An Isabelle/HOL-based Model of Stratego-like Traversal Strategies

Markus Kaiser and Ralf Lämmel Software Languages Team Universität Koblenz-Landau

Term (tree) traversal

complete top-down traversal with transformation at all nodes

This work: model strategies formally and determine properties!

incomplete bottom-up traversal with transformation at one node

Stratego-like strategies

Strategy primitives

rewrite rules

id & fail

sequ & choice

all & one

Traversal schemes

•••

- + recursion
- + type-case (possibly)

Strafunski's so-called **adhoc** combinator

```
topdown(s) = s; \Box(topdown(s))

bottomup(s) = \Box(bottomup(s)); s

oncetd(s) = s \leftrightarrow \Diamond(oncetd(s))

oncebu(s) = \Diamond(oncebu(s)) \leftrightarrow s

stoptd(s) = s \leftrightarrow \Box(stoptd(s))

stopbu(s) = \Box(stopbu(s)) \leftrightarrow s

innermost(s) = repeat(oncebu(s))
```

Some variation points

- Transformation vs. query.
- Single vs. cascaded traversal.
- Top-down vs. bottom-up traversal.
- Depth-first vs. breadth-first traversal.
- Left-to-right traversal and vice versa.
- Full vs. single-hit vs. cut-off traversal.
- Types vs. general predicates as milestones.
- Fixpoint by equality test vs. fixpoint by failure.
- Local choice vs. full backtracking vs. explicit cut.
- Traversal with effects (accumulation, cloning, etc.).

- What could go wrong?
 - A traversal diverges.
 - A traversal *fails* (*nearly*) *always* (say, too often).
 - A traversal succeeds w/o transformation ((nearly) always).
 - A traversal does not traverse deeply.

Let's traverse trees over naturals.

Types

Switching to Haskell!

- data Nat = Zero | Succ Nat
- data Tree a = Node {rootLabel :: a, subForest :: [Tree a]}

Sample trees

- tree1 = Node { rootLabel = Zero, subForest = [] }
- tree2 = Node { rootLabel = True, subForest = [] }
- tree3 = Node { rootLabel = Succ Zero, subForest = [tree1, tree1] }

- Increment naturals in the tree
 - Rewrite rule
 - increment n = Just (Succ n)
 - Strategy
 - * topdown (adhoc id increment) tree1

expands
before descent
and hence
diverges

Apply increment on naturals and behave like the identity function for all other types.

- Increment naturals in the tree
 - Rewrite rule
 - increment n = Just (Succ n)
 - Strategy
 - bottomup (adhoc id increment) tree3

increments bottom-up and hence doubles

- Increment naturals in the tree
 - Rewrite rule
 - increment n = Just (Succ n)
 - Strategy
 - stoptd (adhoc id increment) tree1

Use fail hence!

increment
vacously succeeds
for tree nodes
(too early)

Termination behavior

- * topdown s may diverge even for terminating s.
 - ♠ It's terminating if s does not increase term size.
- **bottomup** s is terminating as long as s is terminating.
- * stoptd s is terminating as long as s is terminating.
- innermost s may diverge even for terminating s.
 - ♠ It's terminating if oncebu s "decreases" some measure.

Success/failure behavior

- * topdown s may fail if s may fail.
 - * should fail only exceptionally "to make sense".
- * stoptd s cannot possibly fail (no matter what s).
 - **s** should succeed rarely "to make sense".
- oncebust succeeds for t for if s succeeds for a subterm of t.
 - **s** should succeed rarely "to make sense".

"make sense"
properties still
to be
formalized!

An Isabelle/HOL-based Model of Stratego-like Traversal Strategies

Input (inspiration)

See the paper for details.

- Function combinators for strategic programming
- Paper and pencil SOS of strategic programming
- Show correspondence of both definitions
- Formalize and prove laws & properties on top
- Use Isabelle/HOL for mechanized model

Functional model in Isabelle/HOL

- Term constructors
 - types con = nat;
- Terms
 - datatype cterm = C con "cterm list";
- Strategies (functions on terms)
 - types strategy = "cterm => result";
 - types result = "cterm option";

Strikingly similar to "Strafunski"; types could be added as well.

Function combinator all

case (postMapAll (map s (children t))) of

```
None \rightarrow None

|Some l \rightarrow Some (C (con\_of t) l)|

postMapAll [] = Some []

postMapAll (r\#rs) =

case \ rof

None \rightarrow None

|Some \ x \rightarrow (case \ (postMapAll \ rs) \ of

None \rightarrow None

|Some \ xs \rightarrow Some \ (x\#xs))
```

 $all_def: all \ s \ t =$

 $postMapAll :: ('a option) \ list \rightarrow ('a \ list) \ option$

Paper & pencil SOS

$$\frac{\forall i \in \{1, \dots, n\}. \ s @ t_i \leadsto t'_i}{\Box(s) @ c(t_1, \dots, t_n) \leadsto c(t'_1, \dots, t'_n)}$$

$$\frac{\exists i \in \{1, \dots, n\}. \ s @ t_i \leadsto \uparrow}{\Box(s) @ c(t_1, \dots, t_n) \leadsto \uparrow}$$

$$[all^+]$$

$$[all^-]$$

Recover SOS as lemmas

$$\frac{\forall i \in \{1, \dots, n\}. \ s @ t_i \leadsto t'_i}{\Box(s) @ c(t_1, \dots, t_n) \leadsto c(t'_1, \dots, t'_n)}$$

$$[all^+]$$

lemma all_pos_sos:

$$(\forall (i::nat). \ 1 \le i \land i \le n \implies s \ (ts \ i) = Some \ (ts' \ i))$$

 $\implies (all \ s \ (C \ c \ (vector \ n \ ts)) = Some \ (C \ c \ (vector \ n \ ts')))$

Laws and properties

1. Laws

2. Termination behavior

3. Success/failure behavior

aka "modeling recursive (partial) strategies"

aka "in-/fallibility"

Laws and properties

- 1. Laws
- 2. Termination behavior
- 3. Success/failure behavior

Some laws of strategy primitives

constant $t \implies one \ s \ t = fail \ t$

 $\neg(constant\ t) \implies one\ id\ t = id\ t$

```
lemma sequ_assoc_law:
              sequ \ s \ (sequ \ s' \ s'') = sequ \ (sequ \ s \ s') \ s''
        lemma choice_assoc_law:
               choice s (choice s' s'') = choice (choice s s') s''
       lemma distr_left_law:
             sequ s (choice s' s'') = choice (sequ s s') (sequ s s'')
NOT A lemma distr_right_law:
             sequ (choice \ s \ s') \ s'' = choice (sequ \ s \ s'') (sequ \ s' \ s'')
       lemma all_id_law: all_id = id
       lemma one_fail_law: one fail = fail
      lemma all_constant_law:
                                  constant t \implies all \ s \ t = id \ t
      lemma all\_not\_constant\_law : \neg(constant s) \implies all fail t = fail t
```

lemma one_constant_law:

lemma one_not_constant_law:

Fusion law of all

 $lemma \ all_fusion_law: sequ (all s) (all s') = all (sequ s s')$

```
axioms
```

```
map'_rule: map' (sequ s s') xs = bind (map' s xs) (map' s');

consts

bind :: 'a \ option \rightarrow ('a \rightarrow 'z \ option) \rightarrow 'z \ option

map' :: ('a \rightarrow 'a \ option) \rightarrow 'a \ list \rightarrow 'a \ list \ option

defs

map'\_def: map' \ s \ xs = postMapAll (map \ s \ xs)

primrec

bind \ None \ s = None

bind \ (Some \ x) \ s = s \ x
```

Follows from fusion law for monadic list map say for the Maybe monad.

A. Pardo. Fusion of recursive programs with computational effects. *Theoretical Computer Science*, 260(1–2):165–207, 2001.

Laws and properties

- 1. Laws
- 2. Termination behavior
- 3. Success/failure behavior

Non-models of recursive strategies (Example: bottom-up traversal scheme)

This is the definition used in Haskell (Strafunski) and Stratego!

- Operational intuition
 - bottomup s == sequ (all (bottomup s)) s
- ** Recursive definition not admitted.
- Axiom may lead to inconsistent logic.

Modeling recursive strategies I/III

- Start from recursive "definition"
 - bottomup s == sequ (all (bottomup s)) s
- Until recursive knot
 - bottomup_step s c rs =
 case (postMapAll rs) of
 None => None
 Some ts' => s (C c ts')

Obviously,
this is a proper definition.
It was obtained by
unfolding definitions and
parametrization et al.

Modeling recursive strategies II/III

Derive recursive definition as inductive set.

```
consts
bottomup_step:: strategy → con → result list → result
bottomup_set:: strategy → (cterm × result) set

defs
bottomup_step s c rs =
```

As shown before

Some $ts' \rightarrow s (C c ts')$

case (postMapAll rs) of

None → None

form term/result pairs for all kids

retrieve recursive results from set

add another step of traversal to set

Modeling recursive strategies III/III

- 1. Untie recursive knot (done)
- 2. Derive inductive set (done)
- 3. Convert set to function (omitted)
- 4. Prove correctness of function

Slogan:
"So what didn't work as an axiom or as a definition does still hold as a lemma."

 $lemma\ bottomup_rec:$ $bottomup_fun\ s\ t = sequ\ (all\ (bottomup_fun\ s))\ s\ t;$

Laws and properties

- 1. Laws
- 2. Termination behavior
- 3. Success/failure behavior

In-/fallibility of the strategy primitives

```
lemma id_not_fail:
    infallible id
lemma sequ_not_fail:
    infallible s ∧ infallible s' ⇒ infallible (sequ s s')
lemma choice_not_fail:
    infallible s ∨ infallible s' ⇒ infallible (choice s s')
lemma all_not_fail:
    infallible s ⇒ infallible (all s)

lemma fail_fail : fallible fail
lemma sequ_fail: fallible s ⇒ fallible (sequ s s')
lemma all_fail : fallible s ⇒ fallible (all s)
lemma one_fail: fallible (one s)
```

```
NOT A lemma choice_fail: fallible s \land fallible s' \implies fallible (choice s s')
```

Infallibility of the bottom-up scheme

 $lemma\ bottomup_not_fail:$ infallible $s \implies infallible\ (bottomup_fun\ s)$

Prove by induction on size of input term

Lemma for induction step

lemma bottomup_not_fail_step: infallible s

 $\land (\forall (t'::cterm). size t' < size t \Longrightarrow bottomup_fun s t' \neq None)$ $\Longrightarrow bottomup_fun s t \neq None$

A note on complexity

Theory	LOC	KB	All	Main	Other
Terms (§3)	82	3	16	0	16
Primitives (§3)	146	5	25	3	22
SOS (§4)	56	2	12	12	0
Laws (§5)	895	33	161	29	132
Model of (§6, §7)					
• repeat	576	25	105	2	103
• bottomup	163	10	23	2	21
• topdown	247	15	34	2	32
• oncebu	148	8	21	2	19
• innermost	23	1	3	2	1
(In)fallbility of (§8)					
• bottomup	36	2	5	1	4
• topdown	126	6	19	4	15
• stoptd	46	2	7	1	6
• innermost	7	1	1	1	1

Last slide

Future work

- 1. Formalization of "make sense" properties
- 2. More general treatment of recursion
- 3. More automated proofs
- 4. Twelf? Coq?
- 5. Improve "usability" of traversal strategies
- 6. Develop correct optimizations for schemes
- 7. Incorporation of term-rewriting theory
- 8. Model of typed strategies

Acknowledgment: this work has also benefited from collaboration with Simon Thompson (see our LDTA 2008 paper in particular).