important.
4.(−) A method call is a two way communication

(if the procedure has a return value)

The derivation of object behavior from source code 8

Class behavior
State−event diagrams (1)

= Formally, a state−event diagram can be seen as a
state event automaton:

A state−event automaton is a
quintupel (Z,E,δ,z

0
,Z

E
)

Z : set of states
E : set of events
δ : transition−function
z

0
: starting state

Z
E

: set of end−states

The derivation of object behavior from source code 9

Class behavior
State−event diagrams (2)

= To generate a state−event automaton from source
code we need:
� The set of identified states S

� The set of identified events E
K

� The transition−function f
e
 for every event e in E

K

The derivation of the transition function is the most
complex part.

The derivation of object behavior from source code 10

Class behavior
Generation of a state−event automaton

= The state event automaton ZEA(S,E
K
,F

trans
,z

init
,{z

final
})

can be generated in four steps:

1) S=Z ∪{z
init

,z
final

}

2) F
trans

={((s,e,b),ss)|((s,b),ss) i f
e
 � s iZ � ss iZ }

3) F
trans

=F
trans

 ∪ {((s,e,b),ss)|((ε,b),ss) i f
e
 � s =z

init
 � ss iZ }

4) F
trans

=F
trans

 ∪ {((s,e,b),ss)|((s,b),L) i f
e
 � s iZ � ss=z

final
}

The derivation of object behavior from source code 11

Class behavior
Example(1)

= States S={empty, full, filled}
= Events E={create, delete, push, pop}
= Transition functions:

» f
create

={(ε, empty)}

» f
push

={(empty, filled),(filled, filled), (filled, full)}

» f
pop

={(filled, empty),(filled, filled), (full, filled)}

» f
delete

={(empty,L),(filled, L),(full,L)}

The derivation of object behavior from source code 12

Class behavior
Example(2)

full

filled

empty

push

po
p

push

create

pop

po
p

push

delete

delete

delete

The derivation of object behavior from source code 13

Object behavior

= Problem:

To describe the potential behavior of one object in
its context.
� What is the context of an object?:

� event trace (dynamic trace)
� control flow graph (static trace)

The derivation of object behavior from source code 14

Object behavior
event trace vs. control flow graph

= event trace
� exact description
� hard to get
� not complete

= control flow graph
� description is not so exact
� easy to get
� complete

The derivation of object behavior from source code 15

Object behavior and source code
Idea

= Reduce the class state−event automaton to a state
event automaton that describes only the behavior of
one concrete object.

� The idea is to associate every node in the CFG with
states in class state−event diagram.

The derivation of object behavior from source code 16

Object behavior and source code
Algorithm

The derivation of object behavior from source code 17

Object behavior and source code
Example

Red :
object
state−event
diagram

Black :
class
state−event
diagram

The derivation of object behavior from source code 18

Object behavior
Special cases

I. There are states in the state−event diagram with no
path to a final state.

II. There are no final states in the state−event diagram.

Reasons:

� No corresponding event in the CFG.
� Not all state changes occur within methods.

The derivation of object behavior from source code 19

Conclusion and Outlook

= Behavior abstraction is necessary for oo reverse
engineering.

= It is possible to derive class state−events diagrams
with a simple abstraction mechanism.

= It is possible to describe concrete object behavior
on the same abstraction level.

Future Work:
= INTEPRETATION

