

Modelling of Geometric Constraints in

CAD-Applications

Manfred Rosendahl
1
 , Roland Berling

2

Introduction

Modelling in CAD-applications demands a mapping of the structure of

the geometric objects and a description of the relation between them. In

purely algebraic modelling there are equations between the elements of

the geometric model defined, which are solved to find the characteristic

points of the model[SeGo87]. Another way is to use geometric reasoning

mechanism in which the dimensions and geometric relationships are

defined as either facts or rules [RSV89,VSR92]. To model the relations

constraint systems are well suited. In this paper we describe two meth-

ods.

The first approach, a type of constructive modelling, describes the

geometric and non-geometric relations by construction operations,

which will be used in building and modifying a geometry. The result is

a mapping which describes the construction completely by a set of pa-

rameters. The modifying of dependent values is done either by reverse

operations or by solving an equation system. Additional constraints can

be defined on top of a given construction. Therefore constructions which

need circular definitions can also be defined. This constructive ap-

proach, used in the RelCAD system, reduces the number of equations

which have to be solved. Another feature which has been introduced to

the constraint based geometric modelling is the Segment-concept. In

1 Institut für Informatik, Univerität Koblenz, Germany
2 Hewlett Packard, Böblingen, Germany

normal CAD-systems collections of elements, called group, block or

segment are either programmed or the parameters can only be insertion

point, angle, size. In the RelCAD-System a segment is a collection of

objects that not only logically belong together, but also have geomet-

ric/numerical relationships among each other. They can even have rela-

tionships to objects outside the segment and can thereby be dependent

on them. Any object of a segment definition can be treated as a parame-

ter, not only dimensions or points but also other items and even seg-

ments [DRB93,RBD96].

In this approach the a model is developed in which the directions of

the propagations are fixed. To evaluate a model against the direction in

the constraint graph new constraints are added, which result in a graph

with cycles. The second approach, a declarative modelling, describes

the geometric relations by basis-constraints on points and dimensions

as variables. The resulting constraint-graph will be evaluated by local

propagation. The specific type of modelling makes it possible to use con-

structive operations, when evaluating the graph from any sufficient set

of given variables. By this manner numerical methods like iterations

can be avoided in most cases. This technique is developed out of the

first approach and is suited for the early stages in a design process.

This works especially because first a model with an undirected graph is

developed, from which the free and derived variables can still be cho-

sen. [BeRo93, Ber96].

Constructive Modelling: RelCAD Geometric model-

ling system

The RelCAD system was developed at the University of Koblenz as an

application extension to the general 2D CAD-system VarioCAD, also

developed there.

Each element of the geometric model is either an absolute one or de-

fined by its relations to other geometric objects. So any changes in an

object cause changes in all objects, which directly or indirectly depend

on them. This is achieved because the dependencies built a directed a-

cyclic graph (DAG). The method for changing an object, which is not a

leaf in the graph, will be explained later.

The following objects are defined as absolute geometric and non-

geometric objects:

Value (dimension), e.g. co-ordinate, length, distance, radius, angle but

also non-geometric e.g. engineering values,

Point,

Line,

Circle,

Arc.

The relationships between the objects are typed according to these

absolute object types. Only Arc is a subclass of Circle and can be used if

a circle is required.

From these absolute classes, which have no relations the constructive

classes with relations are derived. The relations are defined in all direc-

tions e.g. a point can be derived from geometric elements and also geo-

metric elements can be derived from points.

Some examples of classes which are defined by the corresponding ab-

solute class:

• Value:

Co-ordinate, Distance, Angle, Expression

• Point:

Intersection point, Tangent point, Centre point, Endpoint, Relative-

point

• Line:

Tangential line, Perpendicular Line, Parallel Line, Axis parallel line

• Circle:

Given by centre and Radius, Tangential to 2 lines or circles and ra-

dius, Tangential to 3 lines or circles,

• Arcs:

same arc circles

L

C2

P1 R1 P2 R2

X1 Y1 X2 Y2

C1

C1

C2

L

P1

P2

(a) (b)

Figure 1

Figure 1 shows the definition of a derived element of the type

Line_2objects. This element has 2 support elements C1 and C2.

Length=V

L

C2

P1 R1 P2 R2

X1 Y1 X2 Y2

C1

If the length of the line L is

fixed to value V, X1 can be used

to keep it constant, and is

therefore dependent on it.

V is late constraint, and X1 is

C1

C2

L

P1

P2

(a) (b)

the maintaining variable

Figure 2

Up until now we have only discussed definitions with a-cyclic depend-

encies. There is also a class, which deals with cyclic dependencies. It is

used to set extra dimensional restrictions on derived objects. For exam-

ple, it could be used to fix the length of the line L in figure 2 This kind

of constraint is called late constraint, because it is mostly assigned to

the objects after they have been created. We call the derived object to

which the late-constraint is assigned a late-constrained-object. A

late constraint causes cyclic dependency among the geometric objects,

because as an extra independent dimensional constraint it influences

the original dimension of a late-constrained-object and thereby the sup-

port objects of it, which again determine the original dimension.

For example, if the length of the line L in figure 2(a) is fixed, the po-

sitions and radii of both circles C1 and C2 are also restricted. Changing

of them leads to a irregular value for the length of the line L which does

not agree with the fixed length.

Figure 2.(b) illustrates the situation of cyclic dependency. In order to

maintain the consistency of the late constraint a free dimension which

directly or indirectly supports the late-constrained-object should be se-

lected as a maintaining variable. A maintaining variable of a late con-

straint has the following tasks:

1) When the value of the late constraint has changed the maintaining

variable should also be changed so that one of the support objects of the

late-constrained-object gets the new data which leads to a consistent

late constraint.

2) When the support objects of the late-constrained-object have changed

the maintaining variable should be changed so that the late constraint

remains satisfied.

A dimension is no longer free if it is selected as the maintaining vari-

able of a late constraint. Figure 2(b) shows an example where the co-

ordinate X1 is selected to be the maintaining variable if the length of

the line L is fixed to be the value V.

The evaluation of a late-constrained-object is more complicated than

the evaluation of other geometric objects because of the cyclic depend-

ency among the late-constrained objects, its late-constraint, and the

maintaining variable of the late-constraint. An iterative procedure is

used to find an appropriate value for the maintaining variable to satisfy

the late-constraint. More than one late constraint can exist in a model

at the same time and some of them may be related to each other when

the maintaining variable of one late constraint is the support object of

another late-constrained-object. The related late constraints should be

satisfied simultaneously, which means we have to solve a set of (non-

linear) constraint equations, where the unknowns are the maintaining

variables. For each geometric model there is one process to satisfy all

late constraints (independent and related) by using the Newton-

Raphson iterative method. When evaluating a geometric model this

process will not be run until all other objects of the model have been

evaluated.

Because the late constraints are necessary only when the geometric

model can not be constructed in sequential order any more and because

they are assigned to the model after the main part of the model has

been sequentially constructed, the number of the constraint equations

which have to be solved simultaneously can be reduced by the user.

Late constraints are also used to change the data of conditioned ob-

jects, that means objects, which are not a leaf in the relation graph. If

the user wants to change such an object, he has to choose, which inde-

pendent objects(leafs) should be given free. Then a temporarily late con-

strained is solved to find a solution with the new values of the depend-

ent objects.

Parametric design using segments

A family of design parts with various dimensions are often needed dur-

ing the design. The concept segment serves this purpose.

About segments

The concept of the segment is similar to the concept of the procedure in

high-level programming languages, e.g. Pascal. Therefore we introduce

our segment by comparing it with the procedure concept.

The segment has two related aspects: segment scheme and segment

instance. Segment scheme describes the inner structure of the segment.

It determines what the components of the segments are, e.g. the num-

ber of the components, the type of each component and the relation-

ships among the components. A segment instance is a graphical realisa-

tion of a segment schema. It is derived from the segment scheme and

the actual parameters and is an instance and a graphical representa-

tion of the segment. Segment schemes correspond to procedure declara-

tions and segment instances correspond to procedure calls.

In the following discussion we just use the word 'segment' when it is

not necessary to differentiate the segment scheme from the segment

instance. We say 'the components of the segment' when it is not neces-

sary to know exactly how the components are defined within the seg-

ment scheme and the segment instance.

Another significant feature of the segment is that it can also have pa-

rameters. Similar to the parameters of the procedure there are two dif-

ferent forms of parameters for the segment: formal parameters and ac-

tual parameters. The formal parameters exist in the segment scheme

and determine the types and the sequences of the actual parameters.

The actual parameters do not belong to the segment instance, but are

used by the segment instances to determine the size, the variational

shape and the position of the segment instance. The actual parameters

define the relations of the segment to the rest of the model.

Each procedure can be called many times in a program. Thus, a seg-

ment scheme can also be associated with many segment instances,

which means that some segments may have different graphical repre-

sentations. This can happen, when the data of the actual parameters

are different for each segment instance with the same inner structure.

The class segment

The graphical representations of the segments are called 'segment in-

stances' because they could be treated as the instances of the class 'seg-

ment scheme' from the point of view of the object-oriented methodology.

In our approach we define these two concepts as separate classes and

set up a connection between them.

Two new classes are defined. They are also called segment scheme

and segment instance. A segment scheme contains

(a) a list of formal parameters, and

(b) a list of components.

The component objects are mostly related to each other and some of

them have relationship with formal parameters.

A segment instance contains

(a) a list of actual parameters,

(b) a corresponding segment scheme

Segment scheme and segment instance are also treated as classes (or

types) like the other classes. An instance of the segment scheme class is

a concrete segment scheme with a definite number of geometric objects

as components and a number of formal parameters of certain types. A

concrete segment scheme does not appear in the geometric model. An

instance of the segment instance class is the representation of a certain

concrete segment scheme in the geometric model. Figure 2 shows the

segment scheme class, segment instance class and their instances.

Segment scheme
class

Segment instance
class

Segment
scheme

Segment
scheme 2

Segment
instance

Segment
instance 2

Segment
instance 3

Segment
instance 4

Segment
instance 5

represents class represents instance

Figure 3

In the following discussion we call the instance of the segment scheme

class segment scheme and the instance of the segment instance class

segment instance when there is no misunderstanding.

The parameters of the segment

The formal parameters can be either

(1) of any basic type, e.g. value, point, line, circle or arc.

(2) of a segment instance.

Formal parameters are support objects of some component objects in a

segment scheme. Therefore they determine the graphical data of these

component objects.

An actual parameter must be of the same type with the correspond-

ing formal parameter or a type derived from it, i.e. a object in the same

absolute object-class. Therefore an actual parameter can be a derived

object. Actual parameters do not belong to the segment instance. They

are local geometric objects in the geometric model. If the formal pa-

rameter is a segment instance the actual parameter must be an in-

stance of the same segment schema.

Com1 Com2

Com3 Com4 Com5

Com6

Fpar1 Fparn

Apar1 Aparn

Segment

Copy
Data

Scheme

Figure 4

This is also the way compatible elements are defined.

Definition: 2 elements are compatible if they are either

• Derived from the same absolute object class

• Instances of the same object sheme

The data of the actual parameters determine the size, the variational

shape and the position of a segment instance through formal parame-

ters. The computing process of a segment instance does the following

operations:

(a) It copies the graphical data of the actual parameters into the formal

parameters of the associated segment scheme;

(b) It runs all the computing processes of the component objects in the

associated segment scheme to generate the graphical data for each com-

ponent;

(c) It returns all the graphical data obtained in (b) to the segment in-

stance.

Figure 4 shows the actual and formal parameters and the segment

scheme. The arrows within the segment scheme illustrate the support-

ing relation of component objects. With different actual parameters

variations on the segment scheme can be generated. When a segment

instance uses local objects of a model as actual parameters it is fully

embedded in the geometric model.

The external object of the segment

Although the component objects of the segment are geometrically re-

lated to each other it is still possible for them to access the objects out-

side the segment, which means that a component object of a segment

has objects outside the segment as its support objects. Such 'outside'

object is called external object. This is equivalent to the global refer-

ences in procedures. In procedures there is no method (but also no need)

to access the local variables from outside. But in CAD accessing compo-

nent objects of a segment from outside must be possible. An access to a

component object of a segment is realised as an access to a substitute

object of this component object. Also segments with alternatives and

iterations are realised in the RelCAD system. For a more detailed de-

scription of the segment-concept see [RMD96].

Currently the concepts of the RelCAD system are transferred to a 3D

system. Here new 3D oriented relations have to be defined, e.g. a cone

defined by an apex point and a tangent sphere or a cone defined by two

tangent spheres. Moreover a lot of 3D geometry is defined by 2D con-

tours, e.g. a 3D object defined by the sweep of a 2D contour. Here the

concepts of the 2D system can be used for defining the contour.

Declarative Modelling

In contrast to the constructive approach, the declarative approach de-

scribes the relations by a set of equations. Geometric relations between the lines,
circles, etc., will be reduced to a few basis-relations between points and dimen-
sions. The constraint model contains a set of basic geometric elements like:

• Segment(P1, P2): line segment from point P1 to P2

• Circle(M, r): circle centre point M and radius r

• Arc(P1, P2, M, r): arc from point P1 to P2 with centre M and radius r

and a set of constraint relations like:

• dp(P1, P2, d): distance between point P1 and P2 is d

• dl(P, Pa, Pe, d): distance between point P and line from Pa to Pe is d

• a3(P1, P2, P3, α): the angle between the line P1 to P2 and the line

P1 to P3 is α

• a4(P1, P2, P3, P4, α): the angle between the line P1 to P2 and the

line P3 to P4 is α

• equ(<expression>): the value of the expression is 0. If the expression

contains n variables, it must be possible to compute one variable if

the other n-1 variables are known.

• fix(<value>): a constraint without input values and just one output

value.

Constraints between the geometric elements can be described by one

or more of these basic constraints. Constraints with more than one de-

gree of freedom are also described by a graph with these basic con-

straints.

This model in figure 5 can be derived by the following constraints:

dp(M1,T1,r1), dp(M2,T2,r2), dl(M1,T1,T2,r1), dl(M2,T2,T1,r2), cir-

cle(M1,r1), circle(m2,r2), line(T1,T2)

Non-geometric constraints can be described, too. For example, express-

ing that the length of the tangent-line is related to the sum of the radii

by a factor f can be done by the following constraints:

dp(T1,T2,d), equ(d-(r1+r2)*f)

The constraint system is represented by an undirected graph G(V,E,∅)

with nodes V=P∪D∪C representing the points (P), the dimensions(D)

and the constraints(C), and edges E⊂C x (P∪D) representing the con-

straints bindings. There are 3 types of edges between a constraint and a

variable.

none: undirected edge.

c_in: directed edge from the variable to the constraint.

v_in: directed edge from the constraint to the variable.

To define algorithms on the structure graph, we need operations to de-

fine the edges of certain types adjacent to a node. Therefore we define

the following mappings:

Λ: V × typeId → Ρ(E): set of edges of typeId adjacent to node V

Γ: V × typeId → Ρ(V): set of nodes adjacent to V via edge of typeId

δ: V × typeId → Ν
0
: number of edges of typeId adjacent to node V

With respect to the orientation of the edges the following mappings are

defined:

Λ
in
: V → Ρ(E): set of oriented edges incoming to a variable or a con-

straint .

Λ
out

: V → Ρ(E): set of oriented edges outgoing from a variable or a con-

straint .

Λ
none

: V → Ρ(E): set of non-oriented edges adjacent to a variable or a con-

straint .

Analogously the mappings δ
in
(v), δ

out
(v) and δ

none
(v)

are defined as the

number of edges adjacent to v with the equivalent predicate. The map-

pings Γ
in
(v), Γ

out
(v) and Γ

none
(v) are defined as the sets of nodes adjacent

to v via an edge with the equivalent predicate.

Figure 5

Figure 6 shows the graph for the example in figure 5.

Figure 6

The undirected graph unveils the structure of the possible equation sys-

tems which can be formed by instantiating new values for parameter

vertices or changing old ones. To fix a dimension or point, one respec-

tive two constraint fix with an edge to the fixed object will be added. By

means of the constraint satisfaction process the undirected graph is

transferred to a directed graph, which represents the evaluation of the

geometry. This evaluation can be done by local propagation as long as

there are no cycles in the directed graph, otherwise iterative methods

have to be used. Therefore the goal of the orientation is to obtain as few

cycles in the graph as possible.

The oriented graph has to fulfil the following restrictions.

∀ c ∈ C: δ
out

(v) = 1

∀ v ∈ P: δ
in
(v) = 2

∀ v ∈ D: δ
in
(v) = 1

Each point needs two values to be determined and each dimension one.

These are the incoming edges. The values are then propagated through

the outgoing edges. Each variable has a structural degree of freedom

(sdf), which gives the degree of freedom, that is not yet restricted by

constraints, i.e. by incoming edges.

∀ v ∈ P: sdf({v})=2-δ
in
(v)

∀ v ∈ D: sdf({v})=1-δ
in
(v)

∀ M ⊆ P∪ D: sdf(M)=∑
V∈M

 sdf({v})

In an undirected constraint graph G(V,E,∅) ,V=C∪P∪D exists a com-

plete matching of the set of constraint nodes C in the set of variable

nodes P∪D if and only if to each constraint subset N⊆C in the adjacent

variable set there exist at least as many structural degrees of freedom

as there are elements in N.

The constraint satisfaction process determines (in three phases) a

complete allocation of the constraints to the variables. The allocation is

defined by an orientation of the edges. The method identifies sub-

graphs which are structurally over-determined. To determine the allo-

cation graph, algorithms to compute maximal matching [MH90] can be

used. Serano and Gossard use this in their approach [SeGo87]. The

method here uses propagation to get the smallest constraint graph on

which a matching algorithm has to be applied. The allocation of a con-

straint to a variable will be expressed by the edge attribute v_in. All

other edges adjacent to this constraint are then input values, which are

attributed c_in.

A constraint graph is valid, if the following holds:

• Constraint node c: At most one v_in edge. If there is one v_in edge,

all other edges are oriented.

• Variable node v: At most as many v_in edges as there are degree of

freedom. If there are exactly as many (sdf(v)=0), then all edges are

oriented.

During the propagation process the graph has to be always valid. The

three phase of the method are:

• Propagating the constraints

• Propagating the degrees of freedom

• Determining the maximal constraint matching

The first two steps are used to minimise the constraint set, which has

be applied to step 3. The propagating of constraints is continued as

long as there are constraints, which can be mapped to one variable. The

propagating of the degrees of freedom is continued as long as there are

variables, which have more degrees of freedom as there are still non

mapped constraints in the adjacent constraint-set. For the remaining

not yet assigned constraint set an assigning is made by the maximal

matching method.

Propagating of Constraints

Algorithm p-con:

K := {c∈C δnone(C)=1}
while K≠∅ do begin
 c:= extract-any(K);
 for e∈Λnone(c) do e.eo := v_in;
 for v∈Γout(c) and sdf(v)=0 do begin
 for all e∈Λnone(v) do e.eo:=c_in;
 for all c∈Γout(v) and δnone(c)=1 do K:=K∪{c};
 end;
end;

K starts with the set of all constraints of the type fix. With this K the

computation begins. The edges are directed to the adjacent variable v. If

the v has no more structured degree of freedom, all other non-oriented

edges in v are directed as outgoing. If a constraint c adjacent to v has

now only one non-oriented edge, c is included in K.

Figure 7

To show the method, we give an example. Figure 7 shows the model

with the undirected graph. The lines l1 and l2 have the same length

and are perpendicular to g. The radius r2 of c is half of the radius r1 of

c. The arc a is tangential to the lines l1 and l2.

The algorithm starts with K built from the constraints of the types

fix and 90-degree, which is a special type of fix. Figure 8 shows the

propagating. After applying the constant-constraints of P1 and P2, the

angles w1 and d1 no longer have a structured degree of freedom, so the

remaining edges can be oriented as c_in-edges to the adjacent dp- and

a3-constraints, whose constraint-nodes are then included in the set K

(left). The propagating of these constraints allows it to include the dp-

constraint between P3 and P4 in K (middle). Its propagating allows it to

propagate the constraints holding the radii-relations. At the end the

constraints adjacent to M can be propagated (right).

Figure 8

After applying p-con there are no constraints, to which variables can be

applied in a deterministic manner. The remaining sub-graph is invari-

ant to the order in which the constraints were chosen of K.

Propagating the degree of freedom

algorithm p-sfd
K := {v∈V 0<δnone(v)<=sdf(v)}
while K≠∅ do begin
 c:= extract-any(K);
 for all e∈Λnone(v) do e.eo := v_in;
 for all c∈Γin(v) do begin
 for all e∈Λnone(c) do e.eo:=c_in;
 for all w∈Γin(c) and ϑnone(w)<=sdf(w) do K:=K∪{w};
 end;
end;

K is the set of variables for which edges can still be directed. The

edges from the adjacent constraints are oriented as v_in. The remaining

edges of the adjacent constraint can now be oriented as c_in. The vari-

ables which are adjacent over this c_in edges are included in the set K,

if their degree of freedom can now be propagated. After applying the p-

sdf algorithm we get a valid constraint-graph which has no sdf, which

ca be propagated. The resulting graph is independent of the order in

which the nodes are extracted from K.

Figure 9

To illustrate the method, we continue the above example. The left part

of figure 9 shows the rest of the non-oriented graph after propagating

the constant constraints w1, P1 and P4. The arrows represent the ori-

ented edges, which are not shown. At the start K={r2,M}, because only

r2 and M meet the requirements for propagation. The middle part shows the
constraint graph after propagating r2 and M. The adjacent constraints are assigned
and the edges oriented. The variable r1 is included in K. After propagating r1, d2
meets the requirement and then P3.The right part shows the complete oriented con-
straint-graph after propagating P3.

Determining the maximal constraint matching

The algorithm to determine the matching is adapted from the Edmonds

method for bipartite graphs [MH 90].

algorithm match

R := {c∈C δnone(c)≠0}
for all c∈R do
for all e∈Λnone(c) do e.eo:=c_in;
while R≠∅ do begin
 c:= extract-any(R);
 if find/c,v) then apply(c,v);
end;

In the first step all incident non-oriented edges are oriented as in-

coming edges. By this the graph becomes completely oriented. To find a

path in the graph, which extends the matching find(c,v) looks for a vari-

able, which still has an sdf. Then apply(c,v) inverts the orientation on

the path from c to v.

After these three steps we get a graph which is completely oriented,

and the variable and constraint nodes have a valid orientation. This

graph can be propagated in topological order, if there are no cycles. If

there are cycles, the variables on the cycles must be solved simultane-

ously by solving an equation system either algebraically or with itera-

tion. The propagation outside the cycles is possible, because the con-

straints can always be computed with any edge as outgoing edge.

Conclusions

Two systems for constraint geometric design were explained. The first

system differs from other systems mainly by the contained segments

and the introduction of segments with alternatives and with repeti-

tions. The second system easily allows changing the input and output

variables of a geometric system.

References

[BeRo93] Berling R., Rosendahl M., 'Geometry Modelling using Dimen-

sional Constraints'. In CARs&FOF'93, 9th International Con-

ference on CAD/CAM, Robotics & Factories of the Future,

Newark, NewJersey, USA, August 18-20,1993

[Ber96] Berling R. 'Eine Constraint-basierte Modellierung für Geomet-

rische Objekte', Dissertation,1996.

[DRB93] Du C, Rosendahl M. and Berling R., 'Variation of Geometry

and Parametric Design', Proc. 3rd. International Conference

on CAD and Computer Graphics, Beijing, Aug. 23-26, 1993, pp

400-405, International Academic Publishers, 1993

[MH90] McHugh J., ‘Algorithmic Graph Theory’, Prentice-Hall, New

Jersey 1990.

[RBD96] Rosendahl M., Berling R.,Du C., 'A Generalised Segment Con-

cept',Proceedings of the Dagstuhl Seminar 'CAD Tools for

Products' August 95,Springer.

[RSV89] Roller D., Schonek F. and Verroust A., 'Dimension-driven Ge-

ometry in CAD: a survey' in Strasser W. and Seidel H.-P.

(Eds.) Theory and Practice of Geometric Modelling, Springer

Verlag, 1989, pp 509-523.

[SeGo87] Serrano D. and Gossard D., 'Constraint Management in Con-

ceptual Design' in Sriram D. and Adey R.A. (Eds.) Knowledge

Based Expert Systems in Engineering: Planning and Design.

Computational Mechanics Publications, 1987.

[VSR92] Veroust,A. Schonek,F., Roller,D., ‘Rule oriented Method for

Parametrized Computer-Aided Designs, CAD, Vol.24, No.10,

pp531-540.

