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Chapter 3: CHAIN MODELS 
 
 
3.1 Definitions 
 
 
Configuration is the arrangement of a polymer in space. 
 

 

 
 
 
 
bond angle θ 
bond-rotation angle φ 
bond length 0l  
 

 
 
 
Conformations are all accessible configurations a polymer can attain as a consequence of its 
flexibility. 
 
 

 

            

 
 
 
We can reduce the polymer to the chain backbone. It is well defined by N bond vectors 

iR (i=1,…, N) or (N+1) position vectors ir  (i=0,..., N).  N is the degree of polymerization. 



 

 
PD Dr. Silke Rathgeber 
Johannes Gutenberg-University Mainz 
Institute for Physics – KOMET 331 
Staudingerweg 7 
55099 Mainz 
Germany 

phone: +49 (0) 6131/ 392-3323 
Fax: +49 (0) 6131/ 392-5441 
email: s.rathgeber@uni-mainz.de 
webpage: http://www.cond-mat.physik.uni-mainz.de/~rathgebs/ 

 

 

 
polar coordinates (θi,φi,|Ri|) 

 
Degree of freedom (θ1, φ1, φ2) and the start vector r0 are undefined  

⇒ global degree of freedom of  rotation and translation 
⇒ all others internal degree of freedom  

  
 
Restrictions in the degree of freedom:  

1. fixed bond length:   covalent bond energy >> thermal energy 
2. fixed bond angle:  determined by electronic configuration of atoms building  

the backbone 
3. bond-rotation angle: relatively unrestricted 

 
 
Comparison of single-bond in ethane and double-bond in ethene: 
 

single-bond 

 
 

 

double-bond 
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3.2 Characteristic quantities 
 
 

End-to-End distance:  0

N

E N j
j i

R r r R
=

= − = ∑   

Thermal movements: polymers adopt with time a large number of conformations, thus, thermal 
averages are considered. For an isotrope system:  0E ER R= =  
look at the mean-square average (norm): 
 

  
2 2 2

1 1 1 1 1
2E E

N N N N N

E E j k j j k
j k j j k j

R R R R R R R R R
= = = = = +

= = = = +∑∑ ∑ ∑ ∑  

 
General definition of the radius of gyration gR :  
 
The radius of gyration of a mass about a given axis is a distance 

gR  from the axis at which an equivalent mass is thought of as a 
point mass. The moment of inertia of this point mass and 
original mass about the axis are the same.     
 
              2 2 2 2

, , ,g g x g y g zR R R R= + +  
  

 
 
Radius of gyration gR  is defined as the (average) of second moment (relative to the center of 
mass (rcm)) of the mass distribution: 
 

            
( )2

2 02

0

N

j j cm
j

g g N

j
j

m r r
R R

m

=

=

−
= =

∑
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                          with    0

0

N

j j
j
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j
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=

=
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In case all masses are identical mj = m:  ( )22

0

1 -
1

N

g j cm
j

R r r
N =

=
+ ∑   with  

0

1
1

N

cm j
j

r r
N =

=
+ ∑  

With the help of the Lagrange Theorem:  
2 2

2
1 1

1
( 1)

N N

g ij
i j i

R r
N = = +

=
+ ∑ ∑  with ( )22

ij i jr r r= −  

x

y 
z 

Ri 
Ri+1 

Rj 

rj 

ri 

Ri-1 

Rj+1 cm

rij 
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Characterization of the stiffness of a polymer: 
 
How is the orientientation of the end-to-end 
vector relative to the first bond vector? 
 
Projection HN of RE on the unit vector e1 
(pointing in the direction of R1) 
 
HN is the sum of the projections of all bond 
vectors Rj on the direction of the first bond 
vector R1.  
 

 
11 1

1
1 11 1 1

N N
jE

N E j
j j

R RR R RH e R R
R R R= =

= = = =∑ ∑  

 
The persistence length lP is defined as the thermal average in the limit of infinate long chain: 

 

1

1 1

lim lim j
P NN N j

R R
l H

R

∞

→∞ →∞
=

≡ = ∑          

 
       

3.3 Chain models 
 
 
For the calculation of the correlations between bond vectors j kR R  and position vectors 2

ijr         
detailed assumptions about the chain statistics are necessary. 
 
3.3.1  Freely rotating chain 

 
 bond angles                      are fixed = θ0 

bond lengths                     are fixed = l0 

bond-rotation angles        are evenly distributed over 0 ≤ φ≤ 2π 

φi-1 φi+1 φi+3 

φi φi+2 
φi+4 

RE 

e1 

R1 
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average over all orientations kϕ  of vector kR ⇒ 

projection on vector 1kR − : -1 0cos
k

k k jR R R
ϕ

θ= ×  

 
average over remaining iϕ : -1 0cosk j k jR R R R θ=  
 
continue until k-1=j: 
 

-2
-1 0 0 0cos cos k j

k j k jR R R R lθ θ= =  with 2 2
0jR l=  

 

 

 
( 0cosθ since 0θ  fixed average not necessary but useful for freely jointed chain model)  
 
End-to-End distance: 

22 0 02 0
0

1 1 1 0 0

2 cos [1 cos ]
2 1 cos

1 cos (1 cos )E

NN N N

j j k
j j k j

NlR R R R
N

θ θ
θ

θ θ= = = +

⎡ ⎤−
= + = + −⎢ ⎥

− −⎢ ⎥⎣ ⎦
∑ ∑ ∑  

 For N>>1 ( )0cos 1θ <  :   
2 02

0
0

1 cos
1 cosE ER Nl R N

θ
θ

+
= ⇒ ∝

−
 

 Fully stretched chain ( )0cos 1θ = : 
2 2 2

0 0E ER N l R Nl= ⇒ =  
 
 
and the end-to-end distance of a chain with |i-j| elements replace N by i j− : 

2
0 0 02

0
0 0

2 cos [1 cos ]
1 cos

1 cos (1 cos )

i j

ij

i j l
r

i j
θ θ

θ
θ θ

−⎡ ⎤− −
⎢ ⎥= + −

− − −⎢ ⎥⎣ ⎦
 

 
 
 
Persistence length:  

 1 0

1 1 0

lim
1 cos

j
P

j

R R ll
N R θ

∞

=

= =
→ ∞ −∑  

   
 
 
 
Radius of gyration: 

 
2 02 2

02
1 1 0

1 cos1 1 2
( 1) 6 1 1 cos

N N

g ij
j i j

NR r Nl
N N

θ
θ= = +

⎛ ⎞++⎛ ⎞= ≈ ⎜ ⎟⎜ ⎟⎜ ⎟+ + −⎝ ⎠⎝ ⎠
∑ ∑  

 For N>>1: 
2 02 2

0
0

1 cos1 1
6 1 cos 6

g ER Nl R
θ
θ

⎛ ⎞+
≈ =⎜ ⎟⎜ ⎟−⎝ ⎠

 

 
 
 

φk

Rk Rk-1 
θ0 
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3.3.2 Freely jointed chain 
 

 
 bond angles                             are evenly distributed over 0 ≤ θ ≤ 2π 
 bond lengths                             are fixed 0l=  

 bond-rotation angles                are evenly distributed over 0 ≤ φ ≤ 2π 
 
 
⇒ Special case of a freely rotating chain with  cos 0θ =  

 
 

End-to-End distance: 

 
22 0 0 20

0 0
0 0

2 cos [1 cos ]
1 cos

1 cos (1 cos )E

N
NlR Nl

N
θ θ

θ
θ θ

⎡ ⎤−
= + − =⎢ ⎥

− −⎢ ⎥⎣ ⎦
 

 
and for the end-to-end distance of a chain with |i-j| elementsreplace N by i j−  

2 2
0ijr i j l= −  

 
Persistence length:  

 0
0

01 cosP
ll l

θ
= =

−
 

 
 
Radius of gyration: 

 
2 2 2

0 02

1 1 ( 1)( 1)
( 1) 6

N

g
i j

N NR i j l l
N N<

− +
= − =

+ ∑  

 For N>>1:  
2 22

0
1 1
6 6

g ER Nl R≈ =  

 
 
The end-to-end distance 

2 2
0ER Nl=  is in analogy to a 3-dimensional random walk! 

θi-1 θi+1 θi+3 

θi θi+2 θi+4 θi-2 
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Brownian motion: 
 
Any minute particle suspended in a liquid (or gas) moves chaotically under the action of 
collisions with surrounding molecules. The intensity of this chaotic motion is increased with an 
increase in temperature. (R.Brown in 1827)  
 
With a random velocity, a Brownian particle of size R will move in a tangled zigzag path, and 
will progress with time away from its initial location. The mean-square displacement of a 
Brownian particle is described by:   

[ ]22 ( ) ( 0)r r t r t tΔ = − = ∝          compare to            [ ]2 2 2
0 0E NR r r Nl= − =  

 

 
 

        0 distance covered in t l

N t

≡ Δ

≡
 

 
 
 
 
snap shots of the random flight in time intervals Δt 
 

  
Probability distribution 
 
To determine the probability distribution of any global property of a polymer we need to know 
the single probabilities for the occurrence of a certain conformation. 
The bond vectors in the freely jointed chain are not correlated, thus, the total probability is given 
by the product of the single probabilities.  

 { }
1

( ) ( )
N

j j
j

R R
=

Ψ = Ψ∏ , 

where the single probabilities are given by: 02
0

1( ) ( )
4j jR R l

l
δ

π
Ψ = −  

 
Question:  What is the probability that a given vector R is equal to the end-to-end vector? 
 
Ansatz:  

 { } { }3( ) ( ) ( ) N
j E jR R R R d RδΦ = Ψ −∫  

 
Calculation: 

{ } { }

{ }

3

1 2
1

( ) ( ) ( )

... ( ) ( )

N
j E j

N

N j j
j

R R R R d R

dR dR dR R R R

δ

δ
=

Φ = Ψ −

= − Ψ

∫

∑∫ ∫ ∫
 

with the definition of the delta-function 3

1( )
(2 )

ikrr e dkδ
π

= ∫  

      Δt 
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{ }

0

0

1 23
1

13
1

3

sin( )

1( ) ... exp[ ( )] ( )
(2 )

1 exp( ) ... exp( ) ( )
(2 )

1 exp( ) exp( ) ( )       
(2 )

N

N j j
j

N

N j j
j

N

kl
kl

R dk dR dR dR ik R R R

dk ikR dR dR ikR R

dk ikR dR ikR R

π

π

π

=

=

=

Φ = − Ψ

= − Ψ

⎡ ⎤= − Ψ⎣ ⎦

∑∫ ∫ ∫ ∫

∏∫ ∫ ∫

∫ ∫
14444244443

 

up to here: same for the gaussian chain 
with polar coordinates (   )i i rθ φ  

0

0
3

0

small apart for small kl

2 2
0 0 0

0

sin( )1( ) exp( )
(2 )

approximation for large N:

sin( ) ( ) ( )replace 1 exp
6 6

                                          

N

N N

klR dk ikR
kl

kl kl N kl
kl

π
⎡ ⎤

Φ = ⎢ ⎥
⎣ ⎦

⎡ ⎤ ⎛ ⎞ ⎛ ⎞
≈ − ≈ −⎜ ⎟ ⎜ ⎟⎢ ⎥

⎝ ⎠ ⎝ ⎠⎣ ⎦

∫
14243

2
0

3

2 2 2 2

3
22

2 2
0 0

                 vanishs also for large N!

( )1( ) exp( ) exp
(2 ) 6

with    and  k

3 3( ) exp
22 2

x x y y z z x y z

N klR dk ikR

kR k R k R k R k k k

RR
Nl Nl

π

π

⎛ ⎞
Φ = −⎜ ⎟

⎝ ⎠
= + + = + +

⎛ ⎞ ⎛ ⎞
Φ = −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

∫

 

 
Result: 

 
3/ 2 2

2 2
0 0

3 3( ) exp
2 2 2

RR
Nl Nlπ

⎛ ⎞ ⎛ ⎞
Φ = −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 

        Gaussian distribution 
 
 
 
Effective bond length 
 
In case only local correlations are effective, so that  
 

 { } 1 2
1

( ) ( , , ,..., ) with
c

c

N j

j j j j j j c
j

R R R R R j N
−

+ + +
=

Ψ = Ψ <<∏  

 
the real chain can always be described by a freely jointed chain with larger effective bond length, 

so that the relations 2 2
ER Nl=  and 2 21

6g ER R=  for large N still hold. 
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Characteristic ratio 

 
2 2

02 2
0 0

lim E

N

R lC l C l
Nl l∞ ∞→∞

= = ⇒ =  

e.g. freely rotating chain 0

0

1 cos
1 cos

C
θ
θ∞

+
=

−
 

 
Kuhn segment 
 
 
is defined by a transformation of the real 
chain onto a freely jointed chain under 
preservation of the end-to-end distance 2

ER  
and the maximal possible end-to-end distance 
of the fully stretched  chain ,maxER  
 

 
2 2

,max  and   E k k E k kR N l R N l= =   
 
⇒ the number and the length of the (effective) segments are rescaled. 
 

 
22

,max
2

,max

  and  EE
k k

E E

RRl N
R R

= =  

 
Segments of length lk are the smallest units being statistically uncorrelated. The Kuhn segment is 
like the persistence length a measure of the chain stiffness. 
 
e.g. freely rotating chain   
 

0 70.53θ = °   (tetrahedron angle) 
 
 

( )

02 2
0

0

0
,max 0 0 0

2
0

0 0
,max 0

2
,max 0

2

1 cos
1 cos

1 cos
cos 2

2

2(1 cos ) 2.45
1 cos

1 cos
0.33

2

E

E

E
k

E

E
k

E

R Nl

R Nl Nl

lRl l
R

R
N N N

R

θ
θ

θ
θ

θ
θ

θ

+
=

−

+
= =

⇒ = = + ≈ ×
−

−
= = ≈ ×

     

 
 

θ0 

θ0/2 

lk, Nk 

l0, N 

l0 
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3.3.3 Gaussian chain 
 
On length scales much larger than the Kuhn length, the local nature of the chain segments plays 
no role. Many segments contribute to a Kuhn segment.  
 
Assume that the effective segments are variable in length and follow a Gaussian-distribution 
with a standard deviation corresponding to the effective segment length: 
 
 

 
3/ 2 2

2 2 2 3
2 2

33( ) exp with ( )
2 2

j
j j j j j

R
R l R R R d R

l lπ
⎛ ⎞⎛ ⎞Ψ = = = Ψ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

∫  

 
Apart from this, the orientations of the bond vectors are completely free as for the freely jointed 
chain 

3/ 2 2

2 2

33( ) exp
2 2

ij
ij

r
r

i j l i j lπ
⎛ ⎞⎛ ⎞

⇒ Φ = −⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠
  Gaussian distribution 

                  2 2 2 21and
6E gR Nl R Nl⇒ = ≈  

in 2 2( ) and ,ij E gr R RΦ  the global properties are preserved! 
 
⇒ easy calculation of characteristic quantities when using independent variable following 
Gaussian distributions 
 
 
General description of chain configuration 
 
Global properties can be calculated once the probability distribution of the chain configurations 
is known. Statistical mechanics: in thermal equilibrium { }( )jRΨ  can be obtained from the 

Hamiltonian { }( )jH R  

{ } { } { } { }3
( ) ( )1( ) xp   with normalization (state sum)   xpj j N

j j
B B

H R H R
R e Z e d R

Z k T k T

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟Ψ = − = −
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∫
 
Enables the introduction of binding potential (see RIS model) and the calculation of the chain 
conformations in the presence of external fields, such as walls, electric, and stress fields. 
 
Question: Which Hamiltonian describes the Gaussian chain?  
 

{ }
2

2
1

3 3
2 2

2
1

3( ) ( ) e
2

N

j
j

N RN
l

j j
j

R R
lπ

=

−

=

∑⎛ ⎞Ψ = Ψ = ⎜ ⎟
⎝ ⎠

∏  

 { }
{

2
2

1
spring constant

31( )    (harmonic potential)
2

N
B

j j
j

k TH R R
l =

⇒ = ∑  
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The beads of the chain appear to be connected by 
harmonic springs with spring constant 

23 /Bk k T l=  
 
see dynamics:  
Rouse model (overdamped coupled harmonic 
oscillator)  
 

Stretching of the chain results in a reduction of accessible conformations and consequently in a 
reduction of the entropy of the polymer chain. The elastic forces between the segments are 
purely of entropic nature and are not due to changes in the internal energy. Thus, the 
Hamiltonian of a Gaussian chain is considered to describe a pseudo-potential rather than a real 
interaction potential.  
 
 
Characteristic ratio for different polymers 
 
 

 
freely rotating chain: 
 

0

0

1 cos
1 cos

C
θ
θ∞

+
=

−
 

 
 
with: 
 

70.53
2C

θ

∞

=
⇒ ≈

o

 

 
 
 
 

However, real chains 
are much stiffer! 

 

 polymer solvent

various to to

polyethylen

polystyrene,  
atactic 

polydimethylsiloxan
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RIS 
 
Bond rotational potentials 
 
The picture of unrestricted freedom of bond-rotation angles is oversimplified. Finite extension of 
atoms and side groups lead to "long-ranged" (excluded volume interactions, prohibition of chain 
intersections) as well as "short-ranged interactions".    
Due to sterical hindrance not all bond rotation angles have the same probability. Some bond- 
rotation angles are compared to other energetically favorable. 
 
Bond rotational potentials { } 1 1 1( ) ( ,..., , , ,..., )i i i i NH H H − += Φ = Φ Φ Φ Φ Φ  
 

 { } { } { } { }( ) ( )1( ) xp    with normalization    xpi i N
i i

B B

H H
e Z e d

Z k T k T
⎛ ⎞ ⎛ ⎞Φ Φ

Ψ Φ = − = − Φ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∫  

 
 
RIS (rotational isomeric state)-model (l and θ fixed) replaces the continuous variable Φi by a 
discret set of angles Φi,ν  
 

 
staggered conformation 

0( ) [1 cos(3 )]
2

HH Φ = − Φ  rotation barrier 0H  as a measure of the sterical interaction 

0 BH k T>>  localized rotational states 
 
equal minima 

 
 
 
 
 
 
 
 
 
 

 
e.g.  ethane,                           methane,                          azethaldehyde   
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Barrier height  
 
thermal energy at 300K ≈  0.6 kcal/mole (1 Joule = 2.390 ×10−4 kcal) 
 

 
e.g. n-butane 

 
minima are not equal              180 : 0o

t ttrans HΦ = =  
    60 : 0o

g ggauche H+ + +Φ = >  

    300 : 0o
g g ggauche H H− − − +Φ = = >  

with the probability 1( ) exp   mit  Z exp
B B

H H
Z k T k T

ν ν
ν

ν

⎛ ⎞ ⎛ ⎞
Ψ Φ = − = −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
∑  

ethane 

methane 

azethaldehyde 
propylene 

dimethylether 

butane 

methanethiol 

trans gauche

methylphosphine 
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Independent bond rotation potentials        
  

{ }
1

( ) ( )
N

i i i
i

H H
=

Φ = Φ∑
2  for freely rotating chain

1 cos 1 cos
1 cos 1 cos

C
φ θ
φ θ∞

≈

+ +
⇒ = ×

− −
14243

 

 
 
e.g. polyethylene @ 140 CT = o : 0.5 kcal/mole; 120 ; 70.53g gH θ± ±= Φ ≈ ± =o o  

                                                    0; 0t tH = Φ ≈ o  

1cos ; exp 0.54
3

1cos exp cos  =1- - =1-   with   Z= exp =1+ =1+2
2 2

B

B B

H
k T

H H
Z k T k T

ν

ν ν
ν

ν ν

θ σ

σ σ σ σ σ σ

⎛ ⎞
= = − =⎜ ⎟

⎝ ⎠

⎛ ⎞ ⎛ ⎞
Φ = − Φ − +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
∑ ∑

 

1cos 0.22 3.14
1 2

Cσ
σ ∞

−
⇒ Φ = ≈ ⇒ ≈

+
  

 
 
still much smaller than experimental value: exp 6.7C∞ ≈  =>  real chains are much stiffer! 
 
Bond rotation potentials are not independent!  
 
 
rotation around single bond: 

 

rotation around two bonds: 

n-butane 

trans 

gauche 

 

n-pentane 

CH3 CH3 

 

energetically  
unfavourable 
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Interdependent rotation potentials of adjascent bonds { }( ) ( )1
2

,
N

i i i
i

H H −
=

Φ = Φ Φ∑  

Ab-initio calculations: microscopic, quantum mechanic problem. 
Semi-empirical methods: "molecular force field" calculations based on Newton's mechanics and 
electrostatics.  Atoms are replaced by beads and bonds by springs. 
Goal: find 3-dim structure with minimal energy.         
 
 
e.g. polyethylene:  

                
 
 
3.3.4 Worm-like chain (Kratky-Porod model) 
 
Examples

 
contour length L = maximum end-to-end distance of a polymer 

Pl L>>
Pl L≈  

Pl L<<  
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bond lengths              are fixed = l0 

bond-rotation angles are evenly distributed over 0 ≤ φ≤ 2π 
bond angles {θi}     subsequent segments should posses a certain stiffness against bending 
 
Question: What is the persistence length and end-to-end distance of a worm-like chain? 
 
discrete case: tangential unit vector of the chain at position rj is given by unit vector ej parallel to 

the bond Rj 
 
Curvature at the position rj: change in tangential unit vectors (ej-ej-1) 

 

 
 

 

 
( ) ( )2

1Pythagoras 2 1 cosj j je e θ−− = −  
 
Ansatz:  

Bending energy is given by harmonic potential: ( ) ( )2

1
2 2

1 cos
2

N N

B j j j
j j

H e eκ κ θ−
= =

= − = −∑ ∑  

 
If bending energy κ is large κ>>kBT, the bond angles θj will be small: 
 

series expansion: ( ) ( )2 2

2 2

1cos 1 ... 1 cos
2 2

N N

j j B j j
j j

H κθ θ κ θ θ
= =

≈ − + ⇒ = − =∑ ∑  

 
⇒ for the distributions of the conformations 
 

{ }( )
1

2
2

2
exp

2 2

N
N

j j
jB Bk T k T

κ κθ θ
π

−

=

⎛ ⎞⎛ ⎞
⇒ Ψ = −⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠
∑     Gaussian distribution 

 
since the Φi=Φ are free, the results of the freely-rotating chain can be taken:    
 

 
22 0 02 cos [1 cos ]

1 cos and  
1 cos (1 cos ) 1 cosE

N

P
Nl lR l

N
θ θ

θ
θ θ θ

⎡ ⎤−
= + − =⎢ ⎥

− − −⎢ ⎥⎣ ⎦
 

the problem reduces to the calculation of    cosθ  

θj 

θj 

ej-1 

ej 

(ej-ej-1) 

ej ej-1 

(ej-ej-1) 

rj x cm 
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{ }( ) { }1cos cos exp
2

N B
i i i

k Tdθ θ θ θ
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0
0
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1 exp

2
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κ
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22 0
2exp [1 exp ]

2 21 exp
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E
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Nl k TR
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2
ER  expressed as a function of lP, l0 and 0L Nl=  

( )2 0
0 02 2 ( ) 1 1E

N

P P P
P

lR L l l l l l
l

⎡ ⎤⎛ ⎞
⎢ ⎥= − − − − −⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

 

 

for large N replace  0 01 exp
N

P P

l Nl
l l

⎛ ⎞ ⎛ ⎞
− ≈ −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 

  

      ( )2

0 02 2 ( ) 1 expE P P P
P

LR L l l l l l
l

⎡ ⎤⎛ ⎞
⇒ = − − − − −⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦
 

 
 
e.g. DNA 
 
length 10-100μm 
extension to full length 
 
persistence length of 50nm 
Kuhn segments: 100nm 
 
dashed line: 
freely-jointed chain model 
 
solid line: 
worm like chain model 
 

free energy: 
2

2
,0

3
2
B

E

k T zF
R

=  

 

required force: 
2

,0

3 B
E

F zf k T
z R

∂
= =

∂
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3.4 Polymer solutions 
 
Up to now we neglected any "long-ranged" interactions involving chain 
segments well separated along the chain. Backfolding of the chain due to 
the high chain flexibility has the consequence that distant chain segments 
can become very close to each other. However, chain segments have 
finite extension and interpenetration of volume occupied by other 
segments is forbidden 
 
This effect is called excluded volume interaction with the consequence 
that the extension of the coil will be larger than that of an "ideal chain" 
without excluded volume interactions. Excluded volume interactions lead 
to swelling! In the melt the interaction between segments in one chain is 
equal to the interaction with neighboring chains. The segment 
concentration is high and a segment of one chain is in the  average 
surrounded by many segments belonging to other chains     
 

⇒  excluded volume interaction is screened! 
 

In the melt the chains behave like "ideal chains" and the simple chain model introduced so far 
hold. In solution the interaction between solvent molecules and monomers is in the general case 
different to the monomer-monomer interactions. Solvent-monomer interaction is temperature 
dependent and only at the so called θ temperature, both solvent-monomer as well as monomer-
monomer interaction are equal. 
 
 
Radius of PS in cyclohexane as a function of the solvent quality 
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Gaussian chain with excluded volume interaction 
 
Also excluded volume interaction is short-ranged (of local nature), it effects distant segments on 
the chain. The concrete nature might be complicated but unimportant on larger scales. 

 

 ,
0 0

1( ) in total  ( )
2ij excl B i j excl B i j

j i
H k T r r H k T r rυ δ υ δ

= =

= − ⇒ = −∑∑  

 
Here υ represents the excluded volume and δ the delta function. 
 
For a Gaussian chain with excluded volume interactions we obtain for the probability 
distribution: 

 { }( ) { }( ) { }( ) ( ) ( )2

12

interaction between interaction between 
neighbouring segments distant segments

3exp exp
2 2

G j excl j
j j j j i

j i jB

H r H r
r r r r r

k T l
υ δ−

⎛ ⎞
⎜ ⎟⎡ ⎤+ ⎜ ⎟⎢ ⎥Ψ ∝ − ∝ − − − −⎜ ⎟⎢ ⎥ ⎜ ⎟⎣ ⎦
⎜ ⎟
⎝ ⎠

∑ ∑∑
144424443144424443

 

Rigorous solution of the problem not possible! 
 
 
Flory theory 
 
Question:  
What is the end-to-end distance 2

ER  of a chain with excluded volume interaction? 
 
We start with a chain with radius R and N segments for a particle with arbitrary dimension d. 
 
Excluded volume interaction is proportional to the number of pair contacts 2c∝  where c is the 
concentration. 

We obtain for the internal chain concentration: int d

Nc
R

=    

Energy for one pair contact 2( ) d
excl Bf k T T c lυ≈     (υ excluded volume has dimension of a d-

dimensional volume) 
 
In mean field theory the specific correlation between monomers (local heterogenities) are 
neglected ⇒ assumption: 22 2

intc c c→ ∝  
 
Total free energy by integration over total volume dR : 
 

22
int( ) ( )

dd d
dexcl B B

N lF k T T R c l k T T Rυ υ≈ =  

 
Entropy contributes as elastic term relative to ideal chain: 
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( )
2 2

2 2el B B
E

R RF k T k T
R Nl

≈ =  

Total free energy:                  
( )

22

2

( ) d
el B

d
B

F k TRT N l
k T R Nl

υ
≈ +  

                                                      
 
Minimum for:    2 2 3 3/( 2)d d dR l N R lN N lν+ + +∝ ⇔ ∝ ∝  
 
=> Flory exponent 3/( 2)dν = +        ν=  3/5  for d=3 

           3/4        d=2  
                                   1         d=1 
 
 
 
Mean field approach (MFT) 
 
The main idea of MFT is to replace all interactions to any one body with an average or effective 
interaction. This reduces any multi-body problem into an effective one-body problem. 
A many-body system with interactions is generally very difficult to solve exactly, except for 
extremely simple cases (Gaussian field theory, 1D Ising model.) The great difficulty (e.g. when 
computing the partition function of the system) is the treatment of combinatorics generated by 
the interaction terms in the Hamiltonian when summing over all states.  
 
The goal of mean field theory (MFT, also known as self-consistent field theory) is to resolve 
these combinatorial problems. The main idea of MFT is to replace all interactions to any one 
body with an average or effective interaction. This reduces any multi-body problem into an 
effective one-body problem. The ease of solving MFT problems means that some insight into the 
behavior of the system can be obtained at a relatively low cost. 
 
In field theory, the Hamiltonian may be expanded in terms of the magnitude of fluctuations 
around the mean of the field. In this context, MFT can be viewed as the "zeroth-order" expansion 
of the Hamiltonian in fluctuations. Physically, this means a MFT system has no fluctuations, but 
this coincides with the idea that one is replacing all interactions with a "mean field". Quite often, 
in the formalism of fluctuations, MFT provides a convenient launch-point to studying first or 
second order fluctuations. 
 
In general, dimensionality plays a strong role in determining whether a mean-field approach will 
work for any particular problem. In MFT, many interactions are replaced by one effective 
interaction. Then it naturally follows that if the field or particle exhibits many interactions in the 
original system, MFT will be more accurate for such a system. This is true in cases of high 
dimensionality, or when the Hamiltonian includes long-range forces. The Ginzburg criterion is 
the formal expression of how fluctuations render MFT a poor approximation, depending upon 
the number of spatial dimensions in the system of interest. 
 
While MFT arose primarily in the field of Statistical Mechanics, it has more recently been 
applied elsewhere, for example for doing Inference in Graphical Models theory in artificial 
intelligence. 
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3.6     Self-similarity and fractal dimension of polymers 
 

 
 
Looking at ensemble averages the relation between n and 2R  stays the same for any 

subsection of the chain with n segments as long as N>>n>>1. 
 
The relation between mass and volume defines the fractal dimension fD   
 
        fDmass  volume  R∝ ∝  

   ( )2
fD

n R∝  

 
 
solid body 3-dim body  3fD =    
  2-dim  2fD =      
  1-dim  1fD =  
 
Polymers: ideal chain 2 2 2fR Nl D= ⇒ =  
 
  with excluded volume interaction 3-dim    3/5 5 3fR N l D∝ ⇒ =  

2-dim  3/ 4 4 3fR N l D∝ ⇒ =  
1-dim  1fR Nl D∝ ⇒ =    
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3.7   Summary   
 
 
characteristic quantities:   Rg, RE, lP  describe dimension & stiffness in an ensemble of 
polymers. All orientations have same probabilty in isotropic system ⇒ <Rg>, <RE>=0 
 

⇒  look at the norms (mean square values) <Rg2>, <RE2> 
⇒ geometrical considerations lead to  <Rg2>, <RE2> and lP in terms of <RiRj> and <(ri-rj)2> 
⇒ for the calculation of <RiRj> and <(ri-rj)2> assumptions about the chain statistics are 

necessary / probability to find a certain l,φ, θ 
 
Determination of the probability distribution of any global property requires the knowledge of 
the single probabilities for the occurance of a certain conformation. 
 
⇒ chain models  
 

1. freely rotating chain  l, θ = fixed &  φ totaly free 
2. freely jointed chain      l = fixed &  θ, φ = totaly free   

 
⇒ <RE2>=Nl2 and <Rg2>=Nl2 
and its analogy to random walk (chaotic motion) of Brownian particles. 
 

total probability  { }
1

( ) ( )
N

j j
j

R R
=

Ψ = Ψ∏  

only local correlations  { } 1 2
1

( ) ( , , ,..., )
c

c

N j

j j j j j j c
j

R R R R R mit j N
−

+ + +
=

Ψ = Ψ <<∏  

⇒.real chain can be transformed onto freely jointed chain with different segment length (and) 
segment number under preservation of global properties.  
 
⇒ this led us to definition of characteristic ratio & Kuhn length (measure of chain stiffness). 
 
one effective segment is made up by several real bonds  ⇒  
 

3. Gaussian chain θ, φ = totaly free 
 
effective segments are variable in length and follow a Gauss-distribution with a standard 
deviation corresponding to the effective segment length 
 

 
3/ 2 2

2 2 2 3
2 2

33( ) exp with ( )
2 2

j
j j j j j

R
R l R R R d R

l lπ
⎛ ⎞⎛ ⎞Ψ = = = Ψ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

∫

 { }
3
2 2

2 2
11

3 3( ) ( ) exp
2 2

NN N

j j j
jj

R R R
l lπ ==

⎛ ⎞⎛ ⎞Ψ = Ψ = −⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠

∑∏  
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global properties are preserved! 
statistical mechanics: { }( )jRΨ can be obtained from the Hamiltonian { }( )jH R  
 

 { } { } { } { }3
( ) ( )1( ) xp     normalization  xpj j N

j j
B B

H R H R
R e Z e d R

Z k T k T

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟Ψ = − = −
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∫  

 
which Hamiltonian describes the Gaussian chain? 

⇒ harmonic potential   { }
{

2
2

1
spring constant

31( )
2

N
B

j j
j

k TH R R
l =

= ∑  

 
chain appears to be made up by beads connected by harmonic springs ⇒ Rouse model 
(overdamped coupled harmonic oscillator)  
 

4. RIS (Rotational Isomeric State model) l, θ = fixed 
replaces the continuous variable Φi by a discret set of angles Φi,ν where adjacent bonds 
are interdependent. 

 
5. worm-like chain model  l = fixed & φ = totally free 

restrictions to θ: subsequent segments posses a certain stiffness against bending.                                   
 
so far only local interactions involving close-by bonds 
 
excluded volume interactions 
 

•   interpenetration of volume occupied by other segments is forbidden. 
•   short-ranged but can involve distant chain segments on one chain. 
•   rigorous calculation of global properties is not possible. 

 
⇒ Mean-Field Theory of Flory for the free energy 
  
one obtains for the extension of a polymer chain under excluded volume interactions R N lν∝  
with the Flory-Huggins exponent         ν =  3/5   for  d=3 
                                                             3/4        d=2  
                                                              1           d=1 
compare to ideal chain 1/ 2R N l∝      
 
Looking at ensemble averages polymers are self-similar structures i.e. fractal objects as long as 
subsections of the chains are considered which comprise much more than only one and much 
less than N segments. 
 
 
 



 

 
PD Dr. Silke Rathgeber 
Johannes Gutenberg-University Mainz 
Institute for Physics – KOMET 331 
Staudingerweg 7 
55099 Mainz 
Germany 

phone: +49 (0) 6131/ 392-3323 
Fax: +49 (0) 6131/ 392-5441 
email: s.rathgeber@uni-mainz.de 
webpage: http://www.cond-mat.physik.uni-mainz.de/~rathgebs/ 

 

 

 
Literature 
 
1. U.W. Gedde, “ Polymer Physics”, Chapman & Hall, London, 1995. 

2. G. Strobl, “ The Physics of Polymers”, Springer-Verlag, Berlin, 1996. 

3. H.G. Elias, “ Makromoleküle Band 1: Chemische Struktur und Synthesen”, Wiley-VCH, 

Weinheim, 1999. 

4. S. Hoffmann, “Conformations of Polymer Chains”, Lecture Manuscripts of the 33th IFF 

Winter School on “Soft Matter – Complex Materials on Mesoscopic Scales”, 2002. 

5. H. Frielinghaus, “ Flexible Polymers”, Lecture Manuscripts of the 35th IFF Winter School 

on “ Physics meets Biology – From Soft Matter to Cell Biology”, 2004. 

6. K. Sturm, “Konformationen”, Lecture Manuscripts of the 22th IFF Winter School on 

“Physik der Polymere”, 1991. 

 


