Grundlagen der Theoretischen Informatik

4. Kellerautomaten und kontextfreie Sprachen (II)

11.06.2015

Viorica Sofronie-Stokkermans

e-mail: sofronie@uni-koblenz.de

Übersicht

- 1. Motivation
- 2. Terminologie
- 3. Endliche Automaten und reguläre Sprachen
- 4. Kellerautomaten und kontextfreie Sprachen
- 5. Turingmaschinen und rekursiv aufzählbare Sprachen
- 6. Berechenbarkeit, (Un-)Entscheidbarkeit
- 7. Komplexitätsklassen P und NP

Umformung von Grammatiken

Startsymbol nur links

Einfache Annahme:

Im folgenden soll für alle cf-Grammatiken gelten:

Das Startsymbol S kommt nie auf einer rechten Regelseite vor.

Umformung

Ist das bei einer Grammatik nicht gegeben, kann man es wie folgt erreichen:

- Führe ein neues Startsymbol S_{neu} ein
- Füge die Regel

$$S_{neu} \rightarrow S$$

hinzu.

Nutzlose Symbole und Regeln: Intuition

- Variablen und Symbole, die vom Startsymbol aus unerreichbar sind.
- Variablen, von denen aus kein Terminalwort abgeleitet werden kann.
- Regeln, die solche Variablen und Symbole enthalten

Definition ((co-)erreichbare, nutzlose Symbole)

Sei G = (V, T, R, S) eine Grammatik.

Ein Symbol $x \in (V \cup T)$ heißt

erreichbar: Es gibt $\alpha, \beta \in (V \cup T)^*$: $S \Longrightarrow_G^* \alpha x \beta$

co-erreichbar: Es gibt $w \in T^*: x \Longrightarrow_G^* w$

nutzlos: x ist nicht erreichbar oder nicht co-erreichbar.

Theorem (cf-Grammatik ohne nutzlose Symbole)

Ist G = (V, T, R, S) eine cf-Grammatik mit $L(G) \neq \emptyset$, dann existiert eine cf-Grammatik G' = (V', T', R', S') mit:

- G' ist äquivalent zu G.
- Jedes $x \in (V \cup T)$ ist erreichbar und co-erreichbar.

Theorem (cf-Grammatik ohne nutzlose Symbole)

Ist G = (V, T, R, S) eine cf-Grammatik mit $L(G) \neq \emptyset$, dann existiert eine cf-Grammatik G' = (V', T', R', S') mit:

- G' ist äquivalent zu G.
- Jedes $x \in (V \cup T)$ ist erreichbar und co-erreichbar.

Beweis

Man kann G' aus G effektiv konstruieren:

- Wie im folgenden beschrieben, die nutzlosen Symbole bestimmen.
- Diese Symbole und alle Regeln, die sie enthalten, entfernen.

Algorithmus zur Berechnung der co-erreichbaren Variablen

```
Input: Grammatik G = (V, T, R, S)
Output: co-erreichbare Variablen
\mathsf{Alt} := \emptyset
Neu := \{ A \in V \mid \exists w \in T^* \ (A \rightarrow w \in R) \}
while Alt ≠ Neu
    Alt := Neu
    Neu := Alt \cup \{A \in V \mid \exists \alpha \in (T \cup Alt)^* (A \rightarrow \alpha \in R)\}
}
output Neu
```

Bestimmung einer Grammatik G'' = (V'', T'', R'', S) nur mit diesen co-erreichbaren Variablen.

```
if S \in \mathsf{Neu} /* S ist co-erreichbar */ V''' := \mathsf{Neu} T''' := T R''' = R \cap (V''' \times (V''' \cup T''')^*) \} else /* L(G) = \emptyset */
```

Algorithmus zur Berechnung der erreichbaren Variablen von G''

```
Input: Grammatik G'' = (V'', T'', R'', S)
Output: erreichbare Symbole
Alt := \emptyset
Neu2 := \{S\}
while Alt \neq Neu2
    Alt := Neu2
    Neu2 := Alt \cup \{x \in (V'' \cup T'') \mid \exists A \in Alt\}
                                                  \exists \alpha, \beta \in (V'' \cup T'')^*
                                                  (A \rightarrow \alpha x \beta \in R'')
output Neu2
```

Bestimmung der Grammatik G' ohne nutzlose Symbole:

$$G' = (V', T', R', S')$$
 mit:

$$V' := \text{Neu2} \cap V''$$

$$T' = \text{Neu2} \cap T$$

$$R' = R'' \cap (V' \times (V' \cup T')^*)$$

$$S' = S$$

Damit gilt dann: L(G') = L(G) und G' enthält keine nutzlosen Symbole.

Normalform für Regeln

Normalform für Regeln

Theorem (Normalform)

Zu jeder Grammatik G (beliebigen Typs) existiert eine äquivalente Grammatik G', bei der für alle Regeln $P \to Q \in R'$ gilt:

- $Q \in V^*$ und P beliebig
- $Q \in T$ und $P \in V$

Für alle Typen außer den linearen hat G' denselben Typ wie G.

Normalform für Regeln

Beweis

Für jedes Terminal $t \in T$ erzeuge man eine neue Variable V_t .

- $V' = V \cup \{V_t \mid t \in T\}$
- R' entsteht aus R, indem für jede Regel $P \to Q \in R$ in Q alle Vorkommen eines Terminals t durch die zugehörige Variable V_t ersetzt werden. Außerdem enthält R' für jedes $t \in T$ eine neue Regel $V_t \to t$.

Also L(G') = L(G), und für alle Sprachklassen außer L_3 hat G' denselben Typ wie G.

Idee: Variablen, aus denen ε ableitbar ist, sollten eliminiert werden

Idee: Variablen, aus denen ε ableitbar ist, sollten eliminiert werden

Definition (ε -Regel, nullbare Variablen)

Eine Regel der Form

$$P \rightarrow \varepsilon$$
 (P eine Variable)

heißt ε -Regel.

Eine Variable A heißt nullbar, falls

$$A \Longrightarrow^* \varepsilon$$

Theorem (ε -Regeln sind eliminierbar)

Zu jeder cf-Grammatik G existiert eine äquivalente cf-Grammatik G'

- ohne ε -Regeln und nullbare Variablen, falls $\varepsilon \not\in L(G)$,
- mit der einzigen ε -Regel $S \to \varepsilon$ und der einzigen nullbaren Variablen S, falls $\varepsilon \in L(G)$ und S das Startsymbol ist.

Algorithmus zur Berechnung der nullbaren Variablen

```
Input: Grammatik G = (V, T, R, S) S o.B.d.A. in keiner Regel rechts
Output: nullbare Variablen
Alt := \emptyset
Neu := \{A \in V \mid A \rightarrow \varepsilon \in R\}
while Alt \neq Neu
{Alt := Neu}
    für alle (P \rightarrow Q) \in R do
    { if Q = A_1 ... A_n and A_i \in Neu für 1 \le i \le n and P \notin Neu,
        then Neu := Neu \cup \{P\}
```

output Neu

Beweis (Forts.)

Ausgangsgrammatik G habe die Normalform, bei der für jede Regel $P \to Q$: $Q \in V^*$ oder $Q \in T$.

Für jede Regel $P o A_1 \dots A_n$ generiere alle möglichen Kombinationen

$$P \rightarrow \alpha_1 \dots \alpha_n$$

mit

- $\alpha_i \in \{\varepsilon, A_i\}$ falls A_i nullbar
- $\alpha_i = A_i$ falls A_i nicht nullbar

Dann

- Füge alle diese neuen Regeln zur Grammatik hinzu
- Entferne alle Regeln der Form $A \to \varepsilon$ mit $A \neq S$

Beweis ((Forts.)

Zu zeigen:

Für die neue Grammatik G' gilt: L(G') = L(G)

Vorgehen:

• *G* hat die Normalform:

Für jede Regel $P \to Q$ gilt $Q \in V^*$ oder $Q \in T$.

Wir beweisen die etwas stärkere Behauptung

für alle
$$A \in V$$
 für alle $w \in (V \cup T)^* - \{\varepsilon\}$

$$((A \Longrightarrow_{G}^* w) \quad \underline{\operatorname{gdw}} \quad (A \Longrightarrow_{G'}^* w)),$$

• Daraus folgt sofort L(G') = L(G).

Beweis (Forts.)

" \Rightarrow " Wir zeigen: Aus $A \Longrightarrow_G^* w$ folgt $A \Longrightarrow_{G'}^* w$ (Induktion über Länge einer Ableitung von A nach w in G).

Induktionsanfang: Länge = 0.

Dann ist w = A, und $A \Longrightarrow_{G'}^* A$ gilt immer.

Induktionsschritt: Es sei schon gezeigt: Wenn in G in n Schritten eine Ableitung $B \Longrightarrow_G^* u$ durchgeführt werden kann, dann folgt, dass in G' die Ableitung $B \Longrightarrow_{G'}^* u$ möglich ist.

Beweis (Forts.)

Außerdem gelte in der Ausgangsgrammatik $G: A \Longrightarrow_{G}^{*} w \neq \varepsilon$ in n+1 Schritten.

Dann gilt:

- $\bullet A \Longrightarrow_G w' \Longrightarrow_G^* w,$
- $w' = A_1 \dots A_\ell \Longrightarrow_G^* w_1 \dots w_\ell = w$,
- und es wird jeweils A_i zu w_i in höchstens n Schritten für geeignete $w', A_1, \ldots, A_\ell, w_1, \ldots, w_\ell$.
- Für $1 \le i \le \ell$ gilt:
 - Entweder $w_i \neq \varepsilon$ und $A_i \Longrightarrow_G^* w_i$ also (per Induktionsvoraussetzung) $A_i \Longrightarrow_G^* w_i$
 - oder $w_i = \varepsilon$ und $A_i \Longrightarrow_G^* w_i$.

Beweis (Forts.)

Fall 1: $w_i = \varepsilon$, A_i ist nullbar.

Dann gibt es in G' eine Regel $A \to A_1 \dots A_{i-1}A_{i+1} \dots A_\ell$ nach der obigen Konstruktionsvorschrift für G', falls $A_1 \dots A_{i-1}A_{i+1} \dots A_\ell \neq \varepsilon$. Das ist der Fall, denn sonst hätten wir: $A \Longrightarrow w' = \varepsilon \Longrightarrow^* w = \varepsilon$ (aus nichts wird nichts), aber $w = \varepsilon$ ist ausgeschlossen.

Fall 2: $w_i \neq \varepsilon$. Dann gilt nach Induktionsvoraussetzung $A_i \Longrightarrow_{G'}^* w_i$.

Beweis (Forts.)

Wir haben also folgendes gezeigt:

Sei
$$I = \{i \in \{1 \dots \ell\} \mid w_i \neq \varepsilon\} \neq \emptyset$$
.

Dann gibt es in R' eine Regel $A \to A_{i_1} \dots A_{i_m}$ mit $I = \{i_1, \dots, i_m\}$, und die A_i sind so angeordnet wie in der ursprünglichen Regel $A \to A_1 \dots A_\ell$.

Mit dieser neuen Regel können wir w so ableiten:

$$A \Longrightarrow_{G'} A_{i_1} \dots A_{i_m} \Longrightarrow_{G'}^* w_{i_1} \dots w_{i_m} = w$$

Beweis (Forts.)

- " \Leftarrow " Wir zeigen: Aus $A \Longrightarrow_{G'}^* w$ folgt $A \Longrightarrow_{G}^* w$ (Induktion über Länge einer Ableitung von A nach w in G'):
 - **Induktionsanfang:** Länge = 0. Dann ist w = A, und $A \Longrightarrow_G^* A$ gilt immer.
 - Induktionsschritt: Es gelte für alle Ableitungen $A \Longrightarrow_{G'}^* w$ einer Länge von höchstens n, dass $A \Longrightarrow_{G}^* w$.

Ist $A \Longrightarrow_{G'}^* w$ eine Ableitung der Länge n+1, so gibt es ein ℓ , Wörter w_1, \ldots, w_ℓ und Variablen A_1, \ldots, A_ℓ mit $A \Longrightarrow_{G'} A_1 \ldots A_\ell$ $\Longrightarrow_{G'}^* w = w_1 \ldots w_\ell$. Es gilt jeweils $A_i \Longrightarrow_{G'}^* w_i$ in höchstens n Schritten, und $w_i \neq \varepsilon$.

Beweis (Forts.)

Nach der Induktionsvoraussetzung folgt daraus:

- ullet für die Originalgrammatik G gibt es Ableitungen $A_i \Longrightarrow_G^* w_i$
- damit gibt es auch eine Ableitung $A_1 \dots A_\ell \Longrightarrow_G^* w$.

Beweis (Forts.)

Nach der Induktionsvoraussetzung folgt daraus:

- ullet für die Originalgrammatik G gibt es Ableitungen $A_i \Longrightarrow_G^* w_i$
- damit gibt es auch eine Ableitung $A_1 \dots A_\ell \Longrightarrow_G^* w$.

Da es in G' eine Ableitung $A \Longrightarrow_{G'} A_1 \dots A_{\ell}$ gibt, gibt es in R' eine Regel $A \to A_1 \dots A_{\ell}$. Wie ist diese Regel aus R entstanden?

Beweis (Forts.)

Nach der Induktionsvoraussetzung folgt daraus:

- ullet für die Originalgrammatik G gibt es Ableitungen $A_i \Longrightarrow_G^* w_i$
- damit gibt es auch eine Ableitung $A_1 \dots A_\ell \Longrightarrow_G^* w$.

Da es in G' eine Ableitung $A \Longrightarrow_{G'} A_1 \dots A_\ell$ gibt, gibt es in R' eine Regel $A \to A_1 \dots A_\ell$. Wie ist diese Regel aus R entstanden?

Eine Regel in R' entsteht aus einer Regel in R, indem einige nullbare Variablen gestrichen werden. Es gab also in G nullbare Variablen B_1 bis B_m , so dass R die Regel

$$A \rightarrow A_1 \dots A_{\ell_1} B_1 A_{\ell_1+1} \dots A_{\ell_2} B_2 \dots A_m B_m A_{m+1} \dots A_{\ell}$$

enthält. (m kann auch 0 sein, dann war die Regel selbst schon in R.)

Beweis (Forts.)

Also gilt in *G*:

$$A \Longrightarrow_{G} A_{1} \dots A_{\ell_{1}} B_{1} A_{\ell_{1}+1} \dots A_{\ell_{2}} B_{2} \dots A_{m} B_{m} A_{m+1} \dots A_{\ell}$$

$$\Longrightarrow_{G}^{*} A_{1} \dots A_{\ell_{1}} A_{\ell_{1}+1} \dots A_{\ell_{2}} \dots A_{m} A_{m+1} \dots A_{\ell} \Longrightarrow_{G}^{*} w$$

da ja $B_i \Longrightarrow_G^* \varepsilon$ möglich ist. \square

Elimination von ε -Regeln: Beispiel

$$R:$$
 $R':$ $S \rightarrow ABD$ $S \rightarrow ABD \mid AD \mid BD \mid D$ $A \rightarrow ED \mid BB$ $A \rightarrow ED \mid BB \mid B$ $B \rightarrow AC \mid \varepsilon$ $B \rightarrow AC \mid A \mid C$ $C \rightarrow \varepsilon$ $D \rightarrow d$ $D \rightarrow d$ $E \rightarrow e$ $E \rightarrow e$

Elimination von ε -Regeln: Beispiel

$$R:$$
 $R':$ $S oup ABD$ $S oup ABD \mid AD \mid BD \mid D$ $A oup ED \mid BB$ $A oup ED \mid BB \mid B$ $B oup AC \mid \varepsilon$ $B oup AC \mid A \mid C$ $C oup \varepsilon$ $D oup d$ $D oup d$ $E oup e$

Für die Regelmenge R in der linken Spalte sind die Variablen A, B, C nullbar.

Elimination von ε -Regeln: Beispiel

$$R:$$
 $R':$ $S oup ABD$ $S oup ABD \mid AD \mid BD \mid D$ $A oup ED \mid BB$ $A oup ED \mid BB \mid B$ $B oup AC \mid \varepsilon$ $B oup AC \mid A \mid C$ $C oup \varepsilon$ $D oup d$ $D oup d$ $E oup e$ $E oup e$

Für die Regelmenge R in der linken Spalte sind die Variablen A, B, C nullbar.

Der obige Algorithmus erzeugt aus R die rechts aufgeführte Regelmenge R'.

Beobachtung

- Der Algorithmus lässt nutzlose Variablen zurück, die nicht in Prämissen auftauchen (und deshalb nicht co-erreichbar sind).
 Hier: C.
- Der Algorithmus lässt nutzlose Regeln zurück. Hier: $B \rightarrow AC \mid C$.