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Abstract

“Scrap Your Boilerplate” (SYB) is an established style of generic
functional programming. The present paper reconstructs SYB
within the Prolog language with the help of the univ operator and
higher-order logic programming techniques. We pay attention to
the particularities of Prolog. For instance, we deal with traver-
sal of non-ground terms. We also develop an alternative model of
SYB-like traversal based on metaprogramming. This generative,
type-driven model is also amenable to type-driven optimization.

Categories and Subject Descriptors D.3.3 [PROGRAMMING
LANGUAGES]: Language Constructs and Features; D.1.1 [PRO-
GRAMMING TECHNIQUES]: Applicative (Functional) Program-
ming; D.1.6 [PROGRAMMING TECHNIQUES]: Logic Program-
ming; D.2.13 [SOFTWARE ENGINEERING]: Reusable Software

General Terms Design, Experimentation, Languages

Keywords Scrap Your Boilerplate, Haskell, Prolog, Stratego

1. Prologue

Consider the following Prolog term, which represents the organiza-
tional structure of an illustrative company in terms of hierarchical
departments with managers and employees:

company ( [
topdept (name (’Human Resources’),
manager (name (’Lisa’), salary(123456)), [1),
topdept (name (’Development’),
manager (name (’Anders’), salary(43210)), [
subdept (name (’Visual Basic’),
manager (name (’Amanda’), salary(8888)), [1),
subdept (name (’Visual C#’),
manager (name (’Erik’), salary(4444)), [1)1)1)

Now suppose that we need to total all salaries of the company.
Also, we need to cut all salaries in half. The following Prolog
session illustrates these operations:

?- Coml = ... the sample company ...
| getSalary(Comi1,S81),

| cutSalary(Coml,Com2),

| getSalary(Com2,S2).

S1 = 179998,

S2 89999.
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getSalary(company(L),S) :-
mapreduce (getSalary,add,0,L,S).
getSalary (topdept (_,M,L),S0) :-
getSalary(M,S1),
mapreduce (getSalary,add,0,L,S2),
add(s1,52,50).
getSalary(manager(_,S1),S2) :-
getSalary(S1,582).
getSalary(subdept (_,M,L),S0) :-
getSalary(M,S1),
mapreduce (getSalary,add,0,L,S2),
add(s1,52,50).
getSalary(employee(_,S1),S2) :-
getSalary(S1,52).
getSalary(salary(S),S).

cutSalary (company(L1) ,company(L2)) :-
map (cutSalary,L1,L2).
cutSalary (topdept (NO,M1,L1) ,topdept (NO,M2,L2)) :-
cutSalary(M1,M2),
map (cutSalary,L1,L2).
cutSalary (manager (NO,S1) ,manager (NO,S2)) :-
cutSalary(S1,S2).
cutSalary (subdept (NO,M1,L1) ,subdept (NO,M2,L2)) :-
cutSalary(M1,M2),
map (cutSalary,L1,L2).
cutSalary(employee (NO,S1) ,employee(NO,S2)) :-
cutSalary(S1,S2).
cutSalary(salary(S1),salary(S2)) :-
S2 is S1 / 2.

Figure 1. Boilerplate for totaling salaries and cutting them in half

Fig. 1 shows the routine implementation of getSalary/2 and
cutSalary/2.' These predicates simply recurse into the terms,
and they use list-processing predicates map/3 and mapreduce/5 to
deal with the lists of subunits (i.e., employees vs. sub-departments)
that each department can have. (We will recall such higher-order
techniques in §2.) Writing such boilerplate code is laborious and
error-prone—especially when the underlying data model involves
yet more types and constructors.

The “Scrap Your Boilerplate” style of generic functional pro-
gramming (SYB [Ldammel and Peyton Jones 2003]) and the strate-
gic programming style (c.f., Stratego [Visser et al. 1998, Braven-
boer et al. 2008])2 allow us to scrap such boilerplate. We adopt SYB
in this paper. (Once we abstract from the specific setups of Haskell
or Stratego, once we focus on only simple traversal idioms, as we
do in this paper, these two styles are not too different.)

With SYB aboard, we focus on problem-specific cases:

' A code distribution for this paper is available from its website http://
www.uni-koblenz.de/~laemmel/0OdeToProlog/. We use SWI-Prolog
5.6.62 (without fundamentally relying on any nonstandard features though).

2http://www.program-transformation.org/Transform/
TheEssenceOfStrategicProgramming



getSalary(salary(8),S).
cutSalary(salary(S1),salary(S82)) :- S2 is S1 / 2.

These cases define what to do when salary terms are hit. The rest
of the traversals for totaling or cutting salaries is taken care of by
traversal schemes. SYB can be done (easily) in Prolog, too:

?- companyl = ... the sample company ...

| everything(add,mkQ(0,getSalary),Coml1,S1),
| everywhere (mkT(cutSalary) ,Coml,Com2),

| everything(add,mkQ(0,getSalary),Com2,52).
S1 = 179998,

S2 = 89999.

Here, everything/4 is a traversal scheme that performs a query
(‘a deep map-reduce’), and everywhere/3 is a traversal scheme
for a transformation (‘a deep map’). We instantiate everything/4
to apply add/3 (addition for numbers) for reduction and to attempt
getSalary/2 at each node, but to return ‘0’ if getSalary/2 does
not fit; c.f., ‘mkQ(0,getSalary)’. We instantiate everywhere/3
to attempt cutSalary/2 at each node, but to preserve the node if
cutSalary/2 does not fit; c.f., ‘mkT (cutSalary)’.

Road-map

The remaining sections develop SYB support for Prolog. Our de-
velopment relies on higher-order logic programming techniques
which we recall in §2. The development has two major parts: a
‘high road’ (§3) and a ‘low road’ (§4) reminiscent of [Naish and
Sterling 2000]; the former supports SYB in terms of higher-order
predicates; the latter uses generative programming (metaprogram-
ming) instead. On the high road, we make some specific efforts
to seamlessly integrate SYB with Prolog—as far as backtracking
or non-ground terms are concerned. On the low road, we attempt
a simple form of type-driven traversal optimization. The paper is
concluded in §5.

2. Higher-order logic programming primer

We recall higher-order logic programming in Prolog [Warren 1982,
Cheng et al. 1990, Nilsson and Hamfelt 1995, Naish 1996, Naish
and Sterling 2000].> We begin with a regular (first-order) goal that
calls a predicate add/3 right away. Thus:

?7- add(23,19,X).
X = 42.

In this paper, we usually classify positions of predicates (rather im-
plicitly) to serve for arguments or results. add/3 has two arguments
and one result. By convention, arguments go first, while results (if
any) go last. Obviously, some predicates may be flexible enough to
be used in multiple directions—thereby blurring the separation of
arguments and results. For instance, add/3 could be defined such
that it can do subtraction, too. Such different directions will not be
relevant (say, exploited) for predicates defined in this paper (except
for a short discussion in §3.6).

We can use terms to represent goals—applications of predicate
symbols in particular. Hence, we can use term variables to abstract
over such applications. We can ‘call’ (say, ‘execute’ or ‘prove’)
such terms. Thus:

?- Term = add(23,19,Result), call(Term).
Term = add(23, 19, 42),
Result = 42.

31In this paper, we limit ourselves to plain Prolog; we do not leverage
hybrid forms of functional/logic programming languages, such as Lambda-
PROLOG [Nadathur and Miller 1988] or Curry [Hanus 1997]. We do not
use any form of static typing either. In particular, we do not exploit any
directional types (modi) or algebraic types [Mycroft and O’Keefe 1984,
Boye and Maluszynski 1997].

map(_, [1).
map (P, [X|Xs]) :- apply(P,[X]), map(P,Xs).

map(_, [1,[1).
map (F, [X|Xs], [YIYs]) :- apply(F,[X,Y]), map(F,Xs,Y¥s).

foldl(_,z,[1,2).
foldl(F,Z, [X|Xs],Y0) :-
apply(F, [Z,X,Y1]), foldl(F,Y1,Xs,Y0).

foldr(_,Z,[1,2).
foldr(F,Z, [X|Xs],Y0) :-
foldr(F,Z,Xs,Y1), apply(F,[X,Y1,Y0]).

filter(_,[1,[1).
filter (P, [X|Xs],¥s1)
filter(P,Xs,Ys2),
( apply(P, [X]) -> Ys1

[X|Ys2] ; Ys1 = ¥s2 ).

mapreduce(F,G,Z,X,Y) :-

foldl (mapreduce_(F,G),Z,X,Y).
mapreduce_(F,G,X1,X2,Y) :-

apply (F, [X2,X3]), apply(G, [X1,X3,Y]).

Figure 2. Higher-order list-processing predicates

(call(Term) may also just be written as Term.) Now it should be
obvious that we can represent incomplete applications of predicate
symbols as terms, too—because we can always append positions
to a term and call it eventually. Let us assume a helper predicate
pass/3 to this end. Thus:

?- Inc = add(1), pass(Inc,[41,Result],Goal), Goal.
Inc = add(1),

Result = 42,

Goal = add(1, 41, 42).

The composition of pass/3 and call/1 is called apply/2:

?- Inc = add(1), apply(Inc, [41,Result]).
Inc = add(1),
Result = 42.

This is the fundamental functionality for higher-order logic pro-
gramming. Here we note that pass/3 and apply/2 can be defined
interms =../2and call/1:

pass(T1,Xs,T2) :-

T1 =.. [CITs1], append(Ts1,Xs,Ts2), T2 =..
apply(T1,Xs) :-

pass(T1,Xs,T2), T2.

[CITs2].

The definition of the argument-passing predicate uses Prolog’s univ
operator (c.f., ‘=..”) to obtain access to subterms of a term (here:
the positions of an incomplete application of a predicate symbol).
Conceptually, the univ operator models a relation between a term,
its functor and its immediate subterms.

On top of apply/2 and friends, Fig. 2 defines fundamental
higher-order predicates for list processing: map(P,Xs) applies
predicate P to each element of Xs; map (F,Xs,Ys) applies F to each
element of Xs and collects the results in Ys; foldl(F,Z,Xs,Y)
folds over Xs in a left-associative manner while starting from Z
and combining intermediate results by F; foldr/4 is the right-
associative companion of foldl/4; filter(P,Xs,Ys) obtains
the subsequence Ys from Xs with all the elements that satisfy P;
maplzleduce (F,G,Z,X,Y) composes mapping and reduction (fold-
ing).

41In this paper, we generally apply the convention that a predicate symbol
ends on one or many underscore characters to mean that it is a helper of
another predicate. We should prefer the use of binding blocks, say closures.



As an illustration, the following sessions starts from the list
[1,2,3,4]; a filter for odd numbers is applied; the remaining
numbers are incremented by 1; finally, the list is totaled. Thus:

odd(X) :- 1 is X mod 2.
inc(X,Y) :- add(X,1,Y).
add(X,Y,Z) :- Z is X + Y.

?- L1 = [1,2,3,4],
| filter(odd,L1,L2),
| map(inc,L2,L3),
| foldr(add,0,L3,R).
L1 = [1, 2, 3, 4],

L2 = [1, 31,
L3 = [2, 4],
R = 6.

3. The high road to SYB

We define SYB’s basic combinators for one-layer traversal and
common traversal schemes. We discuss challenges related to back-
tracking and non-ground terms.

3.1 Generic traversal

SYB (and strategic programming for that matter) is based on a few
one-layer traversal combinators from which recursive traversals
and traversal schemes can be derived. By one-layer traversal we
mean that an argument function (predicate) is applied only to the
immediate subterms of a given term. The most important one-layer
traversal combinators are gmapT/3 for transformations (c.f., T) and
gmapQ/3 for list-producing queries (c.f., Q). For instance, we can
define the traversal schemes everywhere/3 and everything/4
as follows.

everywhere(T,X,Z) :-
gmapT (everywhere(T),X,Y),
apply (T, [Y,Z]).

everything(F,Q,X,Z) :-
gmapQ (everything(F,Q) ,X,Y),
apply(Q, [X,R1),
foldl(F,R,Y,Z).

Prolog is particularly suited to express a reference semantics for
one-layer traversal combinators—as long as we do not expect to
obtain a statically typed model easily. Both combinators take apart
arbitrary terms by the univ operator and process the immediate
subterms by a plain list map:

gmapT(T,X,Y) :-
X =.. [ClKids1],
map(T,Kids1,Kids2),
Y =.. [ClKids2].

gmapQ(Q,X,Y) :-
X =.. [_IKids],
map(Q,Kids,Y).

gmapT/3 recomposes a term with the original constructor whereas
gmapQ/3 simply returns a list of intermediate results. In the defi-
nitions, univ deserves all the credit. Colloquially speaking, =. ./2
embodies Prolog’s reflection API. (For comparison, think of Java’s
java.lang.reflect package.)

3.2 Traversal customization

In the introductory example of §1, we used mkT/3 and mkQ/4
to construct appropriate arguments for the traversal schemes as
a means to customize the ultimate traversal. The idea is that the
problem-specific parts of a traversal typically are limited to specific
types (such as salaries in the running example), but these parts

need to be generalized (‘made generic’) before they can be used
by a traversal scheme. Hence, mkT/3 and mkQ/4 compose a type-
specific predicate with a generic default.

In Haskell, this process is truly type-driven, whereas in Prolog,
the process is success/failure-driven (just like in strategic program-
ming with Stratego). A common default for transformations is the
identity function, i.e., the argument term is returned unchanged. A
common default for queries is a constant function, i.e., a designated
‘zero’ (algebraically speaking) is returned. Thus:

mkT(T,X,Y) := apply(T,[X,Y]) -> true; Y = X.
mkQ(R,Q,X,Y) :- apply(Q,[X,Y]) -> true; Y = R.

The use of ‘if-then-else’ (c.f., ‘=>’) expresses that a type-specific
case is attempted first, and only if it fails, the generic default ap-
plies. Arguably, this style of composition makes it difficult to sepa-
rate failure due to inapplicability vs. failure in the sense of a miss-
ing pre-/post-condition somewhere along the execution of the type-
specific case. We can easily provide variations that carry an ex-
tra argument AC (for applicability condition) to ‘unbacktrackably’
commit to the type-specific case on the grounds of that condition.

mkT (AC,T,X,Y) :- apply(AC,[X]) -> apply(T,[X,Y]); Y = X.
mkQ(AC,R,Q,X,Y) :- apply(AC,[X]) -> apply(Q,[X,Y]); Y = R.

The applicability condition could be a type test. For instance, we
could test for the presence of a salary, but let the type-specific
case fail if we find a salary that is too small to be cut any further.
The applicability condition and the type-specific case are to be
instantiated as follows:

isSalary(salary(_)).
cutSalary(salary(S1),salary(S2)) :- S1 > 1, S2 is S1 / 2.

3.3 Backtracking traversal

In our experience, the use of backtracking in generic traversal
seems to be very limited (say, local), but let us look into the feature
interaction between SYB and general backtracking anyway. Sup-
pose, we are interested in all possible combinations of optionally
cutting salaries. Our sample company involves 4 salaries. Hence,
we should find 16 different result companies. We may use the fol-
lowing type-specific case.

cutSalary(salary(S1),salary(S2)) :- S2 is S1 / 2.
cutSalary(salary(S),salary(S)).

If we apply everywhere/3 and if we now tried to find all solu-
tions, no backtracking would be noticeable. (There is one solution.)
This deterministic semantics is a result of using ->/2 in mkT/2.
The non-determinism of the condition is cut off. The applicabil-
ity condition-based variations of the mk predicates can be fruitfully
used here. We commit to the type-specific case first and then allow
for backtracking within that case. Now we count 16 solutions.

?- Coml = ... the sample company ...

|  findall(

| Com2,

| everywhere (mkT (isSalary,cutSalary),Coml,Com2),
| Companies) ,

| length(Companies,Len).

Len = 16.

3.4 SYB’s headache combinator

One of the mind-boggling SYB results is that apparently any think-
able basic traversal combinator (that processes the immediate sub-
terms of a term) can be expressed in terms of a cunning fold opera-
tor gfoldl on terms. In pseudo-code (and functional style), an ap-
plication of gfoldl to a term c(t1,...,tn) would be expanded
as follows:



gfoldl f z c(tl,...,tn) = (z ¢) ‘£¢ t1 --- ‘“£¢ tn

In Haskell’s SYB implementation of the Glasgow Haskell Com-
piler (GHC), gfoldl is supported by ‘code generation’. All other
one-layer traversal combinators (such as gmapT and gmapQ) are
defined in terms of gfoldl. Let us look at the Haskell type of
gfoldl:

gfoldl :: (Data a)
=> (forall d b. Data d =>c (d -> b) ->d -> ¢ b)
-> (forall g. g -> c g)
->a->ca

The arguments are similar to those of fold1l/4 for lists, i.e., the
first argument models a binary operator to combine an intermediate
result and another element (i.e., a subterm of type d); the second
argument models a unary operator to be applied to the mere term
constructor so that an initial value is obtained for folding. The
type-constructor argument ¢ models the dependency between the
argument type of the fold and its result. Conceptually, c is the
(type-level) identity function in the case of gmapT, and a (type-
level) constant function in the case of gmapQ.

Again, if we do not mind the lack of static typing, we can
easily implement gfoldl in Prolog once and for all. The definition
immediately clarifies the above explanation.

gfoldl(F,Z1,X,R) :-
X =.. [C|Kids1],
apply(Z1,[C,CR]),
foldl(F,CR,Kids1,R).

Haskell’s gf o1d1-based definitions of one-layer traversal combina-
tors are pretty complicated because of the involved degree of poly-
morphism combined with Haskell’s lack of type-level lambdas. Of
course, in Prolog the gfoldl-based definitions are straigthforward.
For instance:

gmapT(T,X,Y) :- gfoldl(gmapT_(T),(=),X,Y).
gmapT_(T,C,X,Z) :- apply(T,[X,Y]), pass(C,[Y],Z).

((=) denotes the polymorphic identity function.)

3.5 Traversal of non-ground terms

So far we have silently assumed to traverse ground terms—as
this is the only option anyhow in the case of the original Haskell
incarnation of SYB. In Prolog though, we may want to deal with
non-ground terms seamlessly. For instance, it should be possible to
instantiate everything so that we can retrieve all free variables
from a given term. Thus, the plan is to define a function freevars
with the following behavior:

?- freevars(f(X,g(X,h(Y,Z))),R).
R=1[X,Y, Z]

However, the current definition of gmapQ/3 (which is used by
everything) is not fit for this purpose. The issue is that gmapQ
tries to deconstruct terms, and its application of the univ operator
will abort execution when facing a free variable. This is easy to
resolve though; there is no real choice here, in fact: we have to view
free variables as constant terms that cannot be visited any further
by one-layer traversal. We improve gmapQ as of §3.1 accordingly.

gmapQ(Q,X,Y)
var(X) -> Y = [1 ; ( X =.. [_IKids], map(Q,Kids,Y) ).

Here we use Prolog’s meta-predicate var/1 for testing a term to
be a free variable. Traversal schemes such as everything imme-
diately benefit from the generalization of gmapQ. The scheme for
collecting free variables can now be defined as follows:

freevars(X,Y) :-
everything(
varunion,
mkQ([],guard(var,singleton)),
X,Y).

These helpers are used: singleton/2 returns an argument term
as a singleton list. guard/4 guards a unary function by a predi-
cate (i.e., the function is applied only if the predicate succeeds).
varunion/3 takes the left-biased union of two lists that are sup-
posed to be sets of free variables. (This is implemented very
inefficiently below. An accumulator should be used instead.)
varmember/2 is a free variable-aware variation on the standard
member/2 predicate.

singleton(X, [X]).
guard(P,F,X,Y) :- apply(P,[X]), apply(F, [X,Y]).

varunion (X, [1,X).
varunion (X0, [H|T],Y) :-
( varmember (H,X0) -> varunion(X0,T,Y)
; ( append (X0, [H],X1), varunion(X1,T,Y) )).

varmember (E, [H|T]) :-
var(E), var(H), ( E == H; varmember(E,T) ).

3.6 Backward traversal

We can also further generalize traversal to deal with backward
traversal by which we mean that the argument position is not bound
while the result position is bound instead. In fact, we only know
of a useful definition of backward transformation (as opposed to
backward query). Consider the following candidate for a traversal
parameter:

incSalary(salary(S1),salary(S2)) :- add(S1,1,S2).

Now consider a goal everything(mkT(incSalary),X,Y). If
X is bound (to, say, a ground company term) before the traver-
sal’s execution, then the regular (forward) model of traversal ap-
plies. Hence, Y will be bound to a company term with incremented
salaries after execution. If instead X is free and Y is bound be-
fore execution, then backward transformation would mean that X
should be bound to a term with decremented salaries after exe-
cution. This semantics can be achieved; see the code distribution.
Both gmapT/3 and everywhere/3 (and add/3) have to be made
aware of directions to this end.

4. The low road to SYB

Given Prolog’s ease with metaprogramming, we should also walk
the low road of SYB where higher-order traversal schemes are re-
placed by metaprograms that produce first-order traversals. Those
generated traversals are convenient to understand SYB in yet an-
other way. Also, the generated code is efficient in that it uses no
higher-order style (except for map/3 and friends). The idea of
traversal generation is inspired by similar work in the rewriting
community [van den Brand et al. 2000]. It turns out that the gener-
ated code is also amenable to simple but effective type-driven op-
timizations that cannot be achieved for the higher-order schemes.
This optimization effort is inspired by techniques of adaptive pro-
gramming [Palsberg et al. 1997, Lieberherr et al. 2004].

4.1 Algebraic signatures

Ultimately, we want to generate the code of Fig. 1. To this end,
we need an explicit definition of the signature of terms that we
expect to traverse. We represent this signature as regular (though
structurally constrained) predicates whose extension is the actual
set of terms of interest:



transform(company(L1),company(L2)) :-
map (transform,L1,L2).
transform(topdept (N1,M1,L1) ,topdept (N2,M2,L2)) :-
transform(N1,N2),
transform(M1,M2),
map (transform,L1,L2).
transform(manager (N1,S1) ,manager (N2,S2)) :-
transform(N1,N2),
transform(S1,S82).
transform(subdept (N1,M1,L1) ,subdept (N2,M2,L2)) :-
transform(N1,N2),
transform(M1,M2),
map (transform,L1,L2).
transform(employee(N1,S51) ,employee(N2,52)) :-
transform(N1,N2),
transform(S1,S82).
transform(salary(Number) ,salary(Number)).
transform(name (Atom) ,name (Atom)) .

Figure 3. Generated, type-driven, deep identity transformation

-- One term constructor per clause

company (company (L)) :- map(topdept,L).
topdept (topdept (N,M,L)) :- alias(dept(N,M,L)).
manager (manager (N,S) ) :— alias(person(N,S)).
subunit (subdept (N,M,L)) :- alias(dept(N,M,L)).
subunit (employee(N,S)) :- alias(person(N,S)).
salary(salary(N)) 1= number (N) .

name (name (4)) :— atom(A).

-- Type aliases

dept (N,M,L) :- name(N), manager(M), map(subunit,L).
person(N,S) :- name(N), salary(S).

atom/1 and number/1 are built-in ‘simple’ types. The predicate
alias/1 serves as an indication that its argument predicate is a
type alias (‘macro’). Operationally, alias/1 is just call/1. We
will use algebraic signatures to drive traversal generation, but,
much simpler, we can use them for run-time type checking, too:

?- Coml = ... the sample company ...
| company(Coml) .
true.

4.2 Traversal generation

The algebraic signatures can be directly facilitated to generate
traversal programs. For instance, Fig. 3 shows a generated traversal
program from which we derive cutSalary/2 eventually. As the
generated code stands, it does not yet involve any problem-specific
parts; it covers generically all types (constructors) that are defined
by the algebraic signature. It is easy to see that, operationally, the
generated predicate would just perform a deep identity mapping
over its argument term.

We present the metaprogram for traversal generation below. The
generation algorithm is parametrized by a Name for the generated
predicate and by the root Sort for data to be traversed (such as
company in our example). The algorithm determines all Sorts that
are reachable from Sort (i.e., sorts of possible subterms), and all
sorts to Skip during code generation (i.e., simple types).

generateT (Name,Sort,Cs) :-
findall(X,simple(X),Skip),
generateT (Skip,Name,Sort,Cs) .

generateT (Skip,Name,Sort,Cs) :-
reachable_sorts(Sort,Sorts),
map (generateT_(Skip,Name) ,Sorts,Css),
concat(Css,Cs).

If a sort should not be skipped, then we look up all clauses that
define the sort; that is done by sort_to_clauses/2. All those
clauses are processed one by one. Thus:

generateT_(Skip,Name,Sort,Cs0) :-
member (Sort,Skip) ->
Cs0 = []
; sort_to_clauses(Sort,Csl),
map (generateT__(Skip,Name) ,Cs1,Cs0) .

Each clause of the signature has to be taken apart to retrieve the
constructor symbol C, the variables Vars1 for the subterms, and
the literals Lits that specify the types of the subterms. The Head
of the generated clause uses the term pattern at hand on both the
argument and the result position; see the uses of univ below. The
body of the clause is obtained by iteration over the literals where
list_to_and/2 turns the resulting list into a conjunction. Thus:

generateT__(Skip,Name,Clause, (Head:-Body)) :-
sort_clause(Clause,_Sort,C,Varsi,Lits),
Head =.. [Name,X,Y],
map (generateT___(Skip,Name),Vars1,Lits,Vars2,Gss),
concat (Gss,Gs),
list_to_and(Gs,Body),
X =.. [C|Varsi],
Y =.. [C|Vars2].

The literals from the type clauses are mapped to literals of the
traversal clauses. We use univ again to compose recursive calls
from appropriate variables and the always same Name. We have
to cover a number of cases depending on whether we face a sort
to be skipped and whether the literal is perhaps an invocation of
map/2 for the case of a list-typed constructor argument. The latter
variation is not covered below:

generateT___(Skip,Name,Vari,Lit,Var2,Gs) :-

Lit =.. [Sort,Vari],
( member(Sort,Skip) -> Var2 = Varl, Gs = []
; G =.. [Name,Vari,Var2], Gs = [G] ).

4.3 Traversal customization

The generated traversal must be customized to incorporate problem-
specific cases. We reuse the high road’s traversal parameters. Thus:

cutSalary(salary(S1),salary(S2)) :- S2 is S1 / 2.

The derivation of a customized, generated transformation is taken
care of by a metaprogram completeT/2 which combines all the
steps of generation, customization as well as actual assertion of
derived clauses to the Prolog fact base and compilation. Thus:

completeT(Name,Sort) :-
clauses(Name/2,Clauses0),
abolish(Name/2),
generateT (Name,Sort,ClausesG) ,
override(ClausesG,Clauses0,Clauses),
map (assert,Clauses),
compile_predicates([Name/2]) .

clauses/2 retrieves all clauses for a predicate indicator from the
fact base. abolish/2 removes all clauses for a predicated indica-
tor. override/2 is a metaprogramming predicate which overrides
clauses in one set by clauses from another set (both represented
at the term level). Overriding is based on the term pattern of the
assumed argument position of the predicate at hand—details are
omitted for brevity. (Of course, there is similar metaprogramming
support for queries.)

4.4 Optimized traversal

The (possibly hand-written) code of Fig. 1 is actually clever enough
to cut off some parts of the traversal that cannot be affected by the



transformation or contribute to the query result. That is, the code
does not traverse into names (of persons and departments) because
no salary terms are possibly contained in name terms. This insight
can actually be implemented as an optimizing transformation. For
each Candidate sort (among those reachable from the root sort),
we determine whether it is ‘skippable’:

skippableSort (Overridden,Candidate) :-
reachable_sorts(Candidate,Reachable),
intersection(Reachable,Overridden, []).

That is, given the set of sorts that are Overridden by the problem-
specific cases, we can check for any given sort Candidate whether
any of the overridden sorts can be reached from it. In our example,
the sort name will be discovered as skippable. Overridden is
determined by a simple type inference.

inferSort (Reachable,Clause,Sort) :-
clause_to_case(Clause,Terml),
functor(Term1,C,Arity),
findall(s, (
member (S,Reachable),
sort_to_clauses(S,Clauses),
member ((Head:-_) ,Clauses),

Head =.. [_,Term2],
functor(Term2,C,Arity) ),
[Sort]).

That is, we use clause_to_case/2 in order to extract the argument-
term pattern Terml and with it a specific constructor C from the
(overriding) Clause at hand. Then, we query the fact base for the
algebraic signatures to find a (unique) clause for C.

5. Epilogue

The high road to SYB in Prolog was long overdue. SYB is practi-
cally useful—as we can confirm on the grounds of applications in
language processing. The high road also clearly demonstrates the
relative fitness of the Prolog language for functional programming-
like coding style—even though languages like Curry and Lambda-
Prolog are superior in this respect—if one is willing to leave the
grounds of (nearly) Standard Prolog.

The low road to SYB suggests important directions for future
work. We have used a layman’s approach to metaprogramming—
without any use of staging or hygienic generation. The question is
how to set up a more reliable framework in Prolog (using input from
[Taha and Sheard 1997, Jones and Glenstrup 2002, Calcagno et al.
2003, Smaragdakis 2004]) without though harming the seductive
simplicity of our present approach. We would like to execute the
high road’s traversal schemes as generators on the low road and be
able to show the correctness of any optimizations done. There is
prior work on optimized traversal [Johann and Visser 2003, Cunha
and Visser 2007] that should be integrated.
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