
An Isabelle/HOL-based Model
of Stratego-like Traversal Strategies

Markus Kaiser and Ralf Lämmel
So!ware Languages Team

Universität Koblenz-Landau

Term (tree) traversal

This work: model
strategies formally and
determine properties!

STRATEGIC PROGRAMMING

One-layer traversal

Deep traversal
STRATEGIC PROGRAMMING

One-layer traversal

Deep traversal

complete top-down traversal
with transformation at all nodes

incomplete bottom-up traversal
with transformation at one node

Stratego-like strategies

Common traversal schemes

topdown(s) = s; ✷(topdown(s)) – Apply s in a full pass over the input in top-down order.
bottomup(s) = ✷(bottomup(s)); s – Apply s in a full pass over the input in bottom-up order.
oncetd(s) = s←+ ✸(oncetd(s)) – Find the top-most position to apply s successfully.
oncebu(s) = ✸(oncebu(s))←+ s – Find the bottom-most position to apply s successfully.
stoptd(s) = s←+ ✷(stoptd(s)) – Attempt s in top-down manner until success.
stopbu(s) = ✷(stopbu(s))←+ s – What’s that? An exercise for the reader, but see the appendix.
innermost(s) = repeat(oncebu(s)) – An implementation of innermost normalization.

Common helpers

repeat(s) = try(s; repeat(s)) – Iterate s until it fails; see innermost .
try(s) = s←+ id – Recover from the failure of s; see repeat .

Figure 3. A small strategy library (general recursive definitions; Stratego-like syntax)

Positive rules

∃θ. (θ(tl) = t ∧ θ(tr) = t�)
tl → tr @ t ❀ t�

[rule+]

� @ t ❀ t [id+]

s1 @ t ❀ t� ∧ s2 @ t� ❀ t��

s1; s2 @ t ❀ t��
[sequ+]

s1 @ t ❀ t�

s1←+ s2 @ t ❀ t�
[choice+.1]

s1 @ t ❀ ↑ ∧ s2 @ t ❀ t�

s1←+ s2 @ t ❀ t�
[choice+.2]

∀i ∈ {1, . . . , n}. s @ ti ❀ t�i
✷(s) @ c(t1, . . . , tn) ❀ c(t�1, . . . , t�n)

[all+]

∃i ∈ {1, . . . , n}.
s @ ti ❀ t�i

∧ ∀i� ∈ {1, . . . , i− 1}. s @ ti� ❀ ↑
∧ ∀i� ∈ {1, . . . , i− 1, i + 1, . . . , n}. ti� = t�i�

✸(s) @ c(t1, . . . , tn) ❀ c(t�1, . . . , t�n)
[one+]

Negative rules

� ∃θ. θ(tl) = t
tl → tr @ t ❀ ↑

[rule−]

δ @ t ❀ ↑ [fail−]

s1 @ t ❀ ↑
s1; s2 @ t ❀ ↑

[seq−.1]

s1 @ t ❀ t� ∧ s2 @ t� ❀ ↑
s1; s2 @ t ❀ ↑

[seq−.2]

s1 @ t ❀ ↑ ∧ s2 @ t ❀ ↑
s1←+ s2 @ t ❀ ↑

[choice−]

∃i ∈ {1, . . . , n}. s @ ti ❀ ↑
✷(s) @ c(t1, . . . , tn) ❀ ↑

[all−]

∀i ∈ {1, . . . , n}. s @ ti ❀ ↑
✸(s) @ c(t1, . . . , tn) ❀ ↑

[one−]

Figure 2. Semantics of strategy primitives

3. Modeling strategy primitives
We develop a basic formal model that is inspired by Strafun-
ski’s functional programming incarnation of Stratego-like traversal
strategies [21, 37]. (Here we note that Strafunski is essentially a li-
brary whose core provides combinators for all strategy primitives.)

3.1 The term representation
For simplicity, we use untyped terms just like in basic Stratego [36],
or its underlying calculus [35]. We leave it to future work to cover
many-sorted terms [17], or the kind of type-annotated terms of the
universal term representation of Strafunski [21]. Hence, terms are
modeled by the following recursive data type cterm3:

{∗ An algebraic data type ∗}
datatype

cterm = C con (cterm list)

{∗ A type synonym ∗}
types

con = nat

That is, a cterm consists of a constructor (in fact, a natural
number) and a list of cterms — the children. We also provide
functions to take terms apart:4

{∗ Function signatures ∗}
consts

con of :: cterm → con
children :: cterm → cterm list

{∗ Function definitions ∗}
primrec

con of (C c ts) = c
children (C c ts) = ts

3.2 The strategy type
A strategy is essentially a function on cterm. However, we need to
anticipate the potential of failure. We enable this form of partiality
by means of an application of the type constructor option. Thus:5

types
strategy = cterm → result
result = cterm option

Our simple model follows the letter of the SOS judgement
and the original semantics of Stratego: the result of a strategy
application is either a term or “failure”. Strafunski generalizes this

3 All quotations required by the Isabelle/HOL system are omitted in the
code presentations of this paper.
4 Isabelle/HOL notation: In Isabelle, just like in SML, type parameters
precede the type constructor; c.f., cterm list. The type nat and the type
constructor list are provided by the Isabelle library. For readability, we
typeset function types in terms of “→” (whereas native Isabelle notation
would use “⇒”).
5 Isabelle/HOL notation: the type constructor option is provided by the
Isabelle library. An optional value is either of the form Some x denoting
the presence of a value x, or None denoting the absence of any value.

Traversal schemes

s ::= t→ t (Rewrite rules as basic building blocks.)
| � (Identity strategy; succeeds and returns input.)
| δ (Failure strategy; fails and returns failure “↑”.)
| s; s (Left-to-right sequential composition.)
| s←+ s (Left-biased choice; try first argument first.)
| ✷(s) (Transform term by applying s to all children.)
| ✸(s) (Transform term by applying s to one child.)

Figure 1. Syntax of strategy primitives

tion. To this end, we model the non-diverging part of such a strat-
egy combinator as a relation (between arguments and results) from
which we derive a function which is left unspecified for the rest.

Road-map The remainder of this paper is organized as follows:

• Sec. 2 provides background on strategic programming.
• Sec. 3 develops a basic model of strategy primitives.
• Sec. 4 derives the familiar SOS-style semantics formally.
• Sec. 5 collects strategic programming laws (as lemmas again).
• Sec. 6 describes our treatment of partial (diverging) strategies.
• Sec. 7 developers a basic model of typical traversal schemes.
• Sec. 8 investigates the success/failure behavior of strategies.
• Sec. 9 discusses related work.
• Sec. 10 concludes the paper.

Prerequisites for the reader Prior knowledge of traversal strate-
gies á la Stratego or Strafunski is helpful but not required (due to
the next section).

While the formal model is based on Isabelle/HOL, we do not as-
sume, in any way, that the reader is familiar with Isabelle/HOL. We
only assume basic knowledge of functional programming, rewrit-
ing, predicate logic (of higher order), proofs by induction, and SOS
style of operational semantics.

We emphasize that the presentation in this paper is focused on
the motivation of formal properties. Proofs are hardly sketched, and
if so, at an abstract level.1 We simply use Isabelle/HOL as a mod-
eling method to gain deeper understanding of traversal strategies.

A special focus lies on modeling partial strategies in a HOL
framework where all functions are total.

2. Background
Strategic programming [36, 34, 37, 20] is based on the premise
that ‘traversal control’ should be in the hands of the programmer;
it should be programmable based on designated abstractions and
language constructs — as opposed to encodings that require heavy
boilerplate code. In particular, traversals are typically composed
from reusable traversal schemes and problem-specific argument
strategies. At a lower level, the traversal schemes are composed
themselves from strategy primitives.

2.1 An illustrative scenario
The following XML processing problem illustrates the gist of
traversal strategies. Let c be a term that represents the organiza-
tional structure of a company with hierarchical (say, nested) de-
partments. As a reply to recession, all top-level managers decide to
cut back their salary to 1$ for some time.

We need a few building blocks: d is a test which succeeds for
a (sub)term that represents a department and it fails for all other
terms; likewise, m is a test for managers; l is a rewrite rule to
replace a salary term by 1$.

1 The Isabelle/HOL theories from this paper are available online from the paper’s
website: http://www.uni-koblenz.de/~laemmel/isabelle2/.

The following strategy application locates all top-level man-
agers in c, and adjusts their salaries — without going deeper into
c, i.e., without affecting salaries of subordinate managers (who did
not agree on the aggressive measure for themselves):

stoptd(d; stoptd(m; stoptd(l)))@c

Read as: “Find all top-level departments in c; below each de-
partment, find a manager; below the manager, find the salary,
and adjust it.” Here, “·; ·”’ denotes sequential composition of two
strategies, “·@·” denotes application of a strategy to a term, and
stoptd denotes the traversal scheme of top-down traversal (c.f.,
. . . td) where traversal ceases (“stops”) for any given branch once
the argument strategy was applied successfully.

The stoptd scheme can be defined in terms of strategy prim-
itives and recursion as we will show below. While stoptd is ap-
propriate for the situation at hand, other scenarios call for different
schemes.

2.2 Strategy primitives
The development of the present paper is limited to type-preserving
strategies (also known as transformations) as opposed to type-
unifying strategies (also known as queries) [21, 17, 18]. Fig. 1
shows the primitives for treatment in this paper.

Most of these operators should be familiar because they occur
in process calculi, rewriting calculi, tactic languages and that alike.
The distinctive primitives of strategic programming are ✷(·) and
✸(·) (read as “all” and “one”). ✷(s) applies the argument strategy
s to all direct subterms (“children”) of a given term, and then it re-
constructs a term from the input term’s constructor and the interme-
diate results. If s fails for some child, then ✷(s) fails entirely. ✸(s)
suffices to apply the argument strategy s to one child for which s
succeeds; it reconstructs a term from the input term’s constructor,
the single intermediate result, and the original children for all re-
maining positions. If s fails for all of the children (or if there are no
children at all), then ✸(s) fails entirely.

Fig. 2 gives a big-step semantics for the primitives. We use a
judgement (say, a relation) s @ t ❀ r, where s is a strategy, t is a
term, and r is a result (i.e., either a term or failure “↑”). Terms are
of the form c(t1, . . . , tn). For n = 0, a term is called a constant
term. Positive rules reduce strategy applications to terms; negative
rules model reductions that end in failure.

The SOS rules follow Stratego’s reference semantics [35, 36]
very closely. The only noteworthy deviation is that we pick a
deterministic semantics for ✸(s)@ t ❀ r to better match the
actual operational semantics of implementations including Stratego
in particular. We assume a left-to-right order for finding the position
of t to be affected. That is, the first position for which s succeeds is
chosen.

2.3 Strategy library
Fig. 3 lists a small set of the traversal schemes and helper combi-
nators for traversal. The combinators are defined by the notation of
“general recursion”. For instance, in Strafunski, these schemes are
defined just like that.2 All the combinators at hand take one strat-
egy argument and compose a new strategy from it. The idea is that a
combinator for a traversal scheme completes the argument strategy
into a traversal that applies the argument to some or all “nodes” of
the input according to some rules.

2 In the figure, we use Stratego-like syntax. Our formal development in
Isabelle/HOL uses curried function application — such as in stoptd s t.

...
+ recursion
+ type-case (possibly)

Strategy primitives
rewrite rules

id & fail

sequ & choice

all & one

Strafunski’s so-called
adhoc combinator

Some variation points
RICH VARIATION POINTS

• Transformation vs. query.
• Single vs. cascaded traversal.
• Top-down vs. bottom-up traversal.
• Depth-first vs. breadth-first traversal.
• Left-to-right traversal and vice versa.
• Full vs. single-hit vs. cut-off traversal.
• Types vs. general predicates as milestones.
• Fixpoint by equality test vs. fixpoint by failure.
• Local choice vs. full backtracking vs. explicit cut.
• Traversal with effects (accumulation, cloning, etc.).

Traversal gone bad

What could go wrong?

A traversal diverges.

A traversal fails (nearly) always (say, too often).

A traversal succeeds w/o transformation ((nearly) always).

A traversal does not traverse deeply.

Let’s traverse trees over naturals.

Types

data Nat = Zero | Succ Nat

data Tree a = Node {rootLabel :: a, subForest :: [Tree a]}

Sample trees

tree1 = Node { rootLabel = Zero, subForest = [] }

tree2 = Node { rootLabel = True, subForest = [] }

tree3 = Node { rootLabel = Succ Zero, subForest = [tree1,tree1] }

Switching to Haskell!

Traversal gone bad

Increment naturals in the tree

Rewrite rule

increment n = Just (Succ n)

Strategy

topdown (adhoc id increment) tree1

expands
before descent

and hence
diverges

Apply increment on naturals and behave like
the identity function for all other types.

Traversal gone bad

Increment naturals in the tree

Rewrite rule

increment n = Just (Succ n)

Strategy

bottomup (adhoc id increment) tree3

increments bottom-up
and hence
doubles

Traversal gone bad

Increment naturals in the tree

Rewrite rule

increment n = Just (Succ n)

Strategy

stoptd (adhoc id increment) tree1

Use fail
hence!

increment
vacously succeeds

for tree nodes
(too early)

Termination behavior

topdown s may diverge even for terminating s.

It’s terminating if s does not increase term size.

bottomup s is terminating as long as s is terminating.

stoptd s is terminating as long as s is terminating.

innermost s may diverge even for terminating s.

It’s terminating if oncebu s “decreases” some measure.

Success/failure behavior

topdown s may fail if s may fail.

s should fail only exceptionally “to make sense”.

stoptd s cannot possibly fail (no matter what s).

s should succeed rarely “to make sense”.

oncebu s t succeeds for t for if s succeeds for a subterm of t.

s should succeed rarely “to make sense”.

“make sense”
properties still

to be
formalized!

An Isabelle/HOL-based Model
of Stratego-like Traversal Strategies

Input (inspiration)

Function combinators for strategic programming

Paper and pencil SOS of strategic programming

Show correspondence of both definitions

Formalize and prove laws & properties on top

Use Isabelle/HOL for mechanized model

See the paper for
details.

Functional model
in Isabelle/HOL

Term constructors

types con = nat;

Terms

datatype cterm = C con "cterm list";

Strategies (functions on terms)

types strategy = "cterm => result";

types result = "cterm option";

Strikingly similar
to “Strafunski”;
types could be
added as well.

Function combinator all
view by parametrizing the strategy type by an arbitrary monad, or
in a monad with “+” — where necessary.

The function symbols for the strategy primitives receive the
following types:

consts
id :: strategy

fail :: strategy

sequ :: strategy → strategy → strategy

choice :: strategy → strategy → strategy

all :: strategy → strategy

one :: strategy → strategy

3.3 Modeling rewrite rules

The above list of strategy primitives left out the strategy form of
rewrite rules from Fig. 1. Indeed, in the present paper, we do not
provide any intensional or explicit model of rewrite rules. This is
entirely possible because rewrite rules can be represented by reg-
ular Isabelle/HOL functions. In fact, Strafunski also uses regular
pattern-matching functions to represent rewrite rules. A designated
model of rewrite rules would be needed for some profound proper-
ties of traversal programming. For instance, any sort of analysis of a
rewrite system — e.g., an analysis to establish that it is strongly nor-
malizing — would benefit from such a model. However, the trivial
model of “rewriting rules as functions” is sufficient for the present
paper.

3.4 Definitions for classic control primitives

Here are the canonical definitions for all primitives except “all”
and “one”; the definitions are appropriate specializations of the
Strafunski combinators (as far as the strategy type is concerned):6

defs
id def: id t = Some t

fail def: fail t = None

sequ def: sequ s s’ t = case s t of None → None | Some t’ → s’ t’

choice def: choice s s’ t = if (s t) �= None then s t else s’ t

3.5 Definitions for one-layer traversal

Fig. 4 shows the definitions of “all” and “one”. Again, these def-
initions paraphrase those of Strafunski, but we have adjusted the
definitions for clarity and appropriate modularity so that some of
the subsequent discussions and properties can be delivered more
easily. In particular, it is helpful that all involved functions can be
defined in a primitive recursive fashion.

The definitions emphasize two phases: (i) map the argument
strategy over the children using the folklore list map; (ii) post-
process those intermediate results; c.f., postMapAll and postMapOne.
By making these two phases explicit, we prepare for the separation
of recursion into terms vs. the composition of intermediate results.

The post-processor for “all” maps a list of optional terms (the
intermediate results) to an optional list of terms, where the result
is None if some of the optional terms was None, and it is the list of
present terms otherwise.7

The post-processor for “one” maps a list of terms (the original
children) and a list of optional terms (the intermediate results) to
an optional list, where the result is None if all of the intermediate
results were None; otherwise, it is the list of original terms with one
position replaced by a term from the list of intermediate results —
the leftmost position that is not None.

6 Isabelle/HOL notation: we make use of case . . . of . . . expressions for
pattern matching (or case discrimination) where each case is of the form
Pattern→ Expression, and cases are separated by “|”.
7 Our function postMapAll is an instance of Haskell’s sequence operator for
sequential evaluation of monadic computations.

defs
all def: all s t =

case (postMapAll (map s (children t))) of
None → None

| Some l → Some (C (con of t) l)

one def: one s t =
case (postMapOne (children t) (map s (children t))) of

None → None

| Some l → Some (C (con of t) l)

consts
postMapAll :: (’a option) list → (’a list) option

postMapOne :: ’a list → (’a option) list → (’a list) option

primrec
postMapAll [] = Some []

postMapAll (r#rs) =

case r of
None → None

| Some x → (case (postMapAll rs) of
None → None

| Some xs → Some (x#xs))

primrec
postMapOne [] rs = None

postMapOne (x#xs) rs =

if rs = [] then None

else case hd rs of
None → (case postMapOne xs (tl rs) of

None → None

| Some xs’ → Some (x#xs’))

| Some x’ → Some (x’#xs)

Figure 4. Functional model of one-layer traversal combinators

4. SOS lemmas for strategy primitives

We can show now that the SOS-style semantics of traversal strate-
gies (as of Fig. 2) is obeyed by our basic, formal model. In essence,
this means that we show the correctness of a functional implemen-
tation of the traversal strategies with regard to an operational se-
mantics which we consider indeed as the reference semantics. Ad-
mittedly, there is little conceptual gap between the two forms: func-
tional “interpreter style” appears to be very similar to big-step SOS
style — except for the separation of positive and negative cases
in the SOS specification. However, some efforts are needed due to
peculiarities of the traversal primitives.

4.1 Basics of SOS transliteration

In Fig. 5, we begin to transliterate the original SOS rules as Is-
abelle/HOL lemmas.8 We cover all rules but those for “all” and
“one” (and rewrite rules). This process of transliteration is system-
atic: each instance of the judgement is replaced by the application
of the corresponding combinator to a term; SOS rules become im-
plications; premises are combined in conjunctions. We can also pre-
serve the style of implicit universal quantification that was used in
the SOS rules.

4.2 Transliteration of index-bounded quantification

Interpreter style and SOS style notably differ with regard to the
one-layer traversal primitives. The functional implementation of
Fig. 4 leverages list-processing functions map, postMapAll, and
postMapOne. In contrast, the SOS-style semantics of Fig. 2 lever-

8 For readability, we typeset the Isabelle/HOL formulae in normalized
predicate-logical notation: “∨”, “∧”, “=⇒”, “⇐⇒”, “∀”, “∃”.

view by parametrizing the strategy type by an arbitrary monad, or
in a monad with “+” — where necessary.

The function symbols for the strategy primitives receive the
following types:

consts
id :: strategy

fail :: strategy

sequ :: strategy → strategy → strategy

choice :: strategy → strategy → strategy

all :: strategy → strategy

one :: strategy → strategy

3.3 Modeling rewrite rules

The above list of strategy primitives left out the strategy form of
rewrite rules from Fig. 1. Indeed, in the present paper, we do not
provide any intensional or explicit model of rewrite rules. This is
entirely possible because rewrite rules can be represented by reg-
ular Isabelle/HOL functions. In fact, Strafunski also uses regular
pattern-matching functions to represent rewrite rules. A designated
model of rewrite rules would be needed for some profound proper-
ties of traversal programming. For instance, any sort of analysis of a
rewrite system — e.g., an analysis to establish that it is strongly nor-
malizing — would benefit from such a model. However, the trivial
model of “rewriting rules as functions” is sufficient for the present
paper.

3.4 Definitions for classic control primitives

Here are the canonical definitions for all primitives except “all”
and “one”; the definitions are appropriate specializations of the
Strafunski combinators (as far as the strategy type is concerned):6

defs
id def: id t = Some t

fail def: fail t = None

sequ def: sequ s s’ t = case s t of None → None | Some t’ → s’ t’

choice def: choice s s’ t = if (s t) �= None then s t else s’ t

3.5 Definitions for one-layer traversal

Fig. 4 shows the definitions of “all” and “one”. Again, these def-
initions paraphrase those of Strafunski, but we have adjusted the
definitions for clarity and appropriate modularity so that some of
the subsequent discussions and properties can be delivered more
easily. In particular, it is helpful that all involved functions can be
defined in a primitive recursive fashion.

The definitions emphasize two phases: (i) map the argument
strategy over the children using the folklore list map; (ii) post-
process those intermediate results; c.f., postMapAll and postMapOne.
By making these two phases explicit, we prepare for the separation
of recursion into terms vs. the composition of intermediate results.

The post-processor for “all” maps a list of optional terms (the
intermediate results) to an optional list of terms, where the result
is None if some of the optional terms was None, and it is the list of
present terms otherwise.7

The post-processor for “one” maps a list of terms (the original
children) and a list of optional terms (the intermediate results) to
an optional list, where the result is None if all of the intermediate
results were None; otherwise, it is the list of original terms with one
position replaced by a term from the list of intermediate results —
the leftmost position that is not None.

6 Isabelle/HOL notation: we make use of case . . . of . . . expressions for
pattern matching (or case discrimination) where each case is of the form
Pattern→ Expression, and cases are separated by “|”.
7 Our function postMapAll is an instance of Haskell’s sequence operator for
sequential evaluation of monadic computations.

defs
all def: all s t =

case (postMapAll (map s (children t))) of
None → None

| Some l → Some (C (con of t) l)

one def: one s t =
case (postMapOne (children t) (map s (children t))) of

None → None

| Some l → Some (C (con of t) l)

consts
postMapAll :: (’a option) list → (’a list) option

postMapOne :: ’a list → (’a option) list → (’a list) option

primrec
postMapAll [] = Some []

postMapAll (r#rs) =

case r of
None → None

| Some x → (case (postMapAll rs) of
None → None

| Some xs → Some (x#xs))

primrec
postMapOne [] rs = None

postMapOne (x#xs) rs =

if rs = [] then None

else case hd rs of
None → (case postMapOne xs (tl rs) of

None → None

| Some xs’ → Some (x#xs’))

| Some x’ → Some (x’#xs)

Figure 4. Functional model of one-layer traversal combinators

4. SOS lemmas for strategy primitives

We can show now that the SOS-style semantics of traversal strate-
gies (as of Fig. 2) is obeyed by our basic, formal model. In essence,
this means that we show the correctness of a functional implemen-
tation of the traversal strategies with regard to an operational se-
mantics which we consider indeed as the reference semantics. Ad-
mittedly, there is little conceptual gap between the two forms: func-
tional “interpreter style” appears to be very similar to big-step SOS
style — except for the separation of positive and negative cases
in the SOS specification. However, some efforts are needed due to
peculiarities of the traversal primitives.

4.1 Basics of SOS transliteration

In Fig. 5, we begin to transliterate the original SOS rules as Is-
abelle/HOL lemmas.8 We cover all rules but those for “all” and
“one” (and rewrite rules). This process of transliteration is system-
atic: each instance of the judgement is replaced by the application
of the corresponding combinator to a term; SOS rules become im-
plications; premises are combined in conjunctions. We can also pre-
serve the style of implicit universal quantification that was used in
the SOS rules.

4.2 Transliteration of index-bounded quantification

Interpreter style and SOS style notably differ with regard to the
one-layer traversal primitives. The functional implementation of
Fig. 4 leverages list-processing functions map, postMapAll, and
postMapOne. In contrast, the SOS-style semantics of Fig. 2 lever-

8 For readability, we typeset the Isabelle/HOL formulae in normalized
predicate-logical notation: “∨”, “∧”, “=⇒”, “⇐⇒”, “∀”, “∃”.

view by parametrizing the strategy type by an arbitrary monad, or
in a monad with “+” — where necessary.

The function symbols for the strategy primitives receive the
following types:

consts
id :: strategy

fail :: strategy

sequ :: strategy → strategy → strategy

choice :: strategy → strategy → strategy

all :: strategy → strategy

one :: strategy → strategy

3.3 Modeling rewrite rules

The above list of strategy primitives left out the strategy form of
rewrite rules from Fig. 1. Indeed, in the present paper, we do not
provide any intensional or explicit model of rewrite rules. This is
entirely possible because rewrite rules can be represented by reg-
ular Isabelle/HOL functions. In fact, Strafunski also uses regular
pattern-matching functions to represent rewrite rules. A designated
model of rewrite rules would be needed for some profound proper-
ties of traversal programming. For instance, any sort of analysis of a
rewrite system — e.g., an analysis to establish that it is strongly nor-
malizing — would benefit from such a model. However, the trivial
model of “rewriting rules as functions” is sufficient for the present
paper.

3.4 Definitions for classic control primitives

Here are the canonical definitions for all primitives except “all”
and “one”; the definitions are appropriate specializations of the
Strafunski combinators (as far as the strategy type is concerned):6

defs
id def: id t = Some t

fail def: fail t = None

sequ def: sequ s s’ t = case s t of None → None | Some t’ → s’ t’

choice def: choice s s’ t = if (s t) �= None then s t else s’ t

3.5 Definitions for one-layer traversal

Fig. 4 shows the definitions of “all” and “one”. Again, these def-
initions paraphrase those of Strafunski, but we have adjusted the
definitions for clarity and appropriate modularity so that some of
the subsequent discussions and properties can be delivered more
easily. In particular, it is helpful that all involved functions can be
defined in a primitive recursive fashion.

The definitions emphasize two phases: (i) map the argument
strategy over the children using the folklore list map; (ii) post-
process those intermediate results; c.f., postMapAll and postMapOne.
By making these two phases explicit, we prepare for the separation
of recursion into terms vs. the composition of intermediate results.

The post-processor for “all” maps a list of optional terms (the
intermediate results) to an optional list of terms, where the result
is None if some of the optional terms was None, and it is the list of
present terms otherwise.7

The post-processor for “one” maps a list of terms (the original
children) and a list of optional terms (the intermediate results) to
an optional list, where the result is None if all of the intermediate
results were None; otherwise, it is the list of original terms with one
position replaced by a term from the list of intermediate results —
the leftmost position that is not None.

6 Isabelle/HOL notation: we make use of case . . . of . . . expressions for
pattern matching (or case discrimination) where each case is of the form
Pattern→ Expression, and cases are separated by “|”.
7 Our function postMapAll is an instance of Haskell’s sequence operator for
sequential evaluation of monadic computations.

defs
all def: all s t =

case (postMapAll (map s (children t))) of
None → None

| Some l → Some (C (con of t) l)

one def: one s t =
case (postMapOne (children t) (map s (children t))) of

None → None

| Some l → Some (C (con of t) l)

consts
postMapAll :: (’a option) list → (’a list) option

postMapOne :: ’a list → (’a option) list → (’a list) option

primrec
postMapAll [] = Some []

postMapAll (r#rs) =

case r of
None → None

| Some x → (case (postMapAll rs) of
None → None

| Some xs → Some (x#xs))

primrec
postMapOne [] rs = None

postMapOne (x#xs) rs =

if rs = [] then None

else case hd rs of
None → (case postMapOne xs (tl rs) of

None → None

| Some xs’ → Some (x#xs’))

| Some x’ → Some (x’#xs)

Figure 4. Functional model of one-layer traversal combinators

4. SOS lemmas for strategy primitives

We can show now that the SOS-style semantics of traversal strate-
gies (as of Fig. 2) is obeyed by our basic, formal model. In essence,
this means that we show the correctness of a functional implemen-
tation of the traversal strategies with regard to an operational se-
mantics which we consider indeed as the reference semantics. Ad-
mittedly, there is little conceptual gap between the two forms: func-
tional “interpreter style” appears to be very similar to big-step SOS
style — except for the separation of positive and negative cases
in the SOS specification. However, some efforts are needed due to
peculiarities of the traversal primitives.

4.1 Basics of SOS transliteration

In Fig. 5, we begin to transliterate the original SOS rules as Is-
abelle/HOL lemmas.8 We cover all rules but those for “all” and
“one” (and rewrite rules). This process of transliteration is system-
atic: each instance of the judgement is replaced by the application
of the corresponding combinator to a term; SOS rules become im-
plications; premises are combined in conjunctions. We can also pre-
serve the style of implicit universal quantification that was used in
the SOS rules.

4.2 Transliteration of index-bounded quantification

Interpreter style and SOS style notably differ with regard to the
one-layer traversal primitives. The functional implementation of
Fig. 4 leverages list-processing functions map, postMapAll, and
postMapOne. In contrast, the SOS-style semantics of Fig. 2 lever-

8 For readability, we typeset the Isabelle/HOL formulae in normalized
predicate-logical notation: “∨”, “∧”, “=⇒”, “⇐⇒”, “∀”, “∃”.

Paper & pencil SOS

Common traversal schemes

topdown(s) = s; ✷(topdown(s)) – Apply s in a full pass over the input in top-down order.
bottomup(s) = ✷(bottomup(s)); s – Apply s in a full pass over the input in bottom-up order.
oncetd(s) = s←+ ✸(oncetd(s)) – Find the top-most position to apply s successfully.
oncebu(s) = ✸(oncebu(s))←+ s – Find the bottom-most position to apply s successfully.
stoptd(s) = s←+ ✷(stoptd(s)) – Attempt s in top-down manner until success.
stopbu(s) = ✷(stopbu(s))←+ s – What’s that? An exercise for the reader, but see the appendix.
innermost(s) = repeat(oncebu(s)) – An implementation of innermost normalization.

Common helpers

repeat(s) = try(s; repeat(s)) – Iterate s until it fails; see innermost .
try(s) = s←+ id – Recover from the failure of s; see repeat .

Figure 3. A small strategy library (general recursive definitions; Stratego-like syntax)

Positive rules

∃θ. (θ(tl) = t ∧ θ(tr) = t�)
tl → tr @ t ❀ t�

[rule+]

� @ t ❀ t [id+]

s1 @ t ❀ t� ∧ s2 @ t� ❀ t��

s1; s2 @ t ❀ t��
[sequ+]

s1 @ t ❀ t�

s1←+ s2 @ t ❀ t�
[choice+.1]

s1 @ t ❀ ↑ ∧ s2 @ t ❀ t�

s1←+ s2 @ t ❀ t�
[choice+.2]

∀i ∈ {1, . . . , n}. s @ ti ❀ t�i
✷(s) @ c(t1, . . . , tn) ❀ c(t�1, . . . , t�n)

[all+]

∃i ∈ {1, . . . , n}.
s @ ti ❀ t�i

∧ ∀i� ∈ {1, . . . , i− 1}. s @ ti� ❀ ↑
∧ ∀i� ∈ {1, . . . , i− 1, i + 1, . . . , n}. ti� = t�i�

✸(s) @ c(t1, . . . , tn) ❀ c(t�1, . . . , t�n)
[one+]

Negative rules

� ∃θ. θ(tl) = t
tl → tr @ t ❀ ↑

[rule−]

δ @ t ❀ ↑ [fail−]

s1 @ t ❀ ↑
s1; s2 @ t ❀ ↑

[seq−.1]

s1 @ t ❀ t� ∧ s2 @ t� ❀ ↑
s1; s2 @ t ❀ ↑

[seq−.2]

s1 @ t ❀ ↑ ∧ s2 @ t ❀ ↑
s1←+ s2 @ t ❀ ↑

[choice−]

∃i ∈ {1, . . . , n}. s @ ti ❀ ↑
✷(s) @ c(t1, . . . , tn) ❀ ↑

[all−]

∀i ∈ {1, . . . , n}. s @ ti ❀ ↑
✸(s) @ c(t1, . . . , tn) ❀ ↑

[one−]

Figure 2. Semantics of strategy primitives

3. Modeling strategy primitives
We develop a basic formal model that is inspired by Strafun-
ski’s functional programming incarnation of Stratego-like traversal
strategies [21, 37]. (Here we note that Strafunski is essentially a li-
brary whose core provides combinators for all strategy primitives.)

3.1 The term representation
For simplicity, we use untyped terms just like in basic Stratego [36],
or its underlying calculus [35]. We leave it to future work to cover
many-sorted terms [17], or the kind of type-annotated terms of the
universal term representation of Strafunski [21]. Hence, terms are
modeled by the following recursive data type cterm3:

{∗ An algebraic data type ∗}
datatype

cterm = C con (cterm list)

{∗ A type synonym ∗}
types

con = nat

That is, a cterm consists of a constructor (in fact, a natural
number) and a list of cterms — the children. We also provide
functions to take terms apart:4

{∗ Function signatures ∗}
consts

con of :: cterm → con
children :: cterm → cterm list

{∗ Function definitions ∗}
primrec

con of (C c ts) = c
children (C c ts) = ts

3.2 The strategy type
A strategy is essentially a function on cterm. However, we need to
anticipate the potential of failure. We enable this form of partiality
by means of an application of the type constructor option. Thus:5

types
strategy = cterm → result
result = cterm option

Our simple model follows the letter of the SOS judgement
and the original semantics of Stratego: the result of a strategy
application is either a term or “failure”. Strafunski generalizes this

3 All quotations required by the Isabelle/HOL system are omitted in the
code presentations of this paper.
4 Isabelle/HOL notation: In Isabelle, just like in SML, type parameters
precede the type constructor; c.f., cterm list. The type nat and the type
constructor list are provided by the Isabelle library. For readability, we
typeset function types in terms of “→” (whereas native Isabelle notation
would use “⇒”).
5 Isabelle/HOL notation: the type constructor option is provided by the
Isabelle library. An optional value is either of the form Some x denoting
the presence of a value x, or None denoting the absence of any value.

Common traversal schemes

topdown(s) = s; ✷(topdown(s)) – Apply s in a full pass over the input in top-down order.
bottomup(s) = ✷(bottomup(s)); s – Apply s in a full pass over the input in bottom-up order.
oncetd(s) = s←+ ✸(oncetd(s)) – Find the top-most position to apply s successfully.
oncebu(s) = ✸(oncebu(s))←+ s – Find the bottom-most position to apply s successfully.
stoptd(s) = s←+ ✷(stoptd(s)) – Attempt s in top-down manner until success.
stopbu(s) = ✷(stopbu(s))←+ s – What’s that? An exercise for the reader, but see the appendix.
innermost(s) = repeat(oncebu(s)) – An implementation of innermost normalization.

Common helpers

repeat(s) = try(s; repeat(s)) – Iterate s until it fails; see innermost .
try(s) = s←+ id – Recover from the failure of s; see repeat .

Figure 3. A small strategy library (general recursive definitions; Stratego-like syntax)

Positive rules

∃θ. (θ(tl) = t ∧ θ(tr) = t�)
tl → tr @ t ❀ t�

[rule+]

� @ t ❀ t [id+]

s1 @ t ❀ t� ∧ s2 @ t� ❀ t��

s1; s2 @ t ❀ t��
[sequ+]

s1 @ t ❀ t�

s1←+ s2 @ t ❀ t�
[choice+.1]

s1 @ t ❀ ↑ ∧ s2 @ t ❀ t�

s1←+ s2 @ t ❀ t�
[choice+.2]

∀i ∈ {1, . . . , n}. s @ ti ❀ t�i
✷(s) @ c(t1, . . . , tn) ❀ c(t�1, . . . , t�n)

[all+]

∃i ∈ {1, . . . , n}.
s @ ti ❀ t�i

∧ ∀i� ∈ {1, . . . , i− 1}. s @ ti� ❀ ↑
∧ ∀i� ∈ {1, . . . , i− 1, i + 1, . . . , n}. ti� = t�i�

✸(s) @ c(t1, . . . , tn) ❀ c(t�1, . . . , t�n)
[one+]

Negative rules

� ∃θ. θ(tl) = t
tl → tr @ t ❀ ↑

[rule−]

δ @ t ❀ ↑ [fail−]

s1 @ t ❀ ↑
s1; s2 @ t ❀ ↑

[seq−.1]

s1 @ t ❀ t� ∧ s2 @ t� ❀ ↑
s1; s2 @ t ❀ ↑

[seq−.2]

s1 @ t ❀ ↑ ∧ s2 @ t ❀ ↑
s1←+ s2 @ t ❀ ↑

[choice−]

∃i ∈ {1, . . . , n}. s @ ti ❀ ↑
✷(s) @ c(t1, . . . , tn) ❀ ↑

[all−]

∀i ∈ {1, . . . , n}. s @ ti ❀ ↑
✸(s) @ c(t1, . . . , tn) ❀ ↑

[one−]

Figure 2. Semantics of strategy primitives

3. Modeling strategy primitives
We develop a basic formal model that is inspired by Strafun-
ski’s functional programming incarnation of Stratego-like traversal
strategies [21, 37]. (Here we note that Strafunski is essentially a li-
brary whose core provides combinators for all strategy primitives.)

3.1 The term representation
For simplicity, we use untyped terms just like in basic Stratego [36],
or its underlying calculus [35]. We leave it to future work to cover
many-sorted terms [17], or the kind of type-annotated terms of the
universal term representation of Strafunski [21]. Hence, terms are
modeled by the following recursive data type cterm3:

{∗ An algebraic data type ∗}
datatype

cterm = C con (cterm list)

{∗ A type synonym ∗}
types

con = nat

That is, a cterm consists of a constructor (in fact, a natural
number) and a list of cterms — the children. We also provide
functions to take terms apart:4

{∗ Function signatures ∗}
consts

con of :: cterm → con
children :: cterm → cterm list

{∗ Function definitions ∗}
primrec

con of (C c ts) = c
children (C c ts) = ts

3.2 The strategy type
A strategy is essentially a function on cterm. However, we need to
anticipate the potential of failure. We enable this form of partiality
by means of an application of the type constructor option. Thus:5

types
strategy = cterm → result
result = cterm option

Our simple model follows the letter of the SOS judgement
and the original semantics of Stratego: the result of a strategy
application is either a term or “failure”. Strafunski generalizes this

3 All quotations required by the Isabelle/HOL system are omitted in the
code presentations of this paper.
4 Isabelle/HOL notation: In Isabelle, just like in SML, type parameters
precede the type constructor; c.f., cterm list. The type nat and the type
constructor list are provided by the Isabelle library. For readability, we
typeset function types in terms of “→” (whereas native Isabelle notation
would use “⇒”).
5 Isabelle/HOL notation: the type constructor option is provided by the
Isabelle library. An optional value is either of the form Some x denoting
the presence of a value x, or None denoting the absence of any value.

Recover SOS as lemmas

Common traversal schemes

topdown(s) = s; ✷(topdown(s)) – Apply s in a full pass over the input in top-down order.
bottomup(s) = ✷(bottomup(s)); s – Apply s in a full pass over the input in bottom-up order.
oncetd(s) = s←+ ✸(oncetd(s)) – Find the top-most position to apply s successfully.
oncebu(s) = ✸(oncebu(s))←+ s – Find the bottom-most position to apply s successfully.
stoptd(s) = s←+ ✷(stoptd(s)) – Attempt s in top-down manner until success.
stopbu(s) = ✷(stopbu(s))←+ s – What’s that? An exercise for the reader, but see the appendix.
innermost(s) = repeat(oncebu(s)) – An implementation of innermost normalization.

Common helpers

repeat(s) = try(s; repeat(s)) – Iterate s until it fails; see innermost .
try(s) = s←+ id – Recover from the failure of s; see repeat .

Figure 3. A small strategy library (general recursive definitions; Stratego-like syntax)

Positive rules

∃θ. (θ(tl) = t ∧ θ(tr) = t�)
tl → tr @ t ❀ t�

[rule+]

� @ t ❀ t [id+]

s1 @ t ❀ t� ∧ s2 @ t� ❀ t��

s1; s2 @ t ❀ t��
[sequ+]

s1 @ t ❀ t�

s1←+ s2 @ t ❀ t�
[choice+.1]

s1 @ t ❀ ↑ ∧ s2 @ t ❀ t�

s1←+ s2 @ t ❀ t�
[choice+.2]

∀i ∈ {1, . . . , n}. s @ ti ❀ t�i
✷(s) @ c(t1, . . . , tn) ❀ c(t�1, . . . , t�n)

[all+]

∃i ∈ {1, . . . , n}.
s @ ti ❀ t�i

∧ ∀i� ∈ {1, . . . , i− 1}. s @ ti� ❀ ↑
∧ ∀i� ∈ {1, . . . , i− 1, i + 1, . . . , n}. ti� = t�i�

✸(s) @ c(t1, . . . , tn) ❀ c(t�1, . . . , t�n)
[one+]

Negative rules

� ∃θ. θ(tl) = t
tl → tr @ t ❀ ↑

[rule−]

δ @ t ❀ ↑ [fail−]

s1 @ t ❀ ↑
s1; s2 @ t ❀ ↑

[seq−.1]

s1 @ t ❀ t� ∧ s2 @ t� ❀ ↑
s1; s2 @ t ❀ ↑

[seq−.2]

s1 @ t ❀ ↑ ∧ s2 @ t ❀ ↑
s1←+ s2 @ t ❀ ↑

[choice−]

∃i ∈ {1, . . . , n}. s @ ti ❀ ↑
✷(s) @ c(t1, . . . , tn) ❀ ↑

[all−]

∀i ∈ {1, . . . , n}. s @ ti ❀ ↑
✸(s) @ c(t1, . . . , tn) ❀ ↑

[one−]

Figure 2. Semantics of strategy primitives

3. Modeling strategy primitives
We develop a basic formal model that is inspired by Strafun-
ski’s functional programming incarnation of Stratego-like traversal
strategies [21, 37]. (Here we note that Strafunski is essentially a li-
brary whose core provides combinators for all strategy primitives.)

3.1 The term representation
For simplicity, we use untyped terms just like in basic Stratego [36],
or its underlying calculus [35]. We leave it to future work to cover
many-sorted terms [17], or the kind of type-annotated terms of the
universal term representation of Strafunski [21]. Hence, terms are
modeled by the following recursive data type cterm3:

{∗ An algebraic data type ∗}
datatype

cterm = C con (cterm list)

{∗ A type synonym ∗}
types

con = nat

That is, a cterm consists of a constructor (in fact, a natural
number) and a list of cterms — the children. We also provide
functions to take terms apart:4

{∗ Function signatures ∗}
consts

con of :: cterm → con
children :: cterm → cterm list

{∗ Function definitions ∗}
primrec

con of (C c ts) = c
children (C c ts) = ts

3.2 The strategy type
A strategy is essentially a function on cterm. However, we need to
anticipate the potential of failure. We enable this form of partiality
by means of an application of the type constructor option. Thus:5

types
strategy = cterm → result
result = cterm option

Our simple model follows the letter of the SOS judgement
and the original semantics of Stratego: the result of a strategy
application is either a term or “failure”. Strafunski generalizes this

3 All quotations required by the Isabelle/HOL system are omitted in the
code presentations of this paper.
4 Isabelle/HOL notation: In Isabelle, just like in SML, type parameters
precede the type constructor; c.f., cterm list. The type nat and the type
constructor list are provided by the Isabelle library. For readability, we
typeset function types in terms of “→” (whereas native Isabelle notation
would use “⇒”).
5 Isabelle/HOL notation: the type constructor option is provided by the
Isabelle library. An optional value is either of the form Some x denoting
the presence of a value x, or None denoting the absence of any value.

lemma id pos sos: id t = Some t

lemma fail neg sos: fail t = None

lemma sequ pos sos:

s t = Some t’ ∧ s’ t’ = Some t’’ =⇒ sequ s s’ t = Some t’’

lemma sequ neg 1 sos:

s t = None =⇒ sequ s s’ t = None

lemma sequ neg 2 sos:

s t = Some t’ ∧ s’ t’ = None =⇒ sequ s s’ t = None

lemma choice pos 1 sos: s t = Some t’ =⇒ choice s s’ t = Some t’

lemma choice pos 2 sos:

s t = None ∧ s’ t = Some t’ =⇒ choice s s’ t = Some t’

lemma choice neg sos:

s t = None ∧ s’ t = None =⇒ choice s s’ t = None

Figure 5. SOS as lemmas (part I/II)

lemma all pos sos:

(∀ (i::nat). 1 ≤ i ∧ i ≤ n =⇒ s (ts i) = Some (ts’ i))

=⇒ (all s (C c (vector n ts)) = Some (C c (vector n ts’)))

lemma all neg sos:

(∃ (i::nat). 1 ≤ i ∧ i ≤ n ∧ s (ts i) = None)

=⇒ all s (C c (vector n ts)) = None

lemma one pos sos:

(∃ (i::nat). 1 ≤ i ∧ i ≤ n

∧ s (ts i) = Some (ts’ i)

∧ (∀ (i’::nat). 0 < i’ ∧ i’ ≤ n ∧ i’ < i =⇒ s (ts i’) = None)

∧ (∀ (i’::nat). 0 < i’ ∧ i’ ≤ n ∧ i’ �= i =⇒ ts i’ = ts’ i’))

=⇒ one s (C c (vector n ts)) = Some (C c (vector n ts’))

lemma one neg sos:

(∀ (i::nat). 1 ≤ i ∧ i ≤ n =⇒ s (ts i) = None)

=⇒ one s (C c (vector n ts)) = None

Helper function

consts
vector :: nat → (nat → ’a) → ’a list

primrec
vector 0 f = []

vector (Suc n) f = ((vector n f)@[f (Suc n)])

Figure 6. SOS as lemmas (part II/II)

ages index-bounded universal and existential quantification over
terms in lists of immediate subterms. The use of the different id-
ioms can be shown to be equivalent.

Before we can even state the SOS rules as lemmas, we need
to discipline the SOS notation [36] which make use of the “. . . ”
notation for indexed lists of terms. Consider again one of the SOS
rules:

∀i ∈ {1, . . . , n}. s @ ti ❀ t�i
✷(s)@ c(t1, . . . , tn) ❀ c(t�1, . . . , t

�
n)

[all+]

We use place holders for lists of terms instead of the “. . . ”
notation — as in c(ts). Further, we assume that such variables can
be annotated by the length of the vector — as in c(ts : n). Finally,

we may use explicit index-based access — as in ts!i. Hence, we
end up with this variation:

∀i ∈ {1, . . . , n}. s @ ts!i ❀ ts�!i
✷(s)@ c(ts : n) ❀ c(ts� : n)

[all+]

The model of Fig. 6 formalizes these conventions. We view lists
of terms as maps from positions to terms so that index-based access
becomes function application. Such maps are trivially converted
into actual lists by the trivial helper function vector (defined in
Figure 6). In the applications of vector, we constrain the length
of lists of immediate subterms as announced above.

5. Laws of strategy primitives
Let us extend the basic formal model by a layer with laws about
strategy primitives. All of the laws from this section are known if
not obvious, but we claim credit for collecting them and adding
them to the mechanized (proven) model. The proofs of the laws are
straightforward — except for the fusion law that we present last.

5.1 Laws for “sequ” and “choice”
The combinators sequ and choice obey obvious zeros and units. They
are both also associative. Neither of them is commutative (but we
omit a proven counterexample.)

lemma sequ left unit law : sequ id s = s

lemma sequ right unit law : sequ s id = s

lemma sequ left zero law : sequ fail s = fail

lemma sequ right zero law : sequ s fail = fail

lemma choice left zero law : choice id s = id

lemma choice left unit law : choice fail s = s

lemma choice right unit law : choice s fail = s

lemma sequ assoc law:

sequ s (sequ s’ s ’’) = sequ (sequ s s ’) s ’’

lemma choice assoc law :

choice s (choice s’ s ’’) = choice (choice s s ’) s ’’

Distributivity only works from the left side, i.e., the chosen
semantics of choice only provides local backtracking — as opposed
to general backtracking or angelic choice [23]. Thus:

lemma distr left law:

sequ s (choice s’ s’’) = choice (sequ s s’) (sequ s s’’)

NOT A lemma distr right law:

sequ (choice s s’) s’’ = choice (sequ s s’’) (sequ s’ s’’)

5.2 Laws for “all” and “one”
There are two laws about “trivial” applications of all and one:

lemma all id law : all id = id

lemma one fail law : one fail = fail

There are laws with a condition on the term to be a constant:

consts constant :: cterm → bool

defs constant def : constant t = children t = []

lemma all constant law : constant t =⇒ all s t = id t

lemma all not constant law : ¬(constant s) =⇒ all fail t = fail t

lemma one constant law : constant t =⇒ one s t = fail t

lemma one not constant law : ¬(constant t) =⇒ one id t = id t

There are laws for the preservation of the outermost constructor:

lemma all con law : all s t = Some t’ =⇒ con of t = con of t’

lemma one con law: one s t = Some t’ =⇒ con of t = con of t’

Laws and properties

1. Laws

2. Termination behavior

3. Success/failure behavior

aka “modeling
recursive (partial)

strategies”

aka “in-/fallibility”

Laws and properties

1. Laws

2. Termination behavior

3. Success/failure behavior

Some laws
of strategy primitives

lemma id pos sos: id t = Some t

lemma fail neg sos: fail t = None

lemma sequ pos sos:

s t = Some t’ ∧ s’ t’ = Some t’’ =⇒ sequ s s’ t = Some t’’

lemma sequ neg 1 sos:

s t = None =⇒ sequ s s’ t = None

lemma sequ neg 2 sos:

s t = Some t’ ∧ s’ t’ = None =⇒ sequ s s’ t = None

lemma choice pos 1 sos: s t = Some t’ =⇒ choice s s’ t = Some t’

lemma choice pos 2 sos:

s t = None ∧ s’ t = Some t’ =⇒ choice s s’ t = Some t’

lemma choice neg sos:

s t = None ∧ s’ t = None =⇒ choice s s’ t = None

Figure 5. SOS as lemmas (part I/II)

lemma all pos sos:

(∀ (i::nat). 1 ≤ i ∧ i ≤ n =⇒ s (ts i) = Some (ts’ i))

=⇒ (all s (C c (vector n ts)) = Some (C c (vector n ts’)))

lemma all neg sos:

(∃ (i::nat). 1 ≤ i ∧ i ≤ n ∧ s (ts i) = None)

=⇒ all s (C c (vector n ts)) = None

lemma one pos sos:

(∃ (i::nat). 1 ≤ i ∧ i ≤ n

∧ s (ts i) = Some (ts’ i)

∧ (∀ (i’::nat). 0 < i’ ∧ i’ ≤ n ∧ i’ < i =⇒ s (ts i’) = None)

∧ (∀ (i’::nat). 0 < i’ ∧ i’ ≤ n ∧ i’ �= i =⇒ ts i’ = ts’ i’))

=⇒ one s (C c (vector n ts)) = Some (C c (vector n ts’))

lemma one neg sos:

(∀ (i::nat). 1 ≤ i ∧ i ≤ n =⇒ s (ts i) = None)

=⇒ one s (C c (vector n ts)) = None

Helper function

consts
vector :: nat → (nat → ’a) → ’a list

primrec
vector 0 f = []

vector (Suc n) f = ((vector n f)@[f (Suc n)])

Figure 6. SOS as lemmas (part II/II)

ages index-bounded universal and existential quantification over
terms in lists of immediate subterms. The use of the different id-
ioms can be shown to be equivalent.

Before we can even state the SOS rules as lemmas, we need
to discipline the SOS notation [36] which make use of the “. . . ”
notation for indexed lists of terms. Consider again one of the SOS
rules:

∀i ∈ {1, . . . , n}. s @ ti ❀ t�i
✷(s)@ c(t1, . . . , tn) ❀ c(t�1, . . . , t

�
n)

[all+]

We use place holders for lists of terms instead of the “. . . ”
notation — as in c(ts). Further, we assume that such variables can
be annotated by the length of the vector — as in c(ts : n). Finally,

we may use explicit index-based access — as in ts!i. Hence, we
end up with this variation:

∀i ∈ {1, . . . , n}. s @ ts!i ❀ ts�!i
✷(s)@ c(ts : n) ❀ c(ts� : n)

[all+]

The model of Fig. 6 formalizes these conventions. We view lists
of terms as maps from positions to terms so that index-based access
becomes function application. Such maps are trivially converted
into actual lists by the trivial helper function vector (defined in
Figure 6). In the applications of vector, we constrain the length
of lists of immediate subterms as announced above.

5. Laws of strategy primitives
Let us extend the basic formal model by a layer with laws about
strategy primitives. All of the laws from this section are known if
not obvious, but we claim credit for collecting them and adding
them to the mechanized (proven) model. The proofs of the laws are
straightforward — except for the fusion law that we present last.

5.1 Laws for “sequ” and “choice”
The combinators sequ and choice obey obvious zeros and units. They
are both also associative. Neither of them is commutative (but we
omit a proven counterexample.)

lemma sequ left unit law : sequ id s = s

lemma sequ right unit law : sequ s id = s

lemma sequ left zero law : sequ fail s = fail

lemma sequ right zero law : sequ s fail = fail

lemma choice left zero law : choice id s = id

lemma choice left unit law : choice fail s = s

lemma choice right unit law : choice s fail = s

lemma sequ assoc law:

sequ s (sequ s’ s ’’) = sequ (sequ s s ’) s ’’

lemma choice assoc law :

choice s (choice s’ s ’’) = choice (choice s s ’) s ’’

Distributivity only works from the left side, i.e., the chosen
semantics of choice only provides local backtracking — as opposed
to general backtracking or angelic choice [23]. Thus:

lemma distr left law:

sequ s (choice s’ s’’) = choice (sequ s s’) (sequ s s’’)

NOT A lemma distr right law:

sequ (choice s s’) s’’ = choice (sequ s s’’) (sequ s’ s’’)

5.2 Laws for “all” and “one”
There are two laws about “trivial” applications of all and one:

lemma all id law : all id = id

lemma one fail law : one fail = fail

There are laws with a condition on the term to be a constant:

consts constant :: cterm → bool

defs constant def : constant t = children t = []

lemma all constant law : constant t =⇒ all s t = id t

lemma all not constant law : ¬(constant s) =⇒ all fail t = fail t

lemma one constant law : constant t =⇒ one s t = fail t

lemma one not constant law : ¬(constant t) =⇒ one id t = id t

There are laws for the preservation of the outermost constructor:

lemma all con law : all s t = Some t’ =⇒ con of t = con of t’

lemma one con law: one s t = Some t’ =⇒ con of t = con of t’

lemma id pos sos: id t = Some t

lemma fail neg sos: fail t = None

lemma sequ pos sos:

s t = Some t’ ∧ s’ t’ = Some t’’ =⇒ sequ s s’ t = Some t’’

lemma sequ neg 1 sos:

s t = None =⇒ sequ s s’ t = None

lemma sequ neg 2 sos:

s t = Some t’ ∧ s’ t’ = None =⇒ sequ s s’ t = None

lemma choice pos 1 sos: s t = Some t’ =⇒ choice s s’ t = Some t’

lemma choice pos 2 sos:

s t = None ∧ s’ t = Some t’ =⇒ choice s s’ t = Some t’

lemma choice neg sos:

s t = None ∧ s’ t = None =⇒ choice s s’ t = None

Figure 5. SOS as lemmas (part I/II)

lemma all pos sos:

(∀ (i::nat). 1 ≤ i ∧ i ≤ n =⇒ s (ts i) = Some (ts’ i))

=⇒ (all s (C c (vector n ts)) = Some (C c (vector n ts’)))

lemma all neg sos:

(∃ (i::nat). 1 ≤ i ∧ i ≤ n ∧ s (ts i) = None)

=⇒ all s (C c (vector n ts)) = None

lemma one pos sos:

(∃ (i::nat). 1 ≤ i ∧ i ≤ n

∧ s (ts i) = Some (ts’ i)

∧ (∀ (i’::nat). 0 < i’ ∧ i’ ≤ n ∧ i’ < i =⇒ s (ts i’) = None)

∧ (∀ (i’::nat). 0 < i’ ∧ i’ ≤ n ∧ i’ �= i =⇒ ts i’ = ts’ i’))

=⇒ one s (C c (vector n ts)) = Some (C c (vector n ts’))

lemma one neg sos:

(∀ (i::nat). 1 ≤ i ∧ i ≤ n =⇒ s (ts i) = None)

=⇒ one s (C c (vector n ts)) = None

Helper function

consts
vector :: nat → (nat → ’a) → ’a list

primrec
vector 0 f = []

vector (Suc n) f = ((vector n f)@[f (Suc n)])

Figure 6. SOS as lemmas (part II/II)

ages index-bounded universal and existential quantification over
terms in lists of immediate subterms. The use of the different id-
ioms can be shown to be equivalent.

Before we can even state the SOS rules as lemmas, we need
to discipline the SOS notation [36] which make use of the “. . . ”
notation for indexed lists of terms. Consider again one of the SOS
rules:

∀i ∈ {1, . . . , n}. s @ ti ❀ t�i
✷(s)@ c(t1, . . . , tn) ❀ c(t�1, . . . , t

�
n)

[all+]

We use place holders for lists of terms instead of the “. . . ”
notation — as in c(ts). Further, we assume that such variables can
be annotated by the length of the vector — as in c(ts : n). Finally,

we may use explicit index-based access — as in ts!i. Hence, we
end up with this variation:

∀i ∈ {1, . . . , n}. s @ ts!i ❀ ts�!i
✷(s)@ c(ts : n) ❀ c(ts� : n)

[all+]

The model of Fig. 6 formalizes these conventions. We view lists
of terms as maps from positions to terms so that index-based access
becomes function application. Such maps are trivially converted
into actual lists by the trivial helper function vector (defined in
Figure 6). In the applications of vector, we constrain the length
of lists of immediate subterms as announced above.

5. Laws of strategy primitives
Let us extend the basic formal model by a layer with laws about
strategy primitives. All of the laws from this section are known if
not obvious, but we claim credit for collecting them and adding
them to the mechanized (proven) model. The proofs of the laws are
straightforward — except for the fusion law that we present last.

5.1 Laws for “sequ” and “choice”
The combinators sequ and choice obey obvious zeros and units. They
are both also associative. Neither of them is commutative (but we
omit a proven counterexample.)

lemma sequ left unit law : sequ id s = s

lemma sequ right unit law : sequ s id = s

lemma sequ left zero law : sequ fail s = fail

lemma sequ right zero law : sequ s fail = fail

lemma choice left zero law : choice id s = id

lemma choice left unit law : choice fail s = s

lemma choice right unit law : choice s fail = s

lemma sequ assoc law:

sequ s (sequ s’ s ’’) = sequ (sequ s s ’) s ’’

lemma choice assoc law :

choice s (choice s’ s ’’) = choice (choice s s ’) s ’’

Distributivity only works from the left side, i.e., the chosen
semantics of choice only provides local backtracking — as opposed
to general backtracking or angelic choice [23]. Thus:

lemma distr left law:

sequ s (choice s’ s’’) = choice (sequ s s’) (sequ s s’’)

NOT A lemma distr right law:

sequ (choice s s’) s’’ = choice (sequ s s’’) (sequ s’ s’’)

5.2 Laws for “all” and “one”
There are two laws about “trivial” applications of all and one:

lemma all id law : all id = id

lemma one fail law : one fail = fail

There are laws with a condition on the term to be a constant:

consts constant :: cterm → bool

defs constant def : constant t = children t = []

lemma all constant law : constant t =⇒ all s t = id t

lemma all not constant law : ¬(constant s) =⇒ all fail t = fail t

lemma one constant law : constant t =⇒ one s t = fail t

lemma one not constant law : ¬(constant t) =⇒ one id t = id t

There are laws for the preservation of the outermost constructor:

lemma all con law : all s t = Some t’ =⇒ con of t = con of t’

lemma one con law: one s t = Some t’ =⇒ con of t = con of t’

lemma id pos sos: id t = Some t

lemma fail neg sos: fail t = None

lemma sequ pos sos:

s t = Some t’ ∧ s’ t’ = Some t’’ =⇒ sequ s s’ t = Some t’’

lemma sequ neg 1 sos:

s t = None =⇒ sequ s s’ t = None

lemma sequ neg 2 sos:

s t = Some t’ ∧ s’ t’ = None =⇒ sequ s s’ t = None

lemma choice pos 1 sos: s t = Some t’ =⇒ choice s s’ t = Some t’

lemma choice pos 2 sos:

s t = None ∧ s’ t = Some t’ =⇒ choice s s’ t = Some t’

lemma choice neg sos:

s t = None ∧ s’ t = None =⇒ choice s s’ t = None

Figure 5. SOS as lemmas (part I/II)

lemma all pos sos:

(∀ (i::nat). 1 ≤ i ∧ i ≤ n =⇒ s (ts i) = Some (ts’ i))

=⇒ (all s (C c (vector n ts)) = Some (C c (vector n ts’)))

lemma all neg sos:

(∃ (i::nat). 1 ≤ i ∧ i ≤ n ∧ s (ts i) = None)

=⇒ all s (C c (vector n ts)) = None

lemma one pos sos:

(∃ (i::nat). 1 ≤ i ∧ i ≤ n

∧ s (ts i) = Some (ts’ i)

∧ (∀ (i’::nat). 0 < i’ ∧ i’ ≤ n ∧ i’ < i =⇒ s (ts i’) = None)

∧ (∀ (i’::nat). 0 < i’ ∧ i’ ≤ n ∧ i’ �= i =⇒ ts i’ = ts’ i’))

=⇒ one s (C c (vector n ts)) = Some (C c (vector n ts’))

lemma one neg sos:

(∀ (i::nat). 1 ≤ i ∧ i ≤ n =⇒ s (ts i) = None)

=⇒ one s (C c (vector n ts)) = None

Helper function

consts
vector :: nat → (nat → ’a) → ’a list

primrec
vector 0 f = []

vector (Suc n) f = ((vector n f)@[f (Suc n)])

Figure 6. SOS as lemmas (part II/II)

ages index-bounded universal and existential quantification over
terms in lists of immediate subterms. The use of the different id-
ioms can be shown to be equivalent.

Before we can even state the SOS rules as lemmas, we need
to discipline the SOS notation [36] which make use of the “. . . ”
notation for indexed lists of terms. Consider again one of the SOS
rules:

∀i ∈ {1, . . . , n}. s @ ti ❀ t�i
✷(s)@ c(t1, . . . , tn) ❀ c(t�1, . . . , t

�
n)

[all+]

We use place holders for lists of terms instead of the “. . . ”
notation — as in c(ts). Further, we assume that such variables can
be annotated by the length of the vector — as in c(ts : n). Finally,

we may use explicit index-based access — as in ts!i. Hence, we
end up with this variation:

∀i ∈ {1, . . . , n}. s @ ts!i ❀ ts�!i
✷(s)@ c(ts : n) ❀ c(ts� : n)

[all+]

The model of Fig. 6 formalizes these conventions. We view lists
of terms as maps from positions to terms so that index-based access
becomes function application. Such maps are trivially converted
into actual lists by the trivial helper function vector (defined in
Figure 6). In the applications of vector, we constrain the length
of lists of immediate subterms as announced above.

5. Laws of strategy primitives
Let us extend the basic formal model by a layer with laws about
strategy primitives. All of the laws from this section are known if
not obvious, but we claim credit for collecting them and adding
them to the mechanized (proven) model. The proofs of the laws are
straightforward — except for the fusion law that we present last.

5.1 Laws for “sequ” and “choice”
The combinators sequ and choice obey obvious zeros and units. They
are both also associative. Neither of them is commutative (but we
omit a proven counterexample.)

lemma sequ left unit law : sequ id s = s

lemma sequ right unit law : sequ s id = s

lemma sequ left zero law : sequ fail s = fail

lemma sequ right zero law : sequ s fail = fail

lemma choice left zero law : choice id s = id

lemma choice left unit law : choice fail s = s

lemma choice right unit law : choice s fail = s

lemma sequ assoc law:

sequ s (sequ s’ s ’’) = sequ (sequ s s ’) s ’’

lemma choice assoc law :

choice s (choice s’ s ’’) = choice (choice s s ’) s ’’

Distributivity only works from the left side, i.e., the chosen
semantics of choice only provides local backtracking — as opposed
to general backtracking or angelic choice [23]. Thus:

lemma distr left law:

sequ s (choice s’ s’’) = choice (sequ s s’) (sequ s s’’)

NOT A lemma distr right law:

sequ (choice s s’) s’’ = choice (sequ s s’’) (sequ s’ s’’)

5.2 Laws for “all” and “one”
There are two laws about “trivial” applications of all and one:

lemma all id law : all id = id

lemma one fail law : one fail = fail

There are laws with a condition on the term to be a constant:

consts constant :: cterm → bool

defs constant def : constant t = children t = []

lemma all constant law : constant t =⇒ all s t = id t

lemma all not constant law : ¬(constant s) =⇒ all fail t = fail t

lemma one constant law : constant t =⇒ one s t = fail t

lemma one not constant law : ¬(constant t) =⇒ one id t = id t

There are laws for the preservation of the outermost constructor:

lemma all con law : all s t = Some t’ =⇒ con of t = con of t’

lemma one con law: one s t = Some t’ =⇒ con of t = con of t’

lemma id pos sos: id t = Some t

lemma fail neg sos: fail t = None

lemma sequ pos sos:

s t = Some t’ ∧ s’ t’ = Some t’’ =⇒ sequ s s’ t = Some t’’

lemma sequ neg 1 sos:

s t = None =⇒ sequ s s’ t = None

lemma sequ neg 2 sos:

s t = Some t’ ∧ s’ t’ = None =⇒ sequ s s’ t = None

lemma choice pos 1 sos: s t = Some t’ =⇒ choice s s’ t = Some t’

lemma choice pos 2 sos:

s t = None ∧ s’ t = Some t’ =⇒ choice s s’ t = Some t’

lemma choice neg sos:

s t = None ∧ s’ t = None =⇒ choice s s’ t = None

Figure 5. SOS as lemmas (part I/II)

lemma all pos sos:

(∀ (i::nat). 1 ≤ i ∧ i ≤ n =⇒ s (ts i) = Some (ts’ i))

=⇒ (all s (C c (vector n ts)) = Some (C c (vector n ts’)))

lemma all neg sos:

(∃ (i::nat). 1 ≤ i ∧ i ≤ n ∧ s (ts i) = None)

=⇒ all s (C c (vector n ts)) = None

lemma one pos sos:

(∃ (i::nat). 1 ≤ i ∧ i ≤ n

∧ s (ts i) = Some (ts’ i)

∧ (∀ (i’::nat). 0 < i’ ∧ i’ ≤ n ∧ i’ < i =⇒ s (ts i’) = None)

∧ (∀ (i’::nat). 0 < i’ ∧ i’ ≤ n ∧ i’ �= i =⇒ ts i’ = ts’ i’))

=⇒ one s (C c (vector n ts)) = Some (C c (vector n ts’))

lemma one neg sos:

(∀ (i::nat). 1 ≤ i ∧ i ≤ n =⇒ s (ts i) = None)

=⇒ one s (C c (vector n ts)) = None

Helper function

consts
vector :: nat → (nat → ’a) → ’a list

primrec
vector 0 f = []

vector (Suc n) f = ((vector n f)@[f (Suc n)])

Figure 6. SOS as lemmas (part II/II)

ages index-bounded universal and existential quantification over
terms in lists of immediate subterms. The use of the different id-
ioms can be shown to be equivalent.

Before we can even state the SOS rules as lemmas, we need
to discipline the SOS notation [36] which make use of the “. . . ”
notation for indexed lists of terms. Consider again one of the SOS
rules:

∀i ∈ {1, . . . , n}. s @ ti ❀ t�i
✷(s)@ c(t1, . . . , tn) ❀ c(t�1, . . . , t

�
n)

[all+]

We use place holders for lists of terms instead of the “. . . ”
notation — as in c(ts). Further, we assume that such variables can
be annotated by the length of the vector — as in c(ts : n). Finally,

we may use explicit index-based access — as in ts!i. Hence, we
end up with this variation:

∀i ∈ {1, . . . , n}. s @ ts!i ❀ ts�!i
✷(s)@ c(ts : n) ❀ c(ts� : n)

[all+]

The model of Fig. 6 formalizes these conventions. We view lists
of terms as maps from positions to terms so that index-based access
becomes function application. Such maps are trivially converted
into actual lists by the trivial helper function vector (defined in
Figure 6). In the applications of vector, we constrain the length
of lists of immediate subterms as announced above.

5. Laws of strategy primitives
Let us extend the basic formal model by a layer with laws about
strategy primitives. All of the laws from this section are known if
not obvious, but we claim credit for collecting them and adding
them to the mechanized (proven) model. The proofs of the laws are
straightforward — except for the fusion law that we present last.

5.1 Laws for “sequ” and “choice”
The combinators sequ and choice obey obvious zeros and units. They
are both also associative. Neither of them is commutative (but we
omit a proven counterexample.)

lemma sequ left unit law : sequ id s = s

lemma sequ right unit law : sequ s id = s

lemma sequ left zero law : sequ fail s = fail

lemma sequ right zero law : sequ s fail = fail

lemma choice left zero law : choice id s = id

lemma choice left unit law : choice fail s = s

lemma choice right unit law : choice s fail = s

lemma sequ assoc law:

sequ s (sequ s’ s ’’) = sequ (sequ s s ’) s ’’

lemma choice assoc law :

choice s (choice s’ s ’’) = choice (choice s s ’) s ’’

Distributivity only works from the left side, i.e., the chosen
semantics of choice only provides local backtracking — as opposed
to general backtracking or angelic choice [23]. Thus:

lemma distr left law:

sequ s (choice s’ s’’) = choice (sequ s s’) (sequ s s’’)

NOT A lemma distr right law:

sequ (choice s s’) s’’ = choice (sequ s s’’) (sequ s’ s’’)

5.2 Laws for “all” and “one”
There are two laws about “trivial” applications of all and one:

lemma all id law : all id = id

lemma one fail law : one fail = fail

There are laws with a condition on the term to be a constant:

consts constant :: cterm → bool

defs constant def : constant t = children t = []

lemma all constant law : constant t =⇒ all s t = id t

lemma all not constant law : ¬(constant s) =⇒ all fail t = fail t

lemma one constant law : constant t =⇒ one s t = fail t

lemma one not constant law : ¬(constant t) =⇒ one id t = id t

There are laws for the preservation of the outermost constructor:

lemma all con law : all s t = Some t’ =⇒ con of t = con of t’

lemma one con law: one s t = Some t’ =⇒ con of t = con of t’

Fusion law of all5.3 Fusion law for “all”

As already claimed (without proof) in the first “Scrap your boiler-
plate” publication [18], the all combinator allows for fusion, i.e.,
for composition of two traversals into one:

lemma all fusion law: sequ (all s) (all s’) = all (sequ s s’)

This law is important for practical applications of traversal
strategies. For instance, in [7], the law is used to optimize strategic
programs by calculation.

In [31], a non-mechanized proof of the law is given within the
framework of generic functional programming based on sums-of-
products representations.

In our formal model, we have developed a different and mech-
anized proof. It uses a fundamental fusion law for monadic list
maps [28]. Two maps of a possibly failing function over a list can
be combined into one:

axioms
map’ rule: map’ (sequ s s’) xs = bind (map’ s xs) (map’ s’);

consts
bind :: ’a option → (’a → ’z option) → ’z option
map’ :: (’a → ’a option) → ’a list → ’a list option

defs
map’ def: map’ s xs = postMapAll (map s xs)

primrec
bind None s = None
bind (Some x) s = s x

We state this law as an axiom because we have not mechanically
proven it. Based on this law, we can prove all fusion law by a
simple mechanized calculation only involving unfolding and trivial
properties of sequ and all. Informally, one ends up showing that a
sequence of two alls is little more than a sequence of two maps —
except that the outermost constructor is preserved on the way.

6. Modeling partial strategies

We have only considered primitive strategy combinators so far, and
all of them turn out to represent total functions — as witnessed by
our ability to define them in terms of some functional definition
form of Isabelle/HOL. In general though, strategies (in particular,
traversal strategies) may be diverging quite easily. Consider, for
example, the combinator repeat (c.f., Fig. 3). It may diverge quite
obviously — even when it is applied to a total strategy argument.
For instance, repeat id is patently diverging.

Divergence signifies a programming error in strategic program-
ming [19]. Hence, our formal model should make a contribution
to the understanding of divergence. In fact, our formal model must
take into account partiality of strategies because Isabelle/HOL ex-
clusively assumes total models for all functions. Hence, we must
use some encoding for the partial functions. In this section, we mo-
tivate our choice of encoding and describe the recipe behind it. We
use repeat as a running example, but more examples follow in the
next section.

6.1 Dismissal of functional definition forms

The combinator try is total and indeed the function definition as
of Fig. 3 can be directly transliterated as an Isabelle/HOL function
definition:

consts
try :: strategy → strategy

defs
try def: try s t = choice s id t

This transliteration cannot succeed for the combinator repeat
since we know that the general recursive function definition as of
Fig. 3 denotes a partial function, but here is our attempt anyway:

/∗ This definition is illegal in Isabelle/HOL. ∗/
consts

repeat :: strategy → strategy
defs

repeat def: repeat s = try (sequ s (repeat s))

The definition does not meet the constraints of an Isabelle/HOL-
like total function definition. Accordingly, it is rejected by the
theorem prover.

6.2 Dismissal of axiomatization

One may feel tempted to axiomatize repeat:
/∗ This definition is formally risky. ∗/
consts

repeat :: strategy → strategy
axioms

repeat def: repeat s = try (sequ s (repeat s))

Again, the axiom directly captures the recursive function defi-
nition as of Fig. 3. This attempt provides certain problems. While
the “intended” repeat function is not total, the “axiomatized” repeat
function has a total model by definition (due to the semantics of Is-
abelle/HOL). The axiom states that the model should be such that
for each strategy s and for each term t there is a result r as follows:

repeat s t = try (sequ s (repeat s)) t = r

However, it is not obvious that such a total model even exists.
More generally, an axiom like the one above, could make our
logic inconsistent. Also, such a lax approach would make us miss
altogether the conditions under which repeat terminates.

6.3 Outline of modeling approach

Isabelle/HOL actually requires from us to identify and prove termi-
nation conditions. This is not the case for the more implementation-
oriented models of strategic programming (e.g., “Strafunski”) with
their unconstrained use of general recursion.

We model each partial strategy (combinator) as a relation be-
tween input terms and results. The relation is meant to cover the
non-diverging part of the strategy (combinator) in question. In the
case of traversal schemes, this relation is modeled as an inductive
set (which is Isabelle/HOL’s inductive definition form for sets).

In a next phase, the relation is embedded into a new function.
We prefer to view strategies (strategy combinators) generally as
functions. Because of Isabelle/HOL’s semantics, the resulting func-
tion is total by definition, but it is left unspecified for anything not
covered by the relation.

The last step is to show that the resulting function agrees with
the general recursive definition (as of Fig. 3) for the assumed non-
diverging part. At this stage (if not earlier), we need to employ a
sufficient termination condition for the strategy (combinator) in
question. (Of course, there may be several alternative sufficient
conditions.)

6.4 Identification of termination conditions

What is the termination condition of repeat s? If we look closely
at the general recursive definition of repeat s, then we see that the
(verifiable) intention of repeat s is to apply the argument strategy s
until it fails.

Thus, for a terminating application of repeat s, there must ex-
ist an n ∈ N such that repeat s t1 �→ tn where s t1 �→
t2, . . . , s tn−1 �→ tn, s tn �→ ↑. The computation of these ti+1

from t1 for 1 ≤ i < n can be modeled as follows:
consts

chain :: strategy → nat → cterm → result
primrec

chain s 0 t = id t
chain s (Suc i) t = (case s t of None → None | Some t’ → chain s i t’)

5.3 Fusion law for “all”

As already claimed (without proof) in the first “Scrap your boiler-
plate” publication [18], the all combinator allows for fusion, i.e.,
for composition of two traversals into one:

lemma all fusion law: sequ (all s) (all s’) = all (sequ s s’)

This law is important for practical applications of traversal
strategies. For instance, in [7], the law is used to optimize strategic
programs by calculation.

In [31], a non-mechanized proof of the law is given within the
framework of generic functional programming based on sums-of-
products representations.

In our formal model, we have developed a different and mech-
anized proof. It uses a fundamental fusion law for monadic list
maps [28]. Two maps of a possibly failing function over a list can
be combined into one:

axioms
map’ rule: map’ (sequ s s’) xs = bind (map’ s xs) (map’ s’);

consts
bind :: ’a option → (’a → ’z option) → ’z option
map’ :: (’a → ’a option) → ’a list → ’a list option

defs
map’ def: map’ s xs = postMapAll (map s xs)

primrec
bind None s = None
bind (Some x) s = s x

We state this law as an axiom because we have not mechanically
proven it. Based on this law, we can prove all fusion law by a
simple mechanized calculation only involving unfolding and trivial
properties of sequ and all. Informally, one ends up showing that a
sequence of two alls is little more than a sequence of two maps —
except that the outermost constructor is preserved on the way.

6. Modeling partial strategies

We have only considered primitive strategy combinators so far, and
all of them turn out to represent total functions — as witnessed by
our ability to define them in terms of some functional definition
form of Isabelle/HOL. In general though, strategies (in particular,
traversal strategies) may be diverging quite easily. Consider, for
example, the combinator repeat (c.f., Fig. 3). It may diverge quite
obviously — even when it is applied to a total strategy argument.
For instance, repeat id is patently diverging.

Divergence signifies a programming error in strategic program-
ming [19]. Hence, our formal model should make a contribution
to the understanding of divergence. In fact, our formal model must
take into account partiality of strategies because Isabelle/HOL ex-
clusively assumes total models for all functions. Hence, we must
use some encoding for the partial functions. In this section, we mo-
tivate our choice of encoding and describe the recipe behind it. We
use repeat as a running example, but more examples follow in the
next section.

6.1 Dismissal of functional definition forms

The combinator try is total and indeed the function definition as
of Fig. 3 can be directly transliterated as an Isabelle/HOL function
definition:

consts
try :: strategy → strategy

defs
try def: try s t = choice s id t

This transliteration cannot succeed for the combinator repeat
since we know that the general recursive function definition as of
Fig. 3 denotes a partial function, but here is our attempt anyway:

/∗ This definition is illegal in Isabelle/HOL. ∗/
consts

repeat :: strategy → strategy
defs

repeat def: repeat s = try (sequ s (repeat s))

The definition does not meet the constraints of an Isabelle/HOL-
like total function definition. Accordingly, it is rejected by the
theorem prover.

6.2 Dismissal of axiomatization

One may feel tempted to axiomatize repeat:
/∗ This definition is formally risky. ∗/
consts

repeat :: strategy → strategy
axioms

repeat def: repeat s = try (sequ s (repeat s))

Again, the axiom directly captures the recursive function defi-
nition as of Fig. 3. This attempt provides certain problems. While
the “intended” repeat function is not total, the “axiomatized” repeat
function has a total model by definition (due to the semantics of Is-
abelle/HOL). The axiom states that the model should be such that
for each strategy s and for each term t there is a result r as follows:

repeat s t = try (sequ s (repeat s)) t = r

However, it is not obvious that such a total model even exists.
More generally, an axiom like the one above, could make our
logic inconsistent. Also, such a lax approach would make us miss
altogether the conditions under which repeat terminates.

6.3 Outline of modeling approach

Isabelle/HOL actually requires from us to identify and prove termi-
nation conditions. This is not the case for the more implementation-
oriented models of strategic programming (e.g., “Strafunski”) with
their unconstrained use of general recursion.

We model each partial strategy (combinator) as a relation be-
tween input terms and results. The relation is meant to cover the
non-diverging part of the strategy (combinator) in question. In the
case of traversal schemes, this relation is modeled as an inductive
set (which is Isabelle/HOL’s inductive definition form for sets).

In a next phase, the relation is embedded into a new function.
We prefer to view strategies (strategy combinators) generally as
functions. Because of Isabelle/HOL’s semantics, the resulting func-
tion is total by definition, but it is left unspecified for anything not
covered by the relation.

The last step is to show that the resulting function agrees with
the general recursive definition (as of Fig. 3) for the assumed non-
diverging part. At this stage (if not earlier), we need to employ a
sufficient termination condition for the strategy (combinator) in
question. (Of course, there may be several alternative sufficient
conditions.)

6.4 Identification of termination conditions

What is the termination condition of repeat s? If we look closely
at the general recursive definition of repeat s, then we see that the
(verifiable) intention of repeat s is to apply the argument strategy s
until it fails.

Thus, for a terminating application of repeat s, there must ex-
ist an n ∈ N such that repeat s t1 �→ tn where s t1 �→
t2, . . . , s tn−1 �→ tn, s tn �→ ↑. The computation of these ti+1

from t1 for 1 ≤ i < n can be modeled as follows:
consts

chain :: strategy → nat → cterm → result
primrec

chain s 0 t = id t
chain s (Suc i) t = (case s t of None → None | Some t’ → chain s i t’)

References
[1] S. Abramsky, D. M. Gabbay, and T. Maibaum, editors. Handbook of

Logic in Computer Science, Volume 2, Background: Computational
Structures. Oxford Science, 1992.

[2] D. Aspinall, E. Denney, and C. Lüth. A tactic language for hiproofs.
In Proceedings of the 9th AISC international conference, the 15th
Calculemas symposium, and the 7th international MKM conference
on Intelligent Computer Mathematics, pages 339–354. Springer, 2008.

[3] B. E. Aydemir, A. Bohannon, M. Fairbairn, J. N. Foster, B. C. Pierce,
P. Sewell, D. Vytiniotis, G. Washburn, S. Weirich, and S. Zdancewic.
Mechanized Metatheory for the Masses: The PoplMark Challenge. In
Proceedings, Theorem Proving in Higher Order Logics, 18th Interna-
tional Conference, TPHOLs 2005, volume 3603 of LNCS, pages 50–
65. Springer, 2005.

[4] E. Balland, P. Brauner, R. Kopetz, P.-E. Moreau, and A. Reilles. Tom:
Piggybacking Rewriting on Java. In Proceedings, Term Rewriting and
Applications, 18th International Conference, RTA 2007, volume 4533
of LNCS, pages 36–47. Springer, 2007.

[5] P. Borovanský, C. Kirchner, H. Kirchner, and C. Ringeissen. Rewriting
with Strategies in ELAN: A Functional Semantics. Int. J. Found.
Comput. Sci., 12(1):69–95, 2001.

[6] M. Bravenboer, K. T. Kalleberg, R. Vermaas, and E. Visser. Strat-
ego/XT 0.16: components for transformation systems. In PEPM’06:
Proceedings of the 2006 ACM SIGPLAN Workshop on Partial Evalua-
tion and Semantics-based Program Manipulation, pages 95–99. ACM,
2006.

[7] A. Cunha and J. Visser. Transformation of structure-shy programs: ap-
plied to XPath queries and strategic functions. In PEPM’07: Proceed-
ings of the 2007 ACM SIGPLAN Workshop on Partial Evaluation and
Semantics-based Program Manipulation, pages 11–20. ACM Press,
2007.

[8] J. E. Dawson and R. Goré. Embedding Display Calculi into Logical
Frameworks: Comparing Twelf and Isabelle. ENTCS, 42, 2001.

[9] D. Delahaye. A Tactic Language for the System Coq. In LPAR 00:
Proceedings of Logic for Programming and Automated Reasoning,
7th International Conference, volume 1955 of LNCS, pages 85–95.
Springer, 2000.

[10] I. Gnaedig and H. Kirchner. Termination of rewriting under strategies.
ACM Transactions on Computational Logic, 10(2), 2009.

[11] M. Gordon, R. Milner, L. Morris, M. Newey, and C. Wadsworth. A
Metalanguage for interactive proof in LCF. In POPL ’78: Proceed-
ings of the 5th ACM SIGACT-SIGPLAN symposium on Principles of
programming languages, pages 119–130. ACM, 1978.

[12] R. Hinze, A. Löh, and B. C. D. S. Oliveira. ”Scrap Your Boiler-
plate” Reloaded. In FLOPS’06: Proceedings of Functional and Logic
Programming, 8th International Symposium, volume 3945 of LNCS,
pages 13–29. Springer, 2006.

[13] P. Johann and E. Visser. Strategies for Fusing Logic and Control via
Local, Application-Specific Transformations. Technical Report UU-
CS-2003-050, Department of Information and Computing Sciences,
Utrecht University, 2003.

[14] C. Kirchner, F. Kirchner, and H. Kirchner. Strategic computations
and deductions. Festschrift for Peter Andrews. Available online
at http://www.lix.polytechnique.fr/~fkirchner/data/

festschrift2008.pdf, 2008.
[15] H. Kirchner and I. Gnaedig. Termination and normalisation under

strategy Proofs in ELAN. ENTCS, 36, 2000.
[16] G. Klein and T. Nipkow. A machine-checked model for a Java-

like language, virtual machine, and compiler. ACM Transactions
on Programming Languages and Systems (TOPLAS), 28(4):619–695,
2006.

[17] R. Lämmel. Typed Generic Traversal With Term Rewriting Strategies.
Journal Logic and Algebraic Programming, 54(1–2):1–64, 2003.

[18] R. Lämmel and S. L. Peyton Jones. Scrap your boilerplate: a practi-
cal design pattern for generic programming. In TLDI’03: Proceedings
of the 2003 ACM SIGPLAN international workshop on Types in lan-
guages design and implementation, pages 26–37. ACM Press, 2003.

[19] R. Lämmel, S. Thompson, and M. Kaiser. Programming errors in
traversal programs over structured data. ENTCS, 2008. Selected
papers of LDTA 2008, Volume number not yet known.

[20] R. Lämmel, E. Visser, and J. Visser. The essence of
strategic programming. Unpublished manuscript available on-
line http://www.program-transformation.org/Transform/

TheEssenceOfStrategicProgramming, 2002.
[21] R. Lämmel and J. Visser. Typed Combinators for Generic Traversal. In

PADL’02: Proceedings of Practical Aspects of Declarative Program-
ming, volume 2257 of LNCS, pages 137–154. Springer, Jan. 2002.

[22] N. Martı́-Oliet, J. Meseguer, and A. Verdejo. A Rewriting Seman-
tics for Maude Strategies. Proceedings of the Seventh International
Workshop on Rewriting Logic and its Applications, WRLA 2008,
238(3):227–247, 2009.

[23] A. P. Martin, P. H. B. Gardiner, and J. Woodcock. A tactic calculus —
abridged version. Formal Aspects of Computing, 8(4):479–489, 1996.

[24] T. Nipkow. Term Rewriting and Beyond – Theorem Proving in Is-
abelle. Formal Aspects of Computing (1989) 1, pages 320–338, 1989.

[25] T. Nipkow. More Church-Rosser Proofs. Journal of Automated
Reasoning, 26(1):51–66, 2001.

[26] T. Nipkow, L. Paulson, and M. Wenzel. Isabelle/HOL – A Proof
Assistant for Higher-Order Logic, volume 2283 of LNCS. Springer,
2002.

[27] M. V. M. Oliveira, A. L. C. Cavalcanti, and J. C. P. Woodcock. ArcAn-
gel: a tactic language for refinement. Formal Aspects of Computing,
15(1):28–47, 2003.

[28] A. Pardo. Fusion of recursive programs with computational effects.
Theoretical Computer Science, 260(1–2):165–207, 2001.

[29] L. Paulson. A Higher-Order Implementation of Rewriting. Science of
Computer Programming, 3(2):119–149, 1983.

[30] L. Paulson and T. Nipkow. Isabelle website, 2008. http://

isabelle.in.tum.de.
[31] F. Reig. Generic proofs for combinator-based generic programs. In

Trends in Functional Programming, pages 17–32, 2004.
[32] P. Torrini, C. Lueth, C. Maeder, and T. Mossakowski. Translating

Haskell to Isabelle. In Theorem Proving in Higher-Order Logic:
Emerging Trends Proceedings, Uni Kaiserslautern - Computer Sci-
ence TR 364/07, pages 178–193, 2007.

[33] M. G. J. van den Brand, P. Klint, and J. J. Vinju. Term rewriting with
traversal functions. ACM Transactions on Software Engineering and
Methodology (TOSEM), 12(2):152–190, 2003.

[34] E. Visser. Program Transformation with Stratego/XT: Rules, Strate-
gies, Tools, and Systems in Stratego/XT 0.9. In Domain-Specific Pro-
gram Generation, Dagstuhl Seminar, 2003, Revised Papers, volume
3016 of LNCS, pages 216–238. Springer, 2004.

[35] E. Visser and Z.-e.-A. Benaissa. A Core Language for Rewriting. In
Second International Workshop on Rewriting Logic and its Applica-
tions (WRLA 1998), volume 15 of ENTCS. Elsevier Science Publish-
ers, 1998.

[36] E. Visser, Z. el Abidine Benaissa, and A. Tolmach. Building pro-
gram optimizers with rewriting strategies. In ICFP ’98: Proceedings
of the third ACM SIGPLAN international conference on Functional
programming, pages 13–26. ACM, 1998.

[37] J. Visser. Generic Traversal over Typed Source Code Representations.
PhD thesis, University of Amsterdam, 2003.

[38] D. Wasserrab, T. Nipkow, G. Snelting, and F. Tip. An operational
semantics and type safety proof for multiple inheritance in C++. In
OOPSLA ’06: Proceedings of the 21st annual ACM SIGPLAN confer-
ence on Object-oriented programming systems, languages, and appli-
cations, pages 345–362. ACM, 2006.

A. Solution of the exercise in Fig. 3

lemma stopbu id law: stopbu s = id

Follows from
fusion law for
monadic list

map say for the
Maybe monad.

Laws and properties

1. Laws

2. Termination behavior

3. Success/failure behavior

Non-models of recursive strategies
(Example: bottom-up traversal scheme)

Operational intuition

bottomup s == sequ (all (bottomup s)) s

Recursive definition not admitted.

Axiom may lead to inconsistent logic.

This is the definition used in
Haskell (Strafunski) and Stratego!

Modeling recursive strategies I/III

Start from recursive “definition”

bottomup s == sequ (all (bottomup s)) s

Untie recursive knot

bottomup_step s c rs =

! case (postMapAll rs) of

! ! None => None

! ! Some ts' => s (C c ts')

Obviously,
this is a proper definition.

It was obtained by
unfolding definitions and

parametrization et al.

Modeling recursive strategies II/III

Derive recursive definition as inductive set.
consts

bottomup step :: strategy → con → result list → result
bottomup set :: strategy → (cterm × result) set

defs
bottomup step s c rs =

case (postMapAll rs) of
None → None

| Some ts’ → s (C c ts’)

inductive bottomup set s
intros

rule[intro!]:
(∀ (t::cterm). in list t ts =⇒

(∃ (r::result).
in list (t,r) (zip ts rs)

∧ length ts = length rs
∧ (t,r):(bottomup set s)))

=⇒ (C c ts,bottomup step s c rs):(bottomup set s)

Figure 7. Inductive set for bottom-up traversal

consts
bottomup fun :: strategy → strategy;

axioms
bottomup set2fun:

(t,r):(bottomup set s) =⇒ (bottomup fun s t = r);

We expect bottom-up traversal to be total (non-diverging) for

any total argument strategy. Hence, we expect bottomup set s to

represent a total function (for any total s). Hence, bottomup fun
should be fully specified by the above axiom, and we should be

able to show that the set and the function are equivalent without

further side conditions. Indeed:

lemma bottomup total: bottomup fun s t = r = (t,r):(bottomup set s);

The proof relies on induction on the size of term t while lever-

aging the definition of bottomup fun s and the introduction rule of

the inductive set bottomup set s as well as basic properties of strat-

egy primitives. Intuitively, induction on size of terms works out in

this case because bottomup set s visits the input term layer by layer,

and it is clear that the size of terms decreases with each layer, i.e.:

∀ (t::cterm). in list t ts =⇒ size t < size (C c ts)

Finally, we can validate the new definition of bottom-up traver-

sal with regard to the original, general recursive definition.

lemma bottomup rec:
bottomup fun s t = sequ (all (bottomup fun s)) s t;

The proof is straightforward; no induction is needed.

7.2 Models of other total schemes
All other total schemes from Fig. 3 (oncebu, oncetd and stoptd) can be

modeled in a very similar manner. These schemes are particularly

close to each other in that they all recurse into the input term layer

by layer. We use the term “input-driven traversal” hence.

Fig. 8 generalizes the inductive set that we presented for bottom-

up traversal in Fig. 7. It is parametrized by the “non-recursive

part” of a traversal scheme (such as bottomup step in Fig. 7). This

parameter is also generalized in so far that it receives not only the

constructor of the input term, but even the complete term (c.f., i).
This is necessary for the schemes that traverse in top-down manner

(i.e., oncetd and stoptd) because they invoke the argument strategy

on the input term in order to decide whether or not to recurse at all.

consts
generalized set ::

(strategy → cterm → result list → result)
→ strategy
→ (cterm × result) set

inductive generalized set f s
intros

rule[intro!]:
(∀ (t::cterm). in list t (children i) =⇒

(∃ (r::result).
in list (t,r) (zip (children i) rs)

∧ length (children i) = length rs
∧ (t,r):(generalized set f s)))

=⇒ (i,f s i rs):(generalized set f s)

Figure 8. Generalized inductive set for input-driven traversal

consts
topdown step :: strategy → cterm → result list → result
topdown set :: strategy → (cterm × result) set

defs
topdown step def:

topdown step s t rs =
case s t of

None → None
| Some t’ → (case (postMapAll rs) of

None → None
| Some ts’ → Some (C (con of t’) ts’))

inductive topdown set s
intros

rule[intro!]:
(s i = None
∨ (s i = Some t’
∧ (∀ (t::cterm). in list t (children t’) =⇒

(∃ (r::result).
in list (t,r) (zip (children t’) rs)

∧ length (children t’) = length rs
∧ (t,r):(topdown set s)))))

=⇒ (i,topdown step s t rs):(topdown set s)

Figure 9. Inductive set for top-down traversal

7.3 Model of the top-down scheme
The scheme for top-down traversal is not terminating for arbi-

trary (non-diverging) arguments. For instance, it is easy to see that

topdown s diverges if s always increases the size of the given term. In

the terminology of the previous section, the scheme for top-down

traversal is not input-driven. Instead, the scheme recurses into a

term that is obtained by first applying the argument strategy to the

input term.

An inductive set can be still defined quite similarly as before;

c.f., Fig. 9. The essential difference can be spotted in the position

where terms are looked up from the inductive set:

s i = Some t’
∧ (∀ (t::cterm). in list t (children t’) =⇒

(∃ (r::result). ... ∧ (t,r):(topdown set s)))

That is, terms t are not retrieved from i but from s i (assuming

it is a term). It would be possible to generalize generalized set of

Fig. 8 in order to also cover non-input-driven sets. This shows that

we are relatively close to a model of general recursion combinator

for traversal schemes.

As shown before

retrieve recursive results from set

form term/result pairs for all kids

add another step of traversal to set

Modeling recursive strategies III/III

1. Untie recursive knot (done)

2. Derive inductive set (done)

3. Convert set to function (omitted)

4. Prove correctness of function

consts
bottomup step :: strategy → con → result list → result
bottomup set :: strategy → (cterm × result) set

defs
bottomup step s c rs =

case (postMapAll rs) of
None → None

| Some ts’ → s (C c ts’)

inductive bottomup set s
intros

rule[intro!]:
(∀ (t::cterm). in list t ts =⇒

(∃ (r::result).
in list (t,r) (zip ts rs)

∧ length ts = length rs
∧ (t,r):(bottomup set s)))

=⇒ (C c ts,bottomup step s c rs):(bottomup set s)

Figure 7. Inductive set for bottom-up traversal

consts
bottomup fun :: strategy → strategy;

axioms
bottomup set2fun:

(t,r):(bottomup set s) =⇒ (bottomup fun s t = r);

We expect bottom-up traversal to be total (non-diverging) for

any total argument strategy. Hence, we expect bottomup set s to

represent a total function (for any total s). Hence, bottomup fun
should be fully specified by the above axiom, and we should be

able to show that the set and the function are equivalent without

further side conditions. Indeed:

lemma bottomup total: bottomup fun s t = r = (t,r):(bottomup set s);

The proof relies on induction on the size of term t while lever-

aging the definition of bottomup fun s and the introduction rule of

the inductive set bottomup set s as well as basic properties of strat-

egy primitives. Intuitively, induction on size of terms works out in

this case because bottomup set s visits the input term layer by layer,

and it is clear that the size of terms decreases with each layer, i.e.:

∀ (t::cterm). in list t ts =⇒ size t < size (C c ts)

Finally, we can validate the new definition of bottom-up traver-

sal with regard to the original, general recursive definition.

lemma bottomup rec:
bottomup fun s t = sequ (all (bottomup fun s)) s t;

The proof is straightforward; no induction is needed.

7.2 Models of other total schemes
All other total schemes from Fig. 3 (oncebu, oncetd and stoptd) can be

modeled in a very similar manner. These schemes are particularly

close to each other in that they all recurse into the input term layer

by layer. We use the term “input-driven traversal” hence.

Fig. 8 generalizes the inductive set that we presented for bottom-

up traversal in Fig. 7. It is parametrized by the “non-recursive

part” of a traversal scheme (such as bottomup step in Fig. 7). This

parameter is also generalized in so far that it receives not only the

constructor of the input term, but even the complete term (c.f., i).
This is necessary for the schemes that traverse in top-down manner

(i.e., oncetd and stoptd) because they invoke the argument strategy

on the input term in order to decide whether or not to recurse at all.

consts
generalized set ::

(strategy → cterm → result list → result)
→ strategy
→ (cterm × result) set

inductive generalized set f s
intros

rule[intro!]:
(∀ (t::cterm). in list t (children i) =⇒

(∃ (r::result).
in list (t,r) (zip (children i) rs)

∧ length (children i) = length rs
∧ (t,r):(generalized set f s)))

=⇒ (i,f s i rs):(generalized set f s)

Figure 8. Generalized inductive set for input-driven traversal

consts
topdown step :: strategy → cterm → result list → result
topdown set :: strategy → (cterm × result) set

defs
topdown step def:

topdown step s t rs =
case s t of

None → None
| Some t’ → (case (postMapAll rs) of

None → None
| Some ts’ → Some (C (con of t’) ts’))

inductive topdown set s
intros

rule[intro!]:
(s i = None
∨ (s i = Some t’
∧ (∀ (t::cterm). in list t (children t’) =⇒

(∃ (r::result).
in list (t,r) (zip (children t’) rs)

∧ length (children t’) = length rs
∧ (t,r):(topdown set s)))))

=⇒ (i,topdown step s t rs):(topdown set s)

Figure 9. Inductive set for top-down traversal

7.3 Model of the top-down scheme
The scheme for top-down traversal is not terminating for arbi-

trary (non-diverging) arguments. For instance, it is easy to see that

topdown s diverges if s always increases the size of the given term. In

the terminology of the previous section, the scheme for top-down

traversal is not input-driven. Instead, the scheme recurses into a

term that is obtained by first applying the argument strategy to the

input term.

An inductive set can be still defined quite similarly as before;

c.f., Fig. 9. The essential difference can be spotted in the position

where terms are looked up from the inductive set:

s i = Some t’
∧ (∀ (t::cterm). in list t (children t’) =⇒

(∃ (r::result). ... ∧ (t,r):(topdown set s)))

That is, terms t are not retrieved from i but from s i (assuming

it is a term). It would be possible to generalize generalized set of

Fig. 8 in order to also cover non-input-driven sets. This shows that

we are relatively close to a model of general recursion combinator

for traversal schemes.

Slogan:
“So what didn’t work as an

axiom or as a definition
does still hold as a lemma.”

Laws and properties

1. Laws

2. Termination behavior

3. Success/failure behavior

In-/fallibility of the strategy primitives
defs

fallible def : fallible s = ∃ (t::cterm). s t = None

infallible def : infallible s = ¬(fallible s)

8.2 In-/fallibility of the strategy primitives
The strategy primitives meet the following infallibility properties:

lemma id not fail:

infallible id

lemma sequ not fail:

infallible s ∧ infallible s’ =⇒ infallible (sequ s s’)

lemma choice not fail:

infallible s ∨ infallible s’ =⇒ infallible (choice s s’)

lemma all not fail:

infallible s =⇒ infallible (all s)

Moreover, the following fallibility properties hold:
lemma fail fail : fallible fail

lemma sequ fail : fallible s =⇒ fallible (sequ s s ’)

lemma all fail : fallible s =⇒ fallible (all s)

lemma one fail : fallible (one s)

For instance, lemma one fail says that one s is fallible no matter
what (say, even for an infallible s — because one s may still be
applied to a constant, in which cases it fails definitely). There is
also a (relatively plausible) property that does not hold:

NOT A lemma choice fail:

fallible s ∧ fallible s’ =⇒ fallible (choice s s’)

That is, fallibility of two strategies does not imply that their
composition by choice is fallible (because they could be failing in
a mutually exclusive manner). Likewise, fallibility of s’ in sequ s s’

does not imply fallibility of the composition. It is easy to document
and prove counter-examples in our setup; we omit them here for
brevity.

8.3 Infallibility of the bottom-up scheme
We can prove the following property:

lemma bottomup not fail:

infallible s =⇒ infallible (bottomup fun s)

The proof of the above lemma requires induction on the size of
terms. To provide some insight into the proof needed, we inline a
lemma that models the induction step:

lemma bottomup not fail step:

infallible s

∧ (∀ (t’::cterm). size t’ < size t =⇒ bottomup fun s t’ �= None)

=⇒ bottomup fun s t �= None

The induction hypothesis (see second operand of conjunction)
establishes here that bottomup fun s does not fail for terms t’ smaller
in size than terms t being considered in the induction step.

8.4 Infallibility of the top-down scheme
One may feel tempted to treat the top-down scheme the same way
by proving a property like the following:

NOT A lemma topdown total:

topdown fun s t = r = (t,r):(topdown set s));

Just as in the case of modeling top-down traversal (c.f., §7.3),
we need to constrain the argument strategy s so that we are able
to perform an induction proof. Again, we may use an arbitrary
measure for a “non-increasing” property of s. For concreteness’
sake, we show the lemma here for the specific case of a strategy
that is non-increasing in size:

lemma topdown not fail:

infallible s ∧ nonincreasing s =⇒ infallible (topdown fun s)

8.5 Infallibility of the top-down scheme with stop
We can prove, that the topdown scheme with stop is infallible — no
matter what the argument strategy (because the traversal will try as
long as it succeeds (in every “branch”), or it may hit a constant term
eventually, which implies success, too).

lemma stoptd not fail: infallible (stoptd fun s)

Again, an induction proof, similar to those above, is needed.
For the base case, we can show that stoptd fun s cannot fail when-
ever it is applied to a constant term — as a consequence of
lemma all constant law of Sec. 5.

8.6 Success/failure behavior of the once. . . schemes
Let us start with the following attempts:

lemma oncetd not fail USELESS:

infallible s =⇒ infallible (oncetd fun s)

lemma oncebu not fail USELESS:

infallible s =⇒ infallible (oncebu fun s)

The infallibility of the argument strategies are indeed sufficient
conditions for the infallibility of the schemes, but these are too
strong requirements for practical purposes.

The once. . . schemes are typically used with argument strategies
that “fail most of the time”. Arguably, the following claims are
more useful: oncetd fun s t and oncebu fun s t succeed if s succeeds
for some subterm of t.

The following definition maps a given term to the set of its
subterms; we use Isabelle/HOL’s form of recursive definitions:

consts
in term :: cterm → cterm set

recdef
in term measure (λ t. size t)

in term def: in term t =

{t}
∪ (

S
(t’::cterm).

if in list t’ (children t) then in term t’ else {})

The announced properties of the once. . . schemes are formal-
ized as follows:

lemma oncebu not fail:

(∃ (t’::cterm). t’:(in term t) ∧ s t’ �= None)

=⇒ oncebu fun s t �= None

lemma oncetd not fail:

(∃ (t’::cterm). t’:(in term t) ∧ s t’ �= None)

=⇒ oncetd fun s t �= None

8.7 Infallibility of innermost normalization
Innermost normalization is infallible — no matter what the argu-
ment strategy. Intuitively, this is obvious from its definition because
we can only exit the iteration of repeat with a non-failure result.

We should mention that we can customize the notion of in-
/fallibility to apply to set-based definitions (for the non-diverging
parts of strategies). In this case, we do not even have to constrain
the in-/fallibility lemmas with a termination condition (as we were
forced to do in the case of top-down traversal above). Thus:

lemma repeat set not fail: infallible (repeat set s)

lemma innermost set not fail: infallible (innermost set s)

Here is the infallibility property with the termination condition:

lemma innermost fun not fail:

repeat condition (oncebu fun s) =⇒ infallible (innermost fun s)

defs
fallible def : fallible s = ∃ (t::cterm). s t = None

infallible def : infallible s = ¬(fallible s)

8.2 In-/fallibility of the strategy primitives
The strategy primitives meet the following infallibility properties:

lemma id not fail:

infallible id

lemma sequ not fail:

infallible s ∧ infallible s’ =⇒ infallible (sequ s s’)

lemma choice not fail:

infallible s ∨ infallible s’ =⇒ infallible (choice s s’)

lemma all not fail:

infallible s =⇒ infallible (all s)

Moreover, the following fallibility properties hold:
lemma fail fail : fallible fail

lemma sequ fail : fallible s =⇒ fallible (sequ s s ’)

lemma all fail : fallible s =⇒ fallible (all s)

lemma one fail : fallible (one s)

For instance, lemma one fail says that one s is fallible no matter
what (say, even for an infallible s — because one s may still be
applied to a constant, in which cases it fails definitely). There is
also a (relatively plausible) property that does not hold:

NOT A lemma choice fail:

fallible s ∧ fallible s’ =⇒ fallible (choice s s’)

That is, fallibility of two strategies does not imply that their
composition by choice is fallible (because they could be failing in
a mutually exclusive manner). Likewise, fallibility of s’ in sequ s s’

does not imply fallibility of the composition. It is easy to document
and prove counter-examples in our setup; we omit them here for
brevity.

8.3 Infallibility of the bottom-up scheme
We can prove the following property:

lemma bottomup not fail:

infallible s =⇒ infallible (bottomup fun s)

The proof of the above lemma requires induction on the size of
terms. To provide some insight into the proof needed, we inline a
lemma that models the induction step:

lemma bottomup not fail step:

infallible s

∧ (∀ (t’::cterm). size t’ < size t =⇒ bottomup fun s t’ �= None)

=⇒ bottomup fun s t �= None

The induction hypothesis (see second operand of conjunction)
establishes here that bottomup fun s does not fail for terms t’ smaller
in size than terms t being considered in the induction step.

8.4 Infallibility of the top-down scheme
One may feel tempted to treat the top-down scheme the same way
by proving a property like the following:

NOT A lemma topdown total:

topdown fun s t = r = (t,r):(topdown set s));

Just as in the case of modeling top-down traversal (c.f., §7.3),
we need to constrain the argument strategy s so that we are able
to perform an induction proof. Again, we may use an arbitrary
measure for a “non-increasing” property of s. For concreteness’
sake, we show the lemma here for the specific case of a strategy
that is non-increasing in size:

lemma topdown not fail:

infallible s ∧ nonincreasing s =⇒ infallible (topdown fun s)

8.5 Infallibility of the top-down scheme with stop
We can prove, that the topdown scheme with stop is infallible — no
matter what the argument strategy (because the traversal will try as
long as it succeeds (in every “branch”), or it may hit a constant term
eventually, which implies success, too).

lemma stoptd not fail: infallible (stoptd fun s)

Again, an induction proof, similar to those above, is needed.
For the base case, we can show that stoptd fun s cannot fail when-
ever it is applied to a constant term — as a consequence of
lemma all constant law of Sec. 5.

8.6 Success/failure behavior of the once. . . schemes
Let us start with the following attempts:

lemma oncetd not fail USELESS:

infallible s =⇒ infallible (oncetd fun s)

lemma oncebu not fail USELESS:

infallible s =⇒ infallible (oncebu fun s)

The infallibility of the argument strategies are indeed sufficient
conditions for the infallibility of the schemes, but these are too
strong requirements for practical purposes.

The once. . . schemes are typically used with argument strategies
that “fail most of the time”. Arguably, the following claims are
more useful: oncetd fun s t and oncebu fun s t succeed if s succeeds
for some subterm of t.

The following definition maps a given term to the set of its
subterms; we use Isabelle/HOL’s form of recursive definitions:

consts
in term :: cterm → cterm set

recdef
in term measure (λ t. size t)

in term def: in term t =

{t}
∪ (

S
(t’::cterm).

if in list t’ (children t) then in term t’ else {})

The announced properties of the once. . . schemes are formal-
ized as follows:

lemma oncebu not fail:

(∃ (t’::cterm). t’:(in term t) ∧ s t’ �= None)

=⇒ oncebu fun s t �= None

lemma oncetd not fail:

(∃ (t’::cterm). t’:(in term t) ∧ s t’ �= None)

=⇒ oncetd fun s t �= None

8.7 Infallibility of innermost normalization
Innermost normalization is infallible — no matter what the argu-
ment strategy. Intuitively, this is obvious from its definition because
we can only exit the iteration of repeat with a non-failure result.

We should mention that we can customize the notion of in-
/fallibility to apply to set-based definitions (for the non-diverging
parts of strategies). In this case, we do not even have to constrain
the in-/fallibility lemmas with a termination condition (as we were
forced to do in the case of top-down traversal above). Thus:

lemma repeat set not fail: infallible (repeat set s)

lemma innermost set not fail: infallible (innermost set s)

Here is the infallibility property with the termination condition:

lemma innermost fun not fail:

repeat condition (oncebu fun s) =⇒ infallible (innermost fun s)

defs
fallible def : fallible s = ∃ (t::cterm). s t = None

infallible def : infallible s = ¬(fallible s)

8.2 In-/fallibility of the strategy primitives
The strategy primitives meet the following infallibility properties:

lemma id not fail:

infallible id

lemma sequ not fail:

infallible s ∧ infallible s’ =⇒ infallible (sequ s s’)

lemma choice not fail:

infallible s ∨ infallible s’ =⇒ infallible (choice s s’)

lemma all not fail:

infallible s =⇒ infallible (all s)

Moreover, the following fallibility properties hold:
lemma fail fail : fallible fail

lemma sequ fail : fallible s =⇒ fallible (sequ s s ’)

lemma all fail : fallible s =⇒ fallible (all s)

lemma one fail : fallible (one s)

For instance, lemma one fail says that one s is fallible no matter
what (say, even for an infallible s — because one s may still be
applied to a constant, in which cases it fails definitely). There is
also a (relatively plausible) property that does not hold:

NOT A lemma choice fail:

fallible s ∧ fallible s’ =⇒ fallible (choice s s’)

That is, fallibility of two strategies does not imply that their
composition by choice is fallible (because they could be failing in
a mutually exclusive manner). Likewise, fallibility of s’ in sequ s s’

does not imply fallibility of the composition. It is easy to document
and prove counter-examples in our setup; we omit them here for
brevity.

8.3 Infallibility of the bottom-up scheme
We can prove the following property:

lemma bottomup not fail:

infallible s =⇒ infallible (bottomup fun s)

The proof of the above lemma requires induction on the size of
terms. To provide some insight into the proof needed, we inline a
lemma that models the induction step:

lemma bottomup not fail step:

infallible s

∧ (∀ (t’::cterm). size t’ < size t =⇒ bottomup fun s t’ �= None)

=⇒ bottomup fun s t �= None

The induction hypothesis (see second operand of conjunction)
establishes here that bottomup fun s does not fail for terms t’ smaller
in size than terms t being considered in the induction step.

8.4 Infallibility of the top-down scheme
One may feel tempted to treat the top-down scheme the same way
by proving a property like the following:

NOT A lemma topdown total:

topdown fun s t = r = (t,r):(topdown set s));

Just as in the case of modeling top-down traversal (c.f., §7.3),
we need to constrain the argument strategy s so that we are able
to perform an induction proof. Again, we may use an arbitrary
measure for a “non-increasing” property of s. For concreteness’
sake, we show the lemma here for the specific case of a strategy
that is non-increasing in size:

lemma topdown not fail:

infallible s ∧ nonincreasing s =⇒ infallible (topdown fun s)

8.5 Infallibility of the top-down scheme with stop
We can prove, that the topdown scheme with stop is infallible — no
matter what the argument strategy (because the traversal will try as
long as it succeeds (in every “branch”), or it may hit a constant term
eventually, which implies success, too).

lemma stoptd not fail: infallible (stoptd fun s)

Again, an induction proof, similar to those above, is needed.
For the base case, we can show that stoptd fun s cannot fail when-
ever it is applied to a constant term — as a consequence of
lemma all constant law of Sec. 5.

8.6 Success/failure behavior of the once. . . schemes
Let us start with the following attempts:

lemma oncetd not fail USELESS:

infallible s =⇒ infallible (oncetd fun s)

lemma oncebu not fail USELESS:

infallible s =⇒ infallible (oncebu fun s)

The infallibility of the argument strategies are indeed sufficient
conditions for the infallibility of the schemes, but these are too
strong requirements for practical purposes.

The once. . . schemes are typically used with argument strategies
that “fail most of the time”. Arguably, the following claims are
more useful: oncetd fun s t and oncebu fun s t succeed if s succeeds
for some subterm of t.

The following definition maps a given term to the set of its
subterms; we use Isabelle/HOL’s form of recursive definitions:

consts
in term :: cterm → cterm set

recdef
in term measure (λ t. size t)

in term def: in term t =

{t}
∪ (

S
(t’::cterm).

if in list t’ (children t) then in term t’ else {})

The announced properties of the once. . . schemes are formal-
ized as follows:

lemma oncebu not fail:

(∃ (t’::cterm). t’:(in term t) ∧ s t’ �= None)

=⇒ oncebu fun s t �= None

lemma oncetd not fail:

(∃ (t’::cterm). t’:(in term t) ∧ s t’ �= None)

=⇒ oncetd fun s t �= None

8.7 Infallibility of innermost normalization
Innermost normalization is infallible — no matter what the argu-
ment strategy. Intuitively, this is obvious from its definition because
we can only exit the iteration of repeat with a non-failure result.

We should mention that we can customize the notion of in-
/fallibility to apply to set-based definitions (for the non-diverging
parts of strategies). In this case, we do not even have to constrain
the in-/fallibility lemmas with a termination condition (as we were
forced to do in the case of top-down traversal above). Thus:

lemma repeat set not fail: infallible (repeat set s)

lemma innermost set not fail: infallible (innermost set s)

Here is the infallibility property with the termination condition:

lemma innermost fun not fail:

repeat condition (oncebu fun s) =⇒ infallible (innermost fun s)

Infallibility of the bottom-up scheme

defs
fallible def : fallible s = ∃ (t::cterm). s t = None

infallible def : infallible s = ¬(fallible s)

8.2 In-/fallibility of the strategy primitives
The strategy primitives meet the following infallibility properties:

lemma id not fail:

infallible id

lemma sequ not fail:

infallible s ∧ infallible s’ =⇒ infallible (sequ s s’)

lemma choice not fail:

infallible s ∨ infallible s’ =⇒ infallible (choice s s’)

lemma all not fail:

infallible s =⇒ infallible (all s)

Moreover, the following fallibility properties hold:
lemma fail fail : fallible fail

lemma sequ fail : fallible s =⇒ fallible (sequ s s ’)

lemma all fail : fallible s =⇒ fallible (all s)

lemma one fail : fallible (one s)

For instance, lemma one fail says that one s is fallible no matter
what (say, even for an infallible s — because one s may still be
applied to a constant, in which cases it fails definitely). There is
also a (relatively plausible) property that does not hold:

NOT A lemma choice fail:

fallible s ∧ fallible s’ =⇒ fallible (choice s s’)

That is, fallibility of two strategies does not imply that their
composition by choice is fallible (because they could be failing in
a mutually exclusive manner). Likewise, fallibility of s’ in sequ s s’

does not imply fallibility of the composition. It is easy to document
and prove counter-examples in our setup; we omit them here for
brevity.

8.3 Infallibility of the bottom-up scheme
We can prove the following property:

lemma bottomup not fail:

infallible s =⇒ infallible (bottomup fun s)

The proof of the above lemma requires induction on the size of
terms. To provide some insight into the proof needed, we inline a
lemma that models the induction step:

lemma bottomup not fail step:

infallible s

∧ (∀ (t’::cterm). size t’ < size t =⇒ bottomup fun s t’ �= None)

=⇒ bottomup fun s t �= None

The induction hypothesis (see second operand of conjunction)
establishes here that bottomup fun s does not fail for terms t’ smaller
in size than terms t being considered in the induction step.

8.4 Infallibility of the top-down scheme
One may feel tempted to treat the top-down scheme the same way
by proving a property like the following:

NOT A lemma topdown total:

topdown fun s t = r = (t,r):(topdown set s));

Just as in the case of modeling top-down traversal (c.f., §7.3),
we need to constrain the argument strategy s so that we are able
to perform an induction proof. Again, we may use an arbitrary
measure for a “non-increasing” property of s. For concreteness’
sake, we show the lemma here for the specific case of a strategy
that is non-increasing in size:

lemma topdown not fail:

infallible s ∧ nonincreasing s =⇒ infallible (topdown fun s)

8.5 Infallibility of the top-down scheme with stop
We can prove, that the topdown scheme with stop is infallible — no
matter what the argument strategy (because the traversal will try as
long as it succeeds (in every “branch”), or it may hit a constant term
eventually, which implies success, too).

lemma stoptd not fail: infallible (stoptd fun s)

Again, an induction proof, similar to those above, is needed.
For the base case, we can show that stoptd fun s cannot fail when-
ever it is applied to a constant term — as a consequence of
lemma all constant law of Sec. 5.

8.6 Success/failure behavior of the once. . . schemes
Let us start with the following attempts:

lemma oncetd not fail USELESS:

infallible s =⇒ infallible (oncetd fun s)

lemma oncebu not fail USELESS:

infallible s =⇒ infallible (oncebu fun s)

The infallibility of the argument strategies are indeed sufficient
conditions for the infallibility of the schemes, but these are too
strong requirements for practical purposes.

The once. . . schemes are typically used with argument strategies
that “fail most of the time”. Arguably, the following claims are
more useful: oncetd fun s t and oncebu fun s t succeed if s succeeds
for some subterm of t.

The following definition maps a given term to the set of its
subterms; we use Isabelle/HOL’s form of recursive definitions:

consts
in term :: cterm → cterm set

recdef
in term measure (λ t. size t)

in term def: in term t =

{t}
∪ (

S
(t’::cterm).

if in list t’ (children t) then in term t’ else {})

The announced properties of the once. . . schemes are formal-
ized as follows:

lemma oncebu not fail:

(∃ (t’::cterm). t’:(in term t) ∧ s t’ �= None)

=⇒ oncebu fun s t �= None

lemma oncetd not fail:

(∃ (t’::cterm). t’:(in term t) ∧ s t’ �= None)

=⇒ oncetd fun s t �= None

8.7 Infallibility of innermost normalization
Innermost normalization is infallible — no matter what the argu-
ment strategy. Intuitively, this is obvious from its definition because
we can only exit the iteration of repeat with a non-failure result.

We should mention that we can customize the notion of in-
/fallibility to apply to set-based definitions (for the non-diverging
parts of strategies). In this case, we do not even have to constrain
the in-/fallibility lemmas with a termination condition (as we were
forced to do in the case of top-down traversal above). Thus:

lemma repeat set not fail: infallible (repeat set s)

lemma innermost set not fail: infallible (innermost set s)

Here is the infallibility property with the termination condition:

lemma innermost fun not fail:

repeat condition (oncebu fun s) =⇒ infallible (innermost fun s)

defs
fallible def : fallible s = ∃ (t::cterm). s t = None

infallible def : infallible s = ¬(fallible s)

8.2 In-/fallibility of the strategy primitives
The strategy primitives meet the following infallibility properties:

lemma id not fail:

infallible id

lemma sequ not fail:

infallible s ∧ infallible s’ =⇒ infallible (sequ s s’)

lemma choice not fail:

infallible s ∨ infallible s’ =⇒ infallible (choice s s’)

lemma all not fail:

infallible s =⇒ infallible (all s)

Moreover, the following fallibility properties hold:
lemma fail fail : fallible fail

lemma sequ fail : fallible s =⇒ fallible (sequ s s ’)

lemma all fail : fallible s =⇒ fallible (all s)

lemma one fail : fallible (one s)

For instance, lemma one fail says that one s is fallible no matter
what (say, even for an infallible s — because one s may still be
applied to a constant, in which cases it fails definitely). There is
also a (relatively plausible) property that does not hold:

NOT A lemma choice fail:

fallible s ∧ fallible s’ =⇒ fallible (choice s s’)

That is, fallibility of two strategies does not imply that their
composition by choice is fallible (because they could be failing in
a mutually exclusive manner). Likewise, fallibility of s’ in sequ s s’

does not imply fallibility of the composition. It is easy to document
and prove counter-examples in our setup; we omit them here for
brevity.

8.3 Infallibility of the bottom-up scheme
We can prove the following property:

lemma bottomup not fail:

infallible s =⇒ infallible (bottomup fun s)

The proof of the above lemma requires induction on the size of
terms. To provide some insight into the proof needed, we inline a
lemma that models the induction step:

lemma bottomup not fail step:

infallible s

∧ (∀ (t’::cterm). size t’ < size t =⇒ bottomup fun s t’ �= None)

=⇒ bottomup fun s t �= None

The induction hypothesis (see second operand of conjunction)
establishes here that bottomup fun s does not fail for terms t’ smaller
in size than terms t being considered in the induction step.

8.4 Infallibility of the top-down scheme
One may feel tempted to treat the top-down scheme the same way
by proving a property like the following:

NOT A lemma topdown total:

topdown fun s t = r = (t,r):(topdown set s));

Just as in the case of modeling top-down traversal (c.f., §7.3),
we need to constrain the argument strategy s so that we are able
to perform an induction proof. Again, we may use an arbitrary
measure for a “non-increasing” property of s. For concreteness’
sake, we show the lemma here for the specific case of a strategy
that is non-increasing in size:

lemma topdown not fail:

infallible s ∧ nonincreasing s =⇒ infallible (topdown fun s)

8.5 Infallibility of the top-down scheme with stop
We can prove, that the topdown scheme with stop is infallible — no
matter what the argument strategy (because the traversal will try as
long as it succeeds (in every “branch”), or it may hit a constant term
eventually, which implies success, too).

lemma stoptd not fail: infallible (stoptd fun s)

Again, an induction proof, similar to those above, is needed.
For the base case, we can show that stoptd fun s cannot fail when-
ever it is applied to a constant term — as a consequence of
lemma all constant law of Sec. 5.

8.6 Success/failure behavior of the once. . . schemes
Let us start with the following attempts:

lemma oncetd not fail USELESS:

infallible s =⇒ infallible (oncetd fun s)

lemma oncebu not fail USELESS:

infallible s =⇒ infallible (oncebu fun s)

The infallibility of the argument strategies are indeed sufficient
conditions for the infallibility of the schemes, but these are too
strong requirements for practical purposes.

The once. . . schemes are typically used with argument strategies
that “fail most of the time”. Arguably, the following claims are
more useful: oncetd fun s t and oncebu fun s t succeed if s succeeds
for some subterm of t.

The following definition maps a given term to the set of its
subterms; we use Isabelle/HOL’s form of recursive definitions:

consts
in term :: cterm → cterm set

recdef
in term measure (λ t. size t)

in term def: in term t =

{t}
∪ (

S
(t’::cterm).

if in list t’ (children t) then in term t’ else {})

The announced properties of the once. . . schemes are formal-
ized as follows:

lemma oncebu not fail:

(∃ (t’::cterm). t’:(in term t) ∧ s t’ �= None)

=⇒ oncebu fun s t �= None

lemma oncetd not fail:

(∃ (t’::cterm). t’:(in term t) ∧ s t’ �= None)

=⇒ oncetd fun s t �= None

8.7 Infallibility of innermost normalization
Innermost normalization is infallible — no matter what the argu-
ment strategy. Intuitively, this is obvious from its definition because
we can only exit the iteration of repeat with a non-failure result.

We should mention that we can customize the notion of in-
/fallibility to apply to set-based definitions (for the non-diverging
parts of strategies). In this case, we do not even have to constrain
the in-/fallibility lemmas with a termination condition (as we were
forced to do in the case of top-down traversal above). Thus:

lemma repeat set not fail: infallible (repeat set s)

lemma innermost set not fail: infallible (innermost set s)

Here is the infallibility property with the termination condition:

lemma innermost fun not fail:

repeat condition (oncebu fun s) =⇒ infallible (innermost fun s)

Prove by
induction on size

of input term

Lemma for induction step

A note on complexity

9. Related work
Properties of traversal programs Algebraic laws of strategic
primitives appear in the literature on Stratego-like strategies [20,
13, 18, 17, 7] — with “paper and pencil” proofs (if any). In [31],
the fusion law for “all” was proved. In [7], laws feed into auto-
mated program calculation for the benefit of optimization (“by
specialization”) and reverse engineering (so that generic programs
are obtained from boilerplate code). Those authors call out the need
to formally prove the involved laws. In [13], specialized laws of ap-
plications of traversal schemes are leveraged to enable fusion-like
techniques for optimizing strategies. We have not yet started to for-
malize such more sophisticated applications of algebraic reasoning,
but this is an important topic for future work.

Proof tactics vs. traversal strategies A strategy in term rewrit-
ing is comparable to a tactic in theorem proving: the former starts
from rewrite rules and combines them into a “function” that per-
forms a more complex operation on terms; the latter starts from
sound proof rules and combines them into a “function” that per-
forms a compound proof step on an initial goal. In this vein, strat-
egy combinators are like tacticals [11]. There is a classic view on
theorem proving as involving rewriting (of goals) [29, 24]. There
exist various tactic languages (e.g., [23, 9, 27, 2]) that share primi-
tives with Stratego-like setups — with the noteworthy exception of
“all” and “one”. Some tactic languages (e.g., Angel [23]) include
combinators to apply tactics to subgoals (subterms), but generic
one-layer traversal and generic traversal schemes are not covered
(even though [14] suggests to lift this restriction).

The PoplMark challenge [3] This challenge aims to turn formal-
ization of programing language metatheory into a regular practice.
We can relate to some of the associated critical issues. That is,
the challenge emphasizes binding, complex induction, component
reuse, and experimentation — to be discussed one by one. Bind-
ing is not relevant for our limited development because we left
out recursion and abstraction from the semantics part of the for-
mal model. If we were adding those, the issue of termination con-
ditions would need to be implanted into the semantics presumably.
Complex induction is clearly relevant for the central theme of our
development: generic traversal. (This instance of the complex in-
duction issue does not appear in work on the PoplMark challenge.)
Isabelle/HOL’s capabilities provided a good fit. Component reuse is
trivially addressed by a collection of laws about strategy primitives;
these laws are helpful in proving more substantial properties about
traversal schemes. Experimentation, i.e., testing language imple-
mentations against formalized definitions, is successful in our case:
the initial Isabelle/HOL-based semantics encodes an interpreter (a
combinator library) that corresponds to an actual implementation
of traversal strategies in Haskell [21].

Related uses of Isabelle/HOL We have leveraged a theorem
prover with a track record in the formalization of programing lan-
guage metatheory; see, e.g., [25, 8, 38, 16]. Isabelle/HOL’s prim-
itive data types, recursive functions and other forms of definitions
provide a convenient programming language for formal models (up
to the point that restricted Haskell programs can be systematically
mapped to Isabelle/HOL [32]). Isabelle/HOL’s induction schemes
and inductive sets are essential for the verification of metatheory
due to the recursive or iterative nature of syntactic and semantic
domains and concepts. For instance, in [25], reduction systems of
lambda calculi are modeled as inductive sets so that one can rea-
son about the reflexive and transitive closure of reduction. We also
refer to [8] for a metatheory-related evaluation of Isabelle/HOL
capabilities. In our development, we rely on induction on the size
of (traversed) terms for many of our proofs. Also, we use inductive
sets to model partiality of traversal schemes.

Theory LOC KB All Main Other
Terms (§3) 82 3 16 0 16
Primitives (§3) 146 5 25 3 22
SOS (§4) 56 2 12 12 0
Laws (§5) 895 33 161 29 132
Model of (§6, §7)
• repeat 576 25 105 2 103
• bottomup 163 10 23 2 21
• topdown 247 15 34 2 32
• oncebu 148 8 21 2 19
• innermost 23 1 3 2 1
(In)fallbility of (§8)
• bottomup 36 2 5 1 4
• topdown 126 6 19 4 15
• stoptd 46 2 7 1 6
• innermost 7 1 1 1 1

Figure 10. Complexity metrics for Isabelle/HOL theories
(LOC: Lines Of Code; KB: Kilobytes in ASCII; All: all properties;
Main: main properties; Other: helper lemmas. In fact, the measures
cover approx. 70% of our development, where we left out some
part that we consider routine (having to do with list processing and
optionals). The extent shown in the table covers slightly more prop-
erties and variations than those mentioned in the paper. We have
derived these numbers on the grounds of a suitable modularization
and tagging scheme for all theories and properties.)

10. Concluding remarks
We have initiated the first mechanized, formal model of traversal
strategies à la Stratego. The model covers semantics, basic alge-
braic laws, and some aspects of termination and success/failure
behavior. For the record, Fig. 10 lists some complexity indica-
tors for the developed Isabelle/HOL theories. In our experience,
Isabelle/HOL worked very well as a modeling environment for the
notion of traversal strategies; it allowed us to gather and verify in-
sights that were not explicitly present in any form prior to this ef-
fort.

We have developed the model only for type-preserving strate-
gies (say, transformations), but we contend that type-unifying
strategies (say, queries) can be covered similarly. We have assumed
untyped strategies, but suggest typed strategies as a future-work
topic to better match existing functional and object-oriented incar-
nations of strategic programming. Along the same line of general-
ization, other related strategy languages and their semantics should
be investigated and possibly integrated into the formal develop-
ment [5, 22].

More interestingly, we expect the developed model also to be
useful in studying further properties of strategic programming, e.g.,
the correctness of non-trivial optimizations of traversals [13, 7].

Another challenging elaboration of formally modeling traversal
strategies is to cover advanced term-rewriting theory and thereby
improve the precision of termination claims (e.g., effective, suf-
ficient properties for rewrite systems to be strongly normalizing).
There is related work on strategic programming and termination or
normalization of rewrite systems that could form a foundation for
such an additional layer of formal modeling [1, 15, 10].

Finally, we suggest to complement our theorem proving-based
development by abstract interpretation efforts such that properties
of strategies (e.g., termination, or success and failure behavior) can
be computed, within limits — even for arbitrary recursive strate-
gies. Such an abstract interpretation raises the formal challenge of
proving it correct with regard to the formal semantics.

Last slide
Future work
1. Formalization of “make sense” properties
2. More general treatment of recursion
3. More automated proofs
4. Twelf? Coq?
5. Improve “usability” of traversal strategies
6. Develop correct optimizations for schemes
7. Incorporation of term-rewriting theory
8. Model of typed strategies

Acknowledgment: this work has also benefited from collaboration
with Simon Thompson (see our LDTA 2008 paper in particular).

