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Abstract. Algebraic data types and catamorphisms (folds) play a central role
in functional programming as they allow programmers to define recursive data
structures and operations on them uniformly by structural recursion. Likewise,
in object-oriented (OO) programming, recursive hierarchies of object types with
virtual methods play a central role for the same reason. There is a semantical
correspondence between these two situations which we reveal and formalize cat-
egorically. To this end, we assume a coalgebraic model of OO programming with
functional objects. The development may be helpful in deriving refactorings that
turn sufficiently disciplined functional programs into OO programs of a desig-
nated shape and vice versa.
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1 Introduction

There is a folk theorem that goes as follows. Given is a recursively defined data struc-
ture with variants d1, . . . , dq , and operations o1, . . . , or that are defined by structural
recursion on the data variants. There are two equivalent implementations. In the func-
tional style, we define recursive functions f1, . . . , fr such that each fi implements oi
and is defined by q equations, one equation for each dj . In the object-oriented (OO)
style, we define object types t1, . . . , tq such that each tj uses dj as its opaque state
type, and it implements a common interface consisting of methods m1, . . . , mr with
the types of f1, . . . , fr, except that the position of structural recursion is mapped to
“self” (say, “this”). The per-variant equations of the functional style correspond to the
per-variant method implementations of the OO style. Refer to Fig. 1 for a Haskell and
a Java program that are related in the described manner.

This folk theorem is related to the so-called expression problem [28], which focuses
on the extensibility trade-offs of the different programming styles, and aims at improved
language designs with the best possible extensibility for all possible scenarios. Such a
comparison of styles can definitely benefit from an understanding of the semantical cor-
respondence between the styles, which is indeed the overall contribution of the present
paper. We coin the term expression lemma to refer to the sketched functional/OO cor-
respondence. We do not discuss the expression problem any further in this paper, but

? See http://www.uni-koblenz.de/˜laemmel/expression/ (the paper’s web
site) for an extended version.



−− Arithmetic expression forms
data Expr = Num Int |Add Expr Expr

−− Evaluate expressions
eval :: Expr→ Int
eval (Num i) = i
eval (Add l r ) = eval l + eval r

−− Modify literals modulo v
modn :: Expr→ Int → Expr
modn (Num i) v = Num (i ‘mod‘ v)
modn (Add l r) v = Add (modn l v) (modn r v)

public abstract class Expr {
public abstract int eval ();
public abstract void modn(int v);

}

public class Num extends Expr {
private int value;
public Num(int value) { this.value = value; }
public int eval () { return value; }
public void modn(int v) { this.value = this.value % v; }

}

public class Add extends Expr {
private Expr left , right ;
public Add(Expr left , Expr right ) { this . left = left ; this . right = right; }
public int eval () { return left .eval () + right .eval (); }
public void modn(int v) { left .modn(v); right .modn(v); }

}

Fig. 1. A Haskell program and a Java program; the two programs define the same kind
of structurally recursive operations on the same kind of recursive data structure.

we contend that the expression lemma backs up past and future work on the expression
problem. It is also assumed that the lemma contributes to the foundation that is needed
for future work on refactorings between the aforementioned styles, e.g., in the context
of making imperative OO programs more pure, more functional, or more parallelizable.

Contributions

The paper provides a technical formulation of the expression lemma, in fact, the first
such formulation, as far as we know. The formulation is based on comparing functional
programs (in particular, folds) with coalgebraically modeled OO programs. We provide
first ever, be it partial answers to the following questions:

– When is a functional program that is defined by recursive functions on an algebraic
data type semantically equivalent to an OO program that is defined by recursive
methods on object structures?

– What is the underlying common definition of the two programs?

The formal development is done categorically, and essentially relies on the established
concept of distributive laws of a functor over a functor and (co)monadic generalizations



thereof. A class of pairs of functional and OO programs that are duals of each other is
thus revealed and formalized. This makes an important contribution to the formal under-
standing of the semantical equivalence of functional and OO programming. Nontrivial
facets of dualizable programs are identified — including facets for the freewheeling use
of term construction (say, object construction) and recursive function application (say,
method invocation).1

Road-map

The paper is organized as follows. § 2 sketches (a simple version of) the expression
lemma and its proof. § 3 approaches the expression lemma categorically. § 4 interprets
the basic formal development, and suggests extensions to cover a larger class of dual-
izable programs. § 5 formalizes the proposed extensions. § 6 discusses related work. § 7
concludes the paper.

2 Informal development

In order to clarify the correspondence between the functional and the OO style, we need
a setup that admits the comparison of both kinds of programs. In particular, we must
introduce a suitable formalism for objects. We adopt the coalgebraic view of functional
objects, where object interfaces are modeled as interface endofunctors, and implemen-
tations are modeled as coalgebras of these functors. We will explain the essential con-
cepts here, but refer to [22,14] for a proper introduction to the subject, and to [21] for
a type-theoretical view. In the present section, we illustrate the coalgebraic model in
Haskell, while the next section adopts a more rigorous, categorical approach.

2.1 Interfaces and coalgebras

The following type constructor models the interface of the base class Expr of Fig. 1:

type IExprF x = (Int , Int → x)

Here, x is the type parameter for the object type that implements the interface; the first
projection corresponds to the observer eval (and hence its type is Int ); the second pro-
jection corresponds to the modifier modn (and hence its type is Int→x, i.e., the method
takes an Int and returns a new object of the same type x). We also need a type that
hides the precise object type — in particular, its state representation; this type would
effectively be used as a bound for all objects that implement the interface. To this end,
we may use the recursive closure of IExprF:

newtype IExpr = InIExpr { outIExpr :: IExprF IExpr }

Method calls boil down to the following convenience projections:

1 The paper comes with a source distribution that contains a superset of all illustrations in the
paper as well as a Haskell library that can be used to code dualizable programs. Refer to the
paper’s web site.



−− eval function for literals
numEval :: Int → Int
numEval = id

−− modn function for literals
numModn :: Int→ Int
numModn = mod

−− eval function for additions
addEval :: ( Int , Int ) → Int
addEval = uncurry (+)

−− modn function for addition
addModn :: (Int→a,Int→a)→Int→(a,a)
addModn = uncurry (/\)

Fig. 2. Component functions of the motivating example.

call eval = fst . outIExpr
call modn = snd . outIExpr

Implementations of the interface are coalgebras of the IExprF functor. Thus, the type
of IExprF implementations is the following:

type IExprCoalg x = x→ IExprF x

Here are the straightforward implementations for the Expr hierarchy:

numCoalg :: IExprCoalg Int
numCoalg = numEval /\ numModn

addCoalg :: IExprCoalg (IExpr, IExpr)
addCoalg = (addEval . (call eval <∗> call eval)) /\

(addModn . (call modn <∗> call modn))

For clarity (and reuse), we have factored out the actual functionality per function and
data variant into helper functions numEval, addEval, numModn, and addModn; c.f.
Fig. 2.2 Note that the remaining polymorphism of addModn is essential to maintain
enough naturality needed for our construction.

The above types clarify that the implementation for literals uses int as the state
type, whereas the implementation for additions uses (IExpr, IExpr) as the state type.
Just as the original Java code invoked methods on the components stored in left and
right , the coalgebraic code applies the corresponding projections of the IExpr-typed
values call eval and call modn. It is important to keep in mind that IExpr-typed values
are effectively functional objects, i.e., they return a “modified (copy of) self”, when
mutations are to be modeled.

2 We use point-free (pointless) notation (also known as Backus’ functional forms) throughout
the paper to ease the categorical development. In particular, we use these folklore operations:
f <*> g maps the two argument functions over the components of a pair; f /\ g constructs
a pair by applying the two argument functions to the same input; f <|> g maps over a sum
with an argument function for each case; f \/ g performs case discrimination on a sum with
an argument function for each case. Refer to Fig. 3 for a summary of the operations.



(<∗>) :: (a→ b) → (c → d) → (a,c) → (b,d)
( f <∗> g) (x, y) = (f x, g y)

(/\) :: (a → b) → (a → c) → a → (b,c)
( f /\ g) x = (f x, g x)

(<|>) :: (a → b) → (c → d) → Either a c → Either b d
( f <|> g) (Left x) = Left ( f x)
( f <|> g) (Right y) = Right (g y)

(\/) :: (a → c) → (b → c) → Either a b → c
( f \/ g) (Left x) = f x
( f \/ g) (Right y) = g y

Fig. 3. Folklore operations on sums and products.

2.2 Object construction by unfolding

Given a coalgebra x −→ f x for some fixed f and x, we can unfold a value of type x
to the type of the fixed point of f . The corresponding well-known recursion scheme of
anamorphisms [19] is instantiated for IExpr as follows:

unfoldIExpr :: IExprCoalg x→ x → IExpr
unfoldIExpr c = InIExpr . fmapIExprF (unfoldIExpr c) . c

where
fmapIExprF :: (x → y) → IExprF x → IExprF y
fmapIExprF f = id <∗> (.) f

That is, IExprF x is injected into IExpr by recursively unfolding all occurrences of x by
means of the functorial map operation, fmapIExprF. The type parameter x occurs in the
positions where “a modified (copy of) self” is returned. In OO terms, applications of
unfoldIExpr are to be viewed as constructor methods:

newNum :: Int→ IExpr
newNum = unfoldIExpr numCoalg

newAdd :: (IExpr, IExpr) → IExpr
newAdd = unfoldIExpr addCoalg

This completes the transcription of the Java code of Fig. 1 to the coalgebraic setup.

2.3 Converting state trees to object trees

In establishing a semantical correspondence between functional and OO programs, we
can exploit the following property: the functional style is based on recursion into terms
whose structure coincides with the states of the objects. Hence, let us try to convert
such trees of states of objects (state trees) into trees of objects (object trees). We will
then need to compare the semantics of the resulting objects with the semantics of the
functional program.

In the introduction, we defined the data type Expr as an algebraic data type; for the
sake of a more basic notation, we define it here as the fixed point of a “sum-of-products”



functor ExprF equipped with convenience injections num and add — reminiscent of the
algebraic data-type constructors of the richer notation. Thus:

type ExprF x = Either Int (x,x)
newtype Expr = InExpr { outExpr :: ExprF Expr }
num = InExpr . Left
add = InExpr . Right

The objects we construct have internal state either of type Int or of type (IExpr,IExpr).
The corresponding sum, Either Int (IExpr,IExpr), coincides with ExprF IExpr, i.e., the
mere state trees resemble the term structure in the functional program. We have de-
fined coalgebras numCoalg and addCoalg for each type of state. We can also define a
coalgebra for the union type ExprF IExpr:

eitherCoalg :: IExprCoalg (ExprF IExpr)
eitherCoalg = (( id <∗> (.) Left ) \/ ( id <∗> (.) Right)) .

(numCoalg <|> addCoalg)

The coalgebra eitherCoalg may be viewed as an implementation of an object type that
physically uses a sum of the earlier state types. Alternatively, we may view the coalge-
bra as an object factory (in the sense of the abstract factory design pattern [10]). That
is, we may use it as a means to construct objects of either type.

newEither :: ExprF IExpr→ IExpr
newEither = unfoldIExpr eitherCoalg

It is important to understand the meaning of ExprF IExpr: the type describes states of
objects, where the state representation is only exposed at the top-level, but all deeper
objects are already opaque and properly annotated with behavior. While newEither fa-
cilitates one level of object construction, we ultimately seek the recursive closure of this
concept. That is, we seek to convert a pure state tree to a proper object tree. It turns out
that the fold operation for Expr immediately serves this purpose.

In general, the fold operation for a given sums-of-products functor is parametrized
by an algebra that associates each addend of the functor’s sum with a function that
combines recursively processed components and other components. For instance, the
algebra type for expressions is the following:

type ExprAlg x = ExprF x→x

Given an algebra f x −→ x for some fixed f and x, we can fold a value of the type
of the fixed point of f to a value of type x. The corresponding well-known recursion
scheme of catamorphisms is instantiated for Expr as follows:

foldExpr :: ExprAlg x→ Expr→ x
foldExpr a = a . fmapExprF (foldExpr a) . outExpr

where
fmapExprF :: (x → y) → ExprF x→ExprF y
fmapExprF f = id <|> (f <∗> f)

We should simplify the earlier type for newEither as follows:

newEither :: ExprAlg IExpr



Hence, we can fold over state trees to obtain object trees.

−− Fold the unfold
fu :: Expr→ IExpr
fu = foldExpr newEither

2.4 Implementing interfaces by folds over state trees

It remains to compare the semantics of the constructed objects with the semantics of
the corresponding functional program. To this end, we also model the construction of
objects whose object type corresponds to an abstract data type (ADT) that exports the
functions of the functional program as its operations.

The initial definitions of the functions eval and modn used general recursion. Our
development relies on the fact that the functions are catamorphisms (subject to further
restrictions). Here are the new definitions; subject to certain preconditions, programs
that use general recursion can be automatically converted to programs that use the cata-
morphic scheme [17,11]:

evalAlg :: ExprAlg Int
evalAlg = numEval \/ addEval

eval :: Expr→ Int
eval = foldExpr evalAlg

modnAlg :: ExprAlg (Int → Expr)
modnAlg = ((.) num . numModn) \/ ((.) add . addModn)

modn :: Expr→ Int → Expr
modn = foldExpr modnAlg

Just like objects combine behavior for all operations in their interfaces, we may want to
tuple the folds, such that all recursions are performed simultaneously. That is, the result
type of the paired fold is the product of the result types of the separated folds. Again
such pairing (tupling) is a well-understood technique [9,19,5,12] that can also be used
in an automated transformation. Thus:

bothAlg :: ExprAlg (IExprF Expr)
bothAlg = (evalAlg <∗> modnAlg) . ((id <|> (fst <∗> fst)) /\

( id <|> (snd <∗> snd)))

both :: IExprCoalg Expr
both = foldExpr bothAlg

That is, both does both, eval and modn. Now we can construct objects whose behavior
is immediately defined in terms of both (hence, essentially, in terms of the original
functions eval and modn). To this end, it is sufficient to realize that both readily fits as a
coalgebra, as evident from its type:

Expr→ ( Int , Int → Expr) ≡ Expr→ IExprF Expr ≡ IExprCoalg Expr

Thus, we can construct objects (ADTs, in fact) as follows:



−− Unfold the fold
uf :: Expr→ IExpr
uf = unfoldIExpr both

That is, we have encapsulated the functional folds with an argument term such that the
resulting interface admits the applications of the functional folds to the term.

2.5 The expression lemma

Let us assume that we were able to prove the following identity:

foldExpr (unfoldIExpr eitherCoalg) = unfoldIExpr (foldExpr bothAlg)

We refer to the generic form of this identity as the expression lemma; c.f. § 3.4. Roughly,
the claim means that objects that were constructed from plain state trees, level by level,
behave the same as shallow objects that act as abstract data types with the functional
folds as operations. Hence, this would define a proper correspondence between anamor-
phically (and coalgebraically) phrased OO programs and catamorphically phrased func-
tional programs. § 3 formalizes this intuition and proves its validity.

The formal development will exploit a number of basic categorical tools, but a key
insight is that the defining coalgebra of the OO program (i.e., eitherCoalg) and the
defining algebra of the functional program (i.e., bothAlg) essentially involve the same
function (in fact, a natural transformation). To see this, consider the expanded types of
the (co)algebras in question:

eitherCoalg :: ExprF IExpr→ IExprF (ExprF IExpr)
bothAlg :: ExprF (IExprF Expr)→ IExprF Expr

The types differ in the sense that eitherCoalg uses the recursive closure IExpr in one po-
sition where bothAlg uses an application of the functor IExprF instead, and bothAlg uses
the recursive closure Expr in another position where eitherCoalg uses an application of
the functor ExprF instead. Assuming a natural transformation lambda, both functions
can be defined as follows:

eitherCoalg = lambda . fmapExprF outIExpr
bothAlg = fmapIExprF InExpr . lambda
lambda :: ExprF (IExprF x) → IExprF (ExprF x)
lambda = ???

Note that naturality of lambda is essential here. It turns out that we can define lambda in
a “disjunctive normal form” over the same ingredients that we also used in the original
definitions of eitherCoalg and bothAlg:

lambda = (numEval /\ ((.) Left . numModn)) \/ ((addEval . (fst <∗> fst)) /\
((.) Right . addModn . (snd <∗> snd)))

It is straightforward to see that eitherCoalg and bothAlg as redefined above equate to the
original definitions of eitherCoalg and bothAlg based on just trivial laws for sums and
products. We have thus factored out a common core, a distributive law, lambda, from
which both programs can be canonically defined.



3 The basic categorical model

The intuitions of the previous section will now be formalized categorically. The used
categorical tools are established in the field of functional programming theory. The con-
tribution of the section lies in leveraging these known tools for the expression lemma.

3.1 Interface functors

Definition 1. An interface functor (or simply interface) is a polynomial endofunctor on
a category 3 C of the form

O ×M with O =
∏
i∈I

ABi
i and M =

∏
j∈J

(Cj × Id)Dj

where
∏

denotes iterated product, all As , Bs , Cs and Ds are constant functors, Id is
the identity functor and all products and exponents are lifted to functors. I and J are
finite sets.

Note that here and in the rest of the text we use the exponential notation for the function
space as usual. Informally, O collects all “methods” that do not use the type of “self”
in their results, as it is the case for observers; M collects all “methods” that return a
“mutated (copy of) self” (c.f. the use of “Id”), and possibly additional data (c.f. the Cs).

Example 1. IExprF is an interface functor.

IExprF = Int× IdInt ∼= Int1 × (1× Id)Int

3.2 F -(co)algebras and their morphisms

Definition 2. Let F be an endofunctor on a category C, A, B objects in C.

– An F -algebra is an arrow F A −→ A. Here A is called the carrier of the algebra.
– For F -algebras ϕ : F A −→ A and ψ : F B −→ B, an F -algebra morphism

from ϕ to ψ is an arrow f : A −→ B of C such that the following holds:

f ◦ ϕ = ψ ◦ Ff (1)

– F -algebras and F -algebra morphisms form a category denoted CF . The initial
object in this category, if it exists, is the initial F -algebra. Explicitly, it is an F -
algebra, inF : F µF −→ µF , such that for any other F -algebra, ϕ : F A −→ A,
there exists a unique F -algebra morphism (|ϕ |)F from inF to ϕ. Equivalently:

h = (|ϕ |)F ⇔ h ◦ inF = ϕ ◦ Fh (2)

3 For simplicity, in this paper, we assume a category C with enough structure to support our
constructions. The category SET is always a safe choice.



– The duals of the above notions are F -coalgebra, F -coalgebra morphism and the
terminal F -coalgebra. Explicitly, an F -coalgebra is an arrow ϕ : A −→ FA in C.
The category of F -coalgebras is denoted CF . The terminal F -coalgebra is denoted
outF : νF −→ FνF , and the unique terminal F -coalgebra morphism from ϕ is
denoted [(ϕ )]F : A −→ νF . These satisfy the following duals of (1) and (2).

ψ ◦ g = Fg ◦ ϕ (3)
h = [(ϕ )]F ⇔ outF ◦ h = Fh ◦ ϕ (4)

Example 2. (Again, we relate to the Haskell declarations of § 2.) ExprF is an endo-
functor; µExprF corresponds to type Expr; evalAlg and modnAlg are ExprF-algebras.
The combinator (| |)ExprF corresponds to foldExpr. Likewise, IExprF is an endofunctor;
νIExprF corresponds to IExpr; numCoalg and addCoalg are IExprF-coalgebras. The
combinator [( )]IExprF corresponds to unfoldIExpr.

3.3 Simple distributive laws

Our approach to proving the correspondence between OO and functional programs crit-
ically relies on distributive laws as a means to relate algebras and coalgebras. In the
present section, we only introduce the simplest form of distributive laws.

Definition 3. A distributive law of a functor F over a functor B is a natural transfor-
mation FB −→ BF .

Example 3. Trivial examples of distributive laws are algebras and coalgebras. That is,
any coalgebra X −→ BX is a distributive law where F in Def. 3 is fixed to be a
constant functor. Dually, any algebra FX −→ X is a distributive law where B in
Def. 3 is fixed to be a constant functor. This fact is convenient in composing algebras
and coalgebras (and distributive laws), as we will see shortly.

Example 4. Here are examples of nontrivial distributive laws:4

addModn : Id2 IdInt −→ IdInt Id2

lambda : ExprF IExprF −→ IExprF ExprF

Distributive laws can be combined in various ways, e.g., by⊕ and⊗ defined as follows:

Definition 4. Let λi : FiB −→ BFi, i ∈ {1, 2} be distributive laws.
Then we define a distributive law:

λ1 ⊕ λ2 : (F1 + F2)B −→ B(F1 + F2)
λ1 ⊕ λ2 ≡ (Bι1 OBι2) ◦ (λ1 + λ2)

Here, f O g is the cotuple of f and g with injections ι1 and ι2, that is the unique arrow
such that (f O g) ◦ ι1 = f and (f O g) ◦ ι2 = g.

4 Note that we use just juxtaposition for functor composition. Confusion with application is not
an issue because application can be always considered as composition with a constant functor.
Also note that F 2 ∼= F × F in a bicartesian closed category.



Definition 5. Let λi : FBi −→ BiF, i ∈ {1, 2} be distributive laws.
Then we define a distributive law:

λ1 ⊗ λ2 : F (B1 ×B2) −→ (B1 ×B2)F
λ1 ⊗ λ2 ≡ (λ1 × λ2) ◦ (Fπ1 M Fπ2)

Here, f M g is the tuple of f and g with projections π1 and π2, that is the unique arrow
such that π1 ◦ (f M g) = f and π2 ◦ (f M g) = g.

We assume the usual convention that ⊗ binds stronger than ⊕.

Example 5. As algebras and coalgebras are distributive laws, ⊕ and ⊗ readily spe-
cialize to combinators on algebras and coalgebras, as in bothAlg or eitherCoalg. A
nontrivial example of a combination of distributive laws is lambda:

lambda = numEval⊗ numModn ⊕ addEval⊗ addModn (5)

The following lemma states a basic algebraic property of ⊕ and ⊗.

Lemma 1. Let λi,j : Fi,jBi,j −→ Bi,jFi,j , i, j ∈ {1, 2} be distributive laws. Then:

(λ1,1 ⊗ λ2,1)⊕ (λ1,2 ⊗ λ2,2) = (λ1,1 ⊕ λ1,2)⊗ (λ2,1 ⊕ λ2,2)

Proof. By elementary properties of tuples and cotuples, in particular, by the following
law (called the “abides law” in [19]):

(f M g) O (h M i) = (f Oh) M (gO i)

ut

Example 6. By the above lemma (compare with (5)):

lambda = (numEval⊕ addEval)⊗ (numModn⊕ addModn) (6)

Examples 5 and 6 illustrate the duality between the functional and OO approaches to
program decomposition. In functional programming, different cases of the same func-
tion, each for a different component of the top-level disjoint union of an algebraic data
type, are cotupled by case distinction (c.f. occurrences of ⊕ in (6) ). In contrast, in OO
programming, functions on the same data are tupled into object types (c.f. occurrences
of ⊗ in (5)).

3.4 The simple expression lemma

We have shown that we may extract a natural transformation from the algebra of a
functional fold that can be reused in the coalgebra of an unfold for object construction. It
remains to be shown that the functional fold and the OO unfold are indeed semantically
equivalent in such a case.



Given a distributive law λ : FB −→ BF , one can define an arrow µF −→ νB by the
following derivation:

λνB ◦ FoutB : FνB −→ BFνB (7)
[(λνB ◦ FoutB )]B : FνB −→ νB (8)

(| [(λνB ◦ FoutB )]B |)F : µF −→ νB (9)

An example of (7) is eitherCoalg in § 2.5.
Dually, the following also defines an arrow µF −→ νB:

BinF ◦ λµF : FBµF −→ BµF (10)
(|BinF ◦ λµF |)F : µF −→ BµF (11)

[( (|BinF ◦ λµF |)F )]B : µF −→ νB (12)

An example is bothAlg in § 2.5.
The following theorem shows that (12) is equal to (9) and thus, as discussed in § 2.5,

establishes a formal correspondence between anamorphically phrased OO programs
and catamorphically phrased functional programs.

Theorem 1 (“Simple expression lemma”). Let outB be the terminalB-coalgebra and
inF be the initial F -algebra. Let λ : FB −→ BF . Then

(| [(λνB ◦ FoutB )]B |)F = [( (|BinF ◦ λµF |)F )]B

Proof. We show that the right-hand side, [( (|BinF ◦ λµF |)F )]B , satisfies the universal
property of the left-hand side; c.f. (2):

[(λνB ◦FoutB )]B ◦F [( (|BinF ◦ λµF |)F )]B = [( (|BinF ◦ λµF |)F )]B ◦ inF (13)

The calculation is straightforward by a two-fold application of the following rule, called
“AnaFusion” in [19]:

[(ϕ )]B ◦ f = [(ψ )]B ⇐ ϕ ◦ f = Bf ◦ ψ (14)

The premise of the rule is precisely the statement that f is a B-coalgebra morphism
to ϕ from ψ. The proof is immediate by compositionality of coalgebra morphisms and
uniqueness of the universal arrow. Using this rule we proceed as follows:

[(λ ◦ FoutB )]B ◦ F [( (|BinF ◦ λ |)F )]B

= { By (14) and the following:

λ ◦ FoutB ◦ F [( (|BinF ◦ λ |)F )]B

= { functor composition }

λ ◦ F (outB ◦ [( (|BinF ◦ λ |)F )]B)

= { [( . . . )]B is a coalgebra morphism }

λ ◦ F (B[( (|BinF ◦ λ |)F )]B ◦ (|BinF ◦ λ |)F )

= { λ is natural }

(BF [( (|BinF ◦ λ |)F )]B) ◦ λ ◦ F (|BinF ◦ λ |)F }



[(λ ◦ F (|BinF ◦ λ |)F )]B

= { By (14) and the following fact:

(|BinF ◦ λ |)F ◦ inF

= { (| . . . |)F is a F -algebra morphism }

BinF ◦ λ ◦ F (|BinF ◦ λ |)F }

[( (|BinF ◦ λ |)F )]B ◦ inF ut

4 Classes of dualizable folds

The present section illustrates important classes of folds that are covered by the formal
development of this paper (including the elaboration to be expected from § 5). For each
class of folds, we introduce a variation on the plain fold operation so that the charac-
teristics of the class are better captured. The first argument of a varied fold operation is
not a fold algebra formally; it is rather used for composing a proper fold algebra, which
is to be passed to the plain fold operation.

4.1 Void folds

Consider again the Java rendering of the modn function:5

public abstract void Expr.modn(int v); //Modify literals modulo v
public void Num.modn(int v) { this.value = this.value % v; }
public void Add.modn(int v) { left .modn(v); right .modn(v); }

That is, the modn method needs to mutate the value fields of all Num objects, but no
other changes are needed. Hence, the imperative OO style suggests to defer to a method
without a proper result type, i.e., a void method. In the reading of functional objects, a
void method has a result type that is equal to the type parameter of the interface functor.
There is a restricted fold operation that captures the idea of voidity in a functional setup:

type VExprArg x =
( Int → x → Int ,
(x → Expr, x → Expr) → x → (Expr, Expr))

vFoldExpr :: VExprArg x→Expr→ x → Expr
vFoldExpr a = foldExpr (((.) num . fst a) \/ ((.) add . snd a))

The void fold operation takes a product — one type-preserving function for each data
variant. The type parameter x enables void folds with extra arguments. For instance,
the modn function can be phrased as a void fold with an argument of type Int :

modn :: Expr→ Int → Expr
modn = vFoldExpr (numModn, addModn)

5 We use a concise OO notation such that the hosting class of an instance method is simply
shown as a qualifier of the method name when giving its signature and implementation.



Rewriting a general fold to a void fold requires nothing more than factoring the general
fold algebra so that it follows the one that is composed in the vFoldExpr function above.
That is, for each constructor, its case preserves the constructor. A void fold must also
be sufficiently natural in order to be dualizable; c.f. the next subsection.

4.2 Natural folds

Consider again the type of the fold algebra for the modn function as introduced in § 2.4:

modnAlg :: ExprAlg (Int → Expr)
≡ modnAlg :: ExprF (Int → Expr) → ( Int → Expr)

The type admits observation of the precise structure of intermediate results; c.f. the
occurrences of Expr. This capability would correspond to unlimited introspection in
OO programming (including “instance of” checks and casts). The formal development
requires that the algebra must be amenable to factoring as follows:

modnAlg = fmapIExprF InExpr . lambda
where
lambda :: ExprF (Int → x) → Int → ExprF x
lambda = ...

That is, the algebra is only allowed to observe one layer of functorial structure. In fact,
it is easy to see that the actual definition of modnAlg suffices with this restriction. We
may want to express that a fold is readily in a “natural form”. To this end, we may use
a varied fold operation whose argument type is accordingly parametric:6

type NExprArg x = forall y. ExprF (x→ y) → x → ExprF y
nExpr :: NExprArg x→Expr→x → Expr
nExpr a = foldExpr ((.) InExpr . a)

It is clear that the type parameter x is used at the type Expr, but universal quantification
rules out any exploitation of this fact, thereby enabling the factoring that is required by
the formal development. For completeness’ sake, we also provide a voidity-enforcing
variation; it removes the liberty of replacing the outermost constructor:

type VnExprArg x = forall y. ( Int→x→Int ,(x→y,x→y)→x→(y,y))
vnExpr :: VnExprArg x→Expr→x → Expr
vnExpr a = foldExpr ((.) InExpr . (((.) Left . fst a) \/ ((.) Right . snd a)))

The modn function is a void, natural fold:

modn :: Expr→ Int → Expr
modn = vnExpr (numModn, addModn)

The distributive law of the formal development, i.e., λ : FB −→ BF , is more general
than the kind of natural F -folds that we illustrated above. That is, λ is not limited to
type-preserving F -folds, but it uses the extra functor B to define the result type of the
F -fold in terms of F . This extra functor is sufficient to cover “constant folds” (such as
eval), “paramorphic folds” [18] (i.e., folds that also observe the unprocessed, immediate
components) and “tupled folds” (i.e., folds that were composed from separated folds by
means of tupling). The source distribution of the paper illustrates all these aspects.

6 We use a popular Haskell 98 extension for rank-2 polymorphism; c.f. forall.



4.3 Free monadic folds

The type of the natural folds considered so far implies that intermediate results are to
be combined in exactly one layer of functorial structure, c.f. the use of ExprF in the
result-type position of NExprArg. The formal development will waive this restriction in
§ 5. Let us motivate the corresponding generalization.

The generalized scheme of composing intermediate results is to arbitrarily nest con-
structor applications, including the base case of returning one recursive result, as is.
Consider the following function that returns the leftmost expression; its Add case does
not replace the outermost constructor; instead, the outermost constructor is dropped:

leftmost :: Expr→ Expr
leftmost (Num i) = Num i
leftmost (Add l r ) = leftmost l

The function cannot be phrased as a natural fold. We can use a plain fold, though:

leftmost = foldExpr (num \/ fst)

The following OO counterpart is suggestive:

public abstract Expr Expr.leftmost();
public Expr Num.leftmost() { return this; }
public Expr Add.leftmost() { return left . leftmost (); }

Consider the following function for “exponential cloning”; it combines intermediate
results in a nest of constructor applications (while the leftmost function dropped off a
constructor):

explode :: Expr→ Expr
explode x@(Num i) = Add x x
explode (Add l r ) = clone (Add (explode l) (explode r))

where clone x = Add x x

Again, the function cannot be phrased as a natural fold. We can use a plain fold:

explode :: Expr→ Expr
explode = fFoldExpr ((clone . freeNum) \/ (clone . freeAdd . (var <∗> var)))

where clone = freeAdd . ( id /\ id )

The following OO counterpart uses the “functional” constructors for the object types.

public abstract Expr Expr.explode();
public Expr Num.explode() { return new Add(new Num(value),new Num(value)); }
public Expr Add.explode() {

return new Add(
new Add(left.explode(), right .explode()),
new Add(left.explode(), right .explode ()));

}

We need a generalized form of natural F -folds where the result of each case may be
either of type x, or of type F x, or of any type Fn x for n ≥ 2. The corresponding
union of types is modeled by the free type of F , i.e., the type of free terms (variable
terms) over F . This type is also known as the free monad. For instance, the free type of
expressions is defined as follows:



newtype FreeExpr x = InFreeExpr { outFreeExpr :: Either x (ExprF (FreeExpr x)) }

We also assume the following convenience injections:

var = InFreeExpr . Left
term = InFreeExpr . Right
freeNum = term . Left
freeAdd = term . Right

Natural folds are generalized as follows:

type FExprArg x = forall x. ExprF x→ FreeExpr x
fFoldExpr :: FExprArg x→Expr→ Expr
fFoldExpr a = foldExpr (collapse . a)

where
collapse :: FreeExpr Expr→Expr
collapse = (id \/ ( leaf \/ ( fork . (collapse <∗> collapse)))) . outFreeExpr

(For simplicity, we only consider folds without extra arguments here.) That is, we com-
pose together a fold algebra that first constructs free-type terms from intermediate re-
sults, and then collapses the free-type layers by conversion to the recursive closure of
the functor at hand. Term construction over the free type is to be dualized to object
construction. The two motivating examples can be expressed as “free” natural folds:

leftmost = fFoldExpr (freeNum \/ (var . fst ))
explode = fFoldExpr ((clone . freeNum) \/ (clone . freeAdd . (var <∗> var)))

where clone = freeAdd . ( id /\ id )

4.4 Cofree comonadic folds

The type of the natural folds considered so far implies that the algebra has access to the
results of applying the recursive function to immediate components exactly once. The
formal development will waive this restriction in § 5. Let us motivate the corresponding
generalization.

In general, we may want to apply the recursive function any number of times to each
immediate component. We may think of such expressiveness as an iteration capability.
Here is a very simple example of a function that increments twice on the left, and once
on the right:

leftist :: Expr→ Expr
leftist (Num i) = Num (i+1)
leftist (Add l r ) = Add ( leftist ( leftist l )) ( leftist r )

Such iteration is also quite reasonable in OO programming:

public abstract void Expr. leftist ();
public void Num.leftist () { value++; }
public void Add. leftist () { left . leftist (); left . leftist (); right . leftist (); }

The simple example only involves a single recursive function, and hence, arbitrary rep-
etitions of that function can be modeled as a stream (i.e., a coinductive list). A desig-
nated, streaming-enabled fold operation, sFoldExpr, deploys a stream type as the result



type. The argument of such a fold operation can select among different numbers of
repetitions in the following style:

leftist :: Expr→ Expr
leftist = sFoldExpr ((+1) <|> ((head . tail . tail ) <∗> (head . tail )))

Here, head maps to “0 applications”, head . tail maps to “1 application”, head . tail .
tail maps to “2 applications”. The streaming-enabled fold operation composes together
a fold algebra that produces a stream of results at each level of folding. To this end, we
need the coinductive unfold operation for streams:

type StreamCoalg x y = y→(x,y)
unfoldStream :: StreamCoalg x y→y→ [x]
unfoldStream c = uncurry (:) . ( id <∗> unfoldStream c) . c

The streaming-enabled fold operation is defined as follows:

type SExprArg = forall x. ExprF [x] → ExprF x
sFoldExpr :: SExprArg→Expr→Expr
sFoldExpr a = head . tail . foldExpr a’

where
a’ :: ExprF [Expr]→ [Expr]
a’ = unfoldStream (hd /\ tl)
hd = InExpr . ( id <|> (head <∗> head))
tl = a . ( id <|> (iterate tail <∗> iterate tail ))

The argument type of the operation, SExprArg, can be interpreted as follows: given a
stream of repetitions for each immediate component, construct a term with a selected
number of repetitions for each immediate component position. In fact, the selection of
the favored number of repetitions is done by cutting of only the disfavored prefix of the
stream (as opposed to actual selection, which would also cut off the postfix). Thereby,
iteration is enabled; each step of iteration further progresses on the given stream.

If we look closely, we see that the argument a :: SExprArg is not provided with a
flat stream of repetitions but rather a stream of streams of remaining repetitions; c.f.
the use of the standard function, iterate , for coinductive iteration. The type SExprArg
protects the nesting status of the stream by universal quantification, thereby avoiding
that the stream of remaining repetitions is manipulated in an undue manner such as by
reshuffling. For comparison, an unprotective type would be the following:

forall x. ExprF [[x ]] → ExprF [x]

When multiple (mutually recursive) functions are considered, then we must turn from a
stream of repetitions to infinite trees of repeated applications; each branch corresponds
to the choice of a particular mutation or observation. This tree structure would be mod-
eled by a functor, reminiscent of an interface functor, and the stream type is generalized
to the cofree comonad over a functor.

5 The categorical model continued

We will now extend the theory of § 3 in order to cater for the examples of § 4. In par-
ticular our notion of a dualizable program, which used to be a simple natural transfor-



mation of type FB −→ BF , will be extended to more elaborate distributive laws be-
tween a monad and a comonad [2,25]. This extra structure provides the power needed
to cover functional folds that iterate term construction or recursive function applica-
tion. We show that all concepts from § 3 lift appropriately to (co)monads. We also
provide means to construct the generalized distributive laws from more manageable
natural transformations, which are the key to programming with the theory and justify
the examples of § 4. We eventually generalize the final theorem of § 3 about the se-
mantical correspondence between functions and objects. The used categorical tools are
relatively straightforward and well known; [1] is an excellent reference for this section.
We only claim originality in their adoption to the semantical correspondence problem
of the expression lemma.

5.1 ((Co)free) (co)monads

We begin with a reminder of the established definitions of (co)monads.

Definition 6. Let C be a category. A monad on C is a triple 〈T, µ, η〉, where T is an
endofunctor on C, η : IdC −→ T and µ : T 2 −→ T are natural transformations
satisfying the following identities:

µ ◦ µT = µ ◦ Tµ (15)
µ ◦ ηT = id = µ ◦ Tη (16)

A comonad is defined dually as a triple 〈D, δ, ε〉 where δ : D −→ D2 and ε : D −→
IdC satisfy the duals of (15) and (16):

δD ◦ δ = Dδ ◦ δ (17)
εD ◦ δ = id = Dε ◦ δ (18)

To match § 4.3 and § 4.4, we need (co)free (co)monads.

Definition 7. Let F be an endofunctor on C. Let F †X be the functor F †X = X + F Id.
The free monad of the functor F is a functor TF that is defined as follows:

TF X = µF †X
TF f = (| inF †

Y
◦ (f + id) |)F †

X
, for f : X −→ Y

We make the following definitions:

ηX = inF †
X
◦ ι1 : X −→ TF X

τX = inF †
X
◦ ι2 : FTFX −→ TFX

µX = (| idTFX O τX |)F †
TX

Now, η and µ are natural transformations, 〈TF , µ, η〉 is a monad.



Example 7. We can think of the type TFX as of the type of non-ground terms generated
by signature F with variables fromX; c.f. the Haskell data type FreeExpr in § 4.3. Then,
η makes a variable into a term (c.f. var); τ constructs a term from a constructor in F
applied to terms (c.f. term), µ is substitution (c.f.collapse, which is actually µ0; the type
collapse : ExprF Expr→ Expr reflects the fact that TF 0 ∼= µF ).

Cofree comonads are defined dually.

Definition 8. Let B be an endofunctor on C, let B‡X be the functor B‡X = X × BId.
The cofree comonad of the functor B is a functor DB that is defined as follows:

DB X = νB‡X
DB f = [( (f × id) ◦ outB‡

X
)]B‡

Y

εX = π1 ◦ outB‡
X

: DB X −→ X

ξX = π2 ◦ outB‡
x

: DBX −→ BDBX

δX = [( idDBX M ξX )]B‡
DX

Example 8. Let us consider a special case: DIdX . We can think of this type as the
stream of values of typeX; c.f. the coinductive use of the Haskell’s list-type constructor
in § 4.4. This use corresponds to the following cofree comonad:

Stream X = νY.X × Y = DIdX

Here ε is head, ξ is tail, δ is tails : stream X → stream (stream X): the function
turning a stream into the stream of its tails, i.e. iterate tail. Also note that DB1 ∼= νB.

A note on free and non-free monads and comonads In the present paper, we deal exclu-
sively with free constructions (monads and comonads); free constructions have straight-
forward interpretations as programs. However part of the development, and Theorem 5
in particular, hold in general, and there are interesting examples of non-free construc-
tions arising for instance as quotients with respect to collections of equations.

5.2 (Co)monadic (co)algebras and their morphisms

The notions of folds (and algebras) and unfolds (and coalgebras) lift to monads and
comonads. This status will eventually allows us to introduce distributive laws of monads
over comonads. We begin at the level of algebras. An algebra of a monad is an algebra of
the underlying functor of the monad, which respects the unit and multiplication. Thus:

Definition 9. Let C be a category, let 〈T, η, µ〉 be a monad on C. An T -algebra is an
arrow α : TX −→ X in C such that the following equations hold:

idX = α ◦ ηX (19)
α ◦ µX = α ◦ Tα (20)



A T -algebra morphism between T -algebras α : TA −→ A and β : TB −→ B is an
arrow f : A −→ B in C such that

f ◦ α = β ◦ Tf

The category of T -algebras for a monad7 T is denoted CT .

The notion of the category of D-coalgebras, CD, for a comonad D is exactly dual.
We record the following important folklore fact about the relation of (co)algebras of
a functor and (co)algebras of its free (co)monad; it allows us to compare the present
(co)monadic theory to the simple theory of § 3.

Theorem 2. Let F and B be endofunctors on C. Then the category CF of F -algebras
is isomorphic to the category CTF of algebras of the free monad. And dually: the cat-
egory CB of B-coalgebras is isomorphic to CDB

, the category of coalgebras of the
cofree comonad DB .

Proof. We show the two constructions: from CF to CTF and back. To this end, let
ϕ : FX −→ X be an F -algebra, then ϕ∗ = (| idX Oϕ |)F †

X
is a TF -algebra. (Read ϕ

with superscript ∗ as “lift ϕ freely”.) In the other direction, given a TF -algebra α, the
arrowα∗ = α◦τX◦FηX is anF -algebra. (Readαwith subscript ∗ as “unliftα freely”.)
We omit the check that the two directions are inverse and that ϕ∗ is indeed a TF -algebra.
The dual claim follows by duality: for ψ : X −→ BX , ψ∝ = [( idX M ψ )]B‡

X
;

β∝ = BεX ◦ ξX ◦ β.

Example 9. Consider the functor ExprF. Then TExprFX is the type of expressions with
(formal) variables from X . For evalAlg ≡ id O (curry (+)) : Int + Int2 −→ Int,
evalAlg∗ : TExprF Int −→ Int recursively evaluates an expression where the variables
are integers. For eval′ : TExprF Int −→ Int that evaluates (“free”) expressions, one can
reproduce the function evalAlg ≡ eval′∗ by applying eval′ to trivial expressions, pro-
vided that eval′ is sufficiently uniform (in the sense of equations (19) and (20)).

Example 10. Remember thatDId
∼= Stream. For an Id-coalgebra k : X −→ X , k∝ =

iterate : X −→ StreamX . And obviously, from a function itf : X −→ streamX
producing a stream of iterated results of a function, one can reproduce the original
function itf∝ by taking the second element of the stream.

The theorem, its proof, and the examples illustrate the key operational intuition about
algebras of free monads: any algebra of a free monad works essentially in an iterative
fashion. It is equivalent to the iteration of a plain algebra, which processes (deep) terms
by induction on their structure. If we consider a TF -algebra α : TFX −→ X as a
function reducing a tree with leaves from X into a single X , α∗ is the corresponding
one-layer function which prescribes how each layer of the tree is collapsed given an
operator and a collection of collapsed subtrees. This intuition is essential for building
an intuition about generalized distributive laws, which are to come shortly, and the
programs induced by them.

We continue lifting concepts from § 3.
7 We are overloading the notation here as a monad is also a functor. The convention is that when
T is a monad, CT is the category of algebras of the monad.



Lemma 2. Let 0 be the initial object in C. Then µ0 is the initial T -algebra in CT .
Dually, δ1 is the terminal D-coalgebra in CD.

Proof. Omitted.

We can now lift the definitions of folds and unfolds.

Definition 10. Let α be a T -algebra. Then (|α |)T denotes the unique arrow in C from
the initial T -algebra to α. Dually, for a D-coalgebra β and [(β )]D.

h = (|α |)TF
⇔ h ◦ µ0 = α ◦ Fh, and α is a T -algebra (21)

h = [(β )]F ⇔ δ1 ◦ h = Fh ◦ β, and β is a D-coalgebra (22)

5.3 Distributive laws of monads over comonads

Distributive laws of monads over comonads, due to J. Beck [2], are liftings of the plain
distributive laws of § 3, which had a straightforward computational interpretation, to
monads and comonads. Again, they are natural transformations on the functors, but
they respect the additional structure of the monad and comonad in question.

The following is standard, here taken from [25].

Definition 11. Let 〈T, η, µ〉 be a monad and 〈D, ε, δ〉 be a comonad in a category C. A
distributive law of T over D is a natural transformation

Λ : TD −→ DT

satisfying the following:

Λ ◦ ηD = Dη (23)
Λ ◦ µD = Dµ ◦ ΛT ◦ TΛ (24)

εT ◦ Λ = Tε (25)
δT ◦ Λ = DΛ ◦ ΛD ◦ Tδ (26)

In the following, we relate “programming” to distributive laws, where we further em-
phasize the view that programs are represented as natural transformations. First, we
show that natural transformations with uses of monads and comonads give rise to dis-
tributive laws of monads over comonads; see the following theorem. In this manner, we
go beyond the simple natural transformations and distributive laws of § 3, and hence we
can dualize more programs.

Theorem 3 (Plotkin and Turi, 1997). Let F andB be endofunctors. Natural transfor-
mations of type

F (Id×B) −→ BTF (27)

or
FDB −→ B(Id + F ) (28)

give rise to distributive laws Λ : TFDB −→ DBTF .



Proof. See [25]. ut

The theorem originated in the context of categorical operational semantics [25]; see the
related work discussion in § 6. However, the theorem directly applies to our situation
of “programming with natural transformations”. In the Haskell-based illustrations of
§ 4, we encountered such natural transformations as arguments of the enhanced fold
operations. We did not exhaust the full generality of the typing scheme that is admitted
by the theorem, but we did have occurrences of a free monad and a cofree comonad.
Here we note that the general types of natural transformations in the above theorem
admit paramorphisms [18] (c.f. F (Id×B) in (27)) and their duals, apomorphisms [27]
(c.f. B(Id + F ) in (28)).

Example 11. The type FExprArg in § 4.3 models natural transformations of typeFB −→
BTF for F ≡ ExprF and B ≡ Id. Likewise, The type SExprArg in § 4.4 models natural
transformations of type FDB −→ BF , for F ≡ ExprF and B ≡ Id.

Natural transformations λ : FB −→ BF can be lifted so that Theorem 3 applies:

Bτ ◦ λTF
◦ FBη ◦ Fπ2 : F (Id×B) −→ BTF (29)

Bι2 ◦BFε ◦ λDB
◦ Fξ : FDB −→ B(Id + F ) (30)

The following fact is useful:

Lemma 3. Given a natural transformation λ : FB −→ BF , the distributive law
constructed by Theorem 3 from (29) is equal to the one constructed from (30).

Proof. Omitted. See the full report.

The following definition is therefore well-formed.

Definition 12. For a natural transformation λ : FB −→ BF , we denote by λ̄ the
distributive law TFDB −→ DBTF given by Theorem 3 either from (29) or (30).

5.4 Conservativeness of free distributive laws

We can lift simple distributive laws of § 3 to distributive laws of monads over comonads.
It remains to establish that such a lifting of distributive laws is semantics-preserving.
The gory details follow.

In the simple development of § 3, we constructed algebras and coalgebras from
distributive laws by simple projections and injections; c.f. equations (10) and (7). These
constructions are lifted as follows:

Lemma 4. For all X in C, the arrow

DµX ◦ ΛTX : TDTX −→ DTX (31)

is a T -algebra. Dually, the arrow

ΛDX ◦ TδX : TDX −→ DTDX (32)

is a D-coalgebra.



Proof. We must verify that the two T -algebra laws (19) and (20) hold. This can be done
by a simple calculation involving just naturality and definitions. ut

Now (31) is a T -algebra, and thus by Lemma 2 and Def. 10 it induces an arrow:

(|Dµ0 ◦ ΛT0 |)T : T0 −→ DT0 (33)

Moreover, when T and D are free on F and B respectively, this is equivalent to

(|Dµ0 ◦ ΛT0 |)T : µF −→ DµF

which is by Theorem 2 isomorphic to a B-coalgebra

(|Dµ0 ◦ ΛT0 |)TF∝ : µF −→ BµF (34)

Dually for (32):

[(ΛD1 ◦ Tδ1 )]D : TD1 −→ D1 (35)
[(ΛD1 ◦ TδX )]DB ∗ : FνB −→ νB (36)

Compare with equations (11) and (8). This shows that any distributive law of a free
monad over a cofree comonad also gives rise to an algebra for a catamorphisms and a
coalgebra for object construction.

Example 12. The functions sFoldExpr in § 4.4, and fFoldExpr in § 4.3 are examples of
(34) where B in (34) is fixed to be the identity functor.

The following theorem establishes the essential property that the (co)monadic develop-
ment of the present section entails the development of § 3.

Theorem 4. Let F and B be endofunctors on a category C. Let λ : FB −→ BF be
a natural transformation. Then the following holds.

[(λνB ◦ FoutB )]B = [( λ̄DB1 ◦ TF δX )]DB ∗ : FνB −→ νB (37)
(|BinF ◦ λµF |)F = (|DBµ0 ◦ λ̄TF 0 |)TF∝ : µF −→ BµF (38)

Proof. Omitted. See the full report.

5.5 The generalized expression lemma

It remains to lift Theorem 1 (the “simple expression lemma”). As a preparation, we
need an analog of the fusion rule.

Lemma 5. For D-coalgebras α and β:

[(α )]D ◦ f = [(β )]D ⇐ α ◦ f = Df ◦ β (39)

Proof. Immediate by uniqueness of the terminal morphism, as before. ut



Theorem 5 (“Generalized expression lemma”). Let 〈T, η, µ〉 be a monad and 〈D, η, δ〉
be a comonad. Let Λ : TD −→ DT be a distributive law of the monad T over D. Then
the following holds:

(| [(ΛD1 ◦ Tδ1 )]D |)T = [( (|Dµ0 ◦ ΛT0 |)T )]D

Proof. The proof has exactly the same structure as that of Theorem 1 except that we
have to check at all relevant places that the algebras and coalgebras in question satisfy
the additional properties (19) and (20) or their duals, subject to straightforward appli-
cations of the monad laws, properties (23) - (26) of distributive laws, and by naturality.
We give an outline of the proof of the theorem while omitting the routine checks.

[(ΛD ◦ Tδ )]D ◦ T [( (|Dµ ◦ ΛT |)T )]D

= { By (39) }

[(ΛD ◦ T (|Dµ ◦ ΛT |)T )]D

= { By (39) }

[( (|Dµ ◦ ΛT |)T )]D ◦ µ

The conclusion follows by (21). ut

6 Related work

Functional OO programming
We are not aware of any similar treatment of the correspondence between functional
and OO programming. Initially, one would expect some previous work on functional
OO programming to be relevant here, such as Moby [8] (an ML-like language with a
class mechanism), C# 3.0/VB 9.0/LINQ [3] (the latest .NET languages that incorporate
higher-order list-processing functions and more type inference), F# (an ML/OCaml-
inspired language that is married with .NET objects), Scala [20] (a Java-derived lan-
guage with support for functional programming), ML-ART or OCaml [23] (ML with
OO-targeting type extensions) — just to mention a few. However, all such work has
not revealed the expression lemma. When functional OO efforts start from a functional
language, then the focus is normally on type-system extensions for subtyping, self, and
inheritance, while OO programs are essentially encoded as functional programs, with-
out though relating the encoding results to any “native” functional counterparts. Dually,
when functional OO efforts start from an OO language, then the focus is normally on
translations that eliminate functional idioms, without though relating the translation re-
sults to any “native” OO counterpart. (For instance, Scala essentially models a function
as a special kind of object.) Our approach specifically leverages the correspondence
between functional folds and OO designs based on an idealized composite pattern.

The expression problem
Previous work on the expression problem [28] has at best assumed the expression
lemma implicitly. The lemma may have been missing because the expression prob-
lem classically assumes only very little structure: essentially, there are supposed to be



multiple data variants as well as multiple operations on these variants. In contrast, the
proposed expression lemma requires more structure, i.e., it requires functional folds or
OO designs based on an idealized composite pattern, respectively.

Programming vs. semantics

We have demonstrated how distributive laws of a functor over a functor (both possibly
with additional structure) arise naturally from programming practice with disciplined
folds and an idealized composite pattern. By abstraction, we have ultimately arrived at
the same notion of adequacy that Turi and Plotkin originally coined for denotational and
operational semantics [24,25]. There, our functional programming side of the picture
corresponds to denotational semantics and the OO programming side corresponds to
operational semantics. Our functional/OO programming correspondence corresponds
to adequacy of denotational and operational semantics. We have provided a simple,
alternative, calculational proof geared towards functional programming intuitions. Any
further correspondence, for instance of their operational rules, is not straightforward.
We hypothesize that an elaborated expression lemma may eventually incorporate addi-
tional structure that has no direct correspondence in Turi and Plotkin’s sense.

More on distributive laws

Distributive laws of a functor over a functor (both possibly with additional structure)
[2] have recently enjoyed renewed interest. We mention a few of the more relevant con-
tributions. In the context of bialgebraic semantics, Fiore, Plotkin and Turi have worked
on languages with binders in a presheaf category [7], and Bartek Klin has worked on
recursive constructs [16]. Both theoretical contributions may inspire a model of ob-
ject structures with cycles and sharing in our interpretation. Modular constructions on
distributive laws, including those we leveraged towards the end of § 3.3 have been in-
vestigated by Bart Jacobs [13]. More advanced modular constructions may be helpful in
the further exploration of the modularity of dualizable programs. Alberto Pardo, Tarmo
Uustalu, Varmo Vene, and collaborators have been using distributive laws for recur-
sion and corecursion schemes. For instance, in [26], a generalized coinduction scheme
is delivered where a distributive law specifies the pattern of mutual recursion between
several functions defined by coinduction. This work seems to be related to coalgebraic
OO programming where methods in an interface are (possibly) mutually recursive.

7 Concluding remarks

We have revealed the expression lemma — a correspondence between OO and func-
tional programs, subject to the assumption that both kinds of programs share a certain
decomposition based on structural recursion. The decomposition requirement for func-
tional programs is equivalent to a class of natural folds. The decomposition requirement
for OO programs is equivalent to the concept of object structures with part-whole rela-
tionships and methods that are in alignment with an idealized composite design pattern.



The formal development for comparing functional and OO programs relies on a coal-
gebraic model of functional objects.

While our development already covers some non-trivial idioms in “dualizable” pro-
gramming, e.g., iteration of term construction and recursive function application, it still
leaves many open questions — in particular, if we wanted to leverage the duality for
real-world programs. Hence, one challenge is to generalize the expression lemma and
the associated constructions of distributive laws so that the class of dualizable pro-
grams is extended. For instance, histomorphisms [26,15] are not just useful in devis-
ing efficient encodings for non-linearly recursive problems, they also generalize access
to intermediate results for non-immediate components — very much in the sense of
“dotting” into objects and invoking methods on non-immediate components. Another
challenge is to admit data structures with sharing and cycles. The use of sharing and
cycles is common in OO programming — even without the additional complication of
mutable objects. Yet another challenge is to complete the current understanding of the
functional/OO correspondence into effective bidirectional refactorings. For instance, in
the objects-to-functions direction, such a refactoring would involve non-trivial precon-
ditions on the shape of the OO code, e.g., preconditions to establish absence of sharing,
cycles, and mutations, where we may be able to leverage related OO type-system ex-
tensions, e.g., for immutability and ownership [6,4].
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