Grundlagen der Theoretischen Informatik

Sommersemester 2015

23.04.2015

Viorica Sofronie-Stokkermans

e-mail: sofronie@uni-koblenz.de

Bis jetzt

- 1. Terminologie
- 2. Endliche Automaten und reguläre Sprachen
- 3. Kellerautomaten und kontextfreie Sprachen
- 4. Turingmaschinen und rekursiv aufzählbare Sprachen
- 5. Berechenbarkeit, (Un-)Entscheidbarkeit
- 6. Komplexitätsklassen P und NP

Bis jetzt

Alphabete, Wörter

Operationen auf Wörtern
 Konkatenation, i-te Potenz, Reverse

Sprache

Operationen auf Sprachen
 Konkatenation, i-te Potenz, Reverse, Kleene-Hülle

• Reguläre Ausdrücke

• Grammatiken

- Ableitung
- Die von einer Grammatik erzeugte Sprache.

Grammatik

Menge von Regeln, mit deren Hilfe man Wörter ableiten kann

Definition. Eine Grammatik G über einem Alphabet Σ ist ein Tupel

$$G = (V, T, R, S)$$

Dabei ist

- *V* eine endliche Menge von **Variablen**
- $T \subseteq \Sigma$ eine endliche Menge von **Terminalen** mit $V \cap T = \emptyset$
- *R* eine endliche Menge von **Regeln**
- $S \in V$ das **Startsymbol**

Konvention (meistens)

- Variablen als Großbuchstaben
- Terminale als Kleinbuchstaben

Rechnung einer Grammatik

Eine Regel ist ein Element $(P, Q) \in ((V \cup T)^* V (V \cup T)^*) \times (V \cup T)^*$.

- P und Q sind Wörter über $(V \cup T)$
- P muss mindestens eine Variable enthalten
- Q ist beliebig

Schreibweise: $P \rightarrow_G Q$, $P \rightarrow Q$

(P: Prämisse, Q: Conclusio)

Ableitung, Rechnung.

- $w \Longrightarrow_G w'$ ("w geht über in w'") falls $\exists u, v \in (V \cup T)^* \ \exists P \to Q \in R \ (w = uPv \ \text{und} \ w' = uQv)$
- $w \Longrightarrow_G^* w'$ falls es Wörter $w_0, \ldots, w_n \in (V \cup T)^* \ (n \ge 0)$ gibt mit $-w = w_0$
 - $w_m = w'$
 - $w_i \Longrightarrow_G w_{i+1}$ für $0 \le i < n$

Erzeugte Sprache, Äquivalenz

Definition (Erzeugte Sprache) Gegeben: Eine Grammatik G

Die von G erzeugte Sprache L(G) ist die Menge aller **terminalen** Wörter, die durch G vom Startsymbol S aus erzeugt werden können:

$$L(G) := \{ w \in T^* \mid S \Longrightarrow_G^* w \}$$

Definition (Äquivalenz)

Zwei Grammatiken G_1 , G_2 heißen **äquivalent** gdw

$$L(G_1) = L(G_2)$$

Definition (Dycksprache)

Gegeben:

- $k \in \mathbb{N}$
- $\Sigma_k := \{x_1, \overline{x_1}, x_2, \dots, x_k, \overline{x_k}\}$ ein Alphabet mit 2k Symbolen

Definition (Dycksprache)

Gegeben:

- $-k \in \mathbb{N}$
- $\Sigma_k := \{x_1, \overline{x_1}, x_2, \dots, x_k, \overline{x_k}\}$ ein Alphabet mit 2k Symbolen

Die Dycksprache D_k ist die kleinste Menge die folgende Bedingungen erfüllt:

- 1. $\epsilon \in D_k$,
- 2. Falls $w \in D_k$, so auch $x_i w \overline{x_i}$.
- 3. Falls $u, v \in D_k$, so auch uv.

Definition (Dycksprache)

Gegeben:

- $k \in \mathbb{N}$
- $-\Sigma_k := \{x_1, \overline{x_1}, x_2 \dots, x_k, \overline{x_k}\}$ ein Alphabet mit 2k Symbolen

Die Dycksprache D_k ist die kleinste Menge die folgende Bedingungen erfüllt:

- 1. $\epsilon \in D_k$,
- 2. Falls $w \in D_k$, so auch $x_i w \overline{x_i}$.
- 3. Falls $u, v \in D_k$, so auch uv.

Interpretiert man die x_i als öffnende, die $\overline{x_i}$ als zugehörige schließende Klammern, so kann man die Dycksprache als die Menge aller korrekten Klammerausdrücke sehen.

$$k = 2$$

$$\Sigma_2 := \{ [,],(,) \}$$

- $[[()[]]()] \in D_2$
- ([)] $\not\in D_2$
-)) $\not\in D_2$

Definition (Dycksprache)

Gegeben:

-
$$k \in \mathbb{N}$$
, $\Sigma_k := \{x_1, \overline{x_1}, x_2 \dots, x_k, \overline{x_k}\}$ ein Alphabet mit $2k$ Symbolen

Die Dycksprache D_k ist die kleinste Menge die folgende Bedingungen erfüllt:

- 1. $\epsilon \in D_k$,
- 2. Falls $w \in D_k$, so auch $x_i w \overline{x_i}$.
- 3. Falls $u, v \in D_k$, so auch uv.

Grammatik
$$G = (\{S\}, \{x_1, \overline{x_1}, x_2, \dots, x_k, \overline{x_k}\}, R, S)$$
 mit $L(G) = D_k$

$$R_1: S \to \varepsilon$$

$$R_2: S \to x_1 S \overline{x_1} \mid \ldots \mid x_k S \overline{x_k}$$

$$R_3: S \rightarrow SS$$

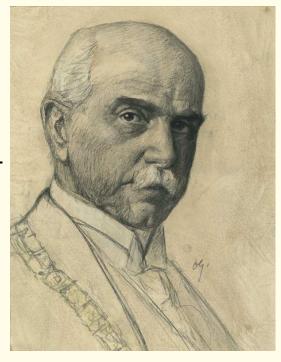
Um zu zeigen, dass $L(G) = D_k$, zeigen wir dass L(G) die kleinste Menge ist die folgende Bedingungen erfüllt:

- 1. $\epsilon \in L(G)$,
- 2. Falls $w \in L(G)$, so auch $x_i w \overline{x_i}$.
- 3. Falls $u, v \in L(G)$, so auch uv.

Beweis: an der Tafel.

Walther von Dyck (1856-1934)

- Mathematiker
- Hochschulpolitiker
- Erster Rektor der TU München
- Einer der Gründungsväter des Deutschen Museums



[Foto: Deutsches Museum]

Warum Sprachen?

Darstellung von Problemen

Fakt: So ziemlich alle Probleme können als Probleme über Sprachen formuliert werden.

Warum Sprachen?

Darstellung von Problemen

Fakt: So ziemlich alle Probleme können als Probleme über Sprachen formuliert werden.

Beispiel: Primzahlen

$$\textbf{Alphabet} \ \ \Sigma_{num} := \{|\}$$

Sprache
$$L_{primes} := \{\underbrace{||\ldots|}_{p \text{ mal}} \mid p \text{ prim}\}$$

Darstellung von Problemen

Eingabealphabet

$$\Sigma = \{0, 1, \ldots, n-1\}$$

erlaubt Darstellung einer Ganzzahl zur Basis n

Darstellung von Problemen

Eingabealphabet

$$\Sigma = \{0, 1, \ldots, n-1\}$$

erlaubt Darstellung einer Ganzzahl zur Basis n

Beispiel:

5 binär: 101

5 unär: ||||| (oder auch 11111)

Darstellung von Problemen

Speicheraufwand

n-äre Darstellung (n > 1) einer Zahl k führt zu einer Speicherersparnis:

$$\log_n k$$
 (n-är) statt k (unär)

Nur der Schritt von unär auf binär ist wesentlich, denn

$$\log_n k = \frac{1}{\log_2 n} \cdot \log_2 k = c \cdot \log_2 k$$

(von binär auf *n*-är nur lineare Einsparung)

Darstellung des Erfüllbarkeitsproblems SAT

Problem SAT

Gegeben: Eine aussagenlogische Formel w

Frage: Gibt es eine Belegung der booleschen Variablen in w,

so dass w zu true auswertet?

Darstellung des Erfüllbarkeitsproblems SAT

Problem SAT

Gegeben: Eine aussagenlogische Formel w

Frage: Gibt es eine Belegung der booleschen Variablen in w, so dass w zu true auswertet?

Signatur für aussagenlogische Formeln

Signatur: $\Sigma_{sat} := \{ \land, \lor, \neg, (,), x, 0, 1 \}$

Dabei Darstellung von boolscher Variablen x_i als x gefolgt von i binär kodiert.

Dadurch Formel der Länge n um (unerheblichen) Faktor log n länger.

Darstellung des Erfüllbarkeitsproblems SAT

Satisfiability

Sprache

```
L_{\mathsf{sat}} := \{ w \in \Sigma_{\mathsf{sat}}^* : w \text{ ist eine aussagenlogische Formel,}  und es gibt eine Belegung f\tilde{\mathsf{A}} \frac{1}{4} \mathsf{r} \text{ die } x_i, so dass die Formel w zu true auswertet \}
```

Darstellung des Erreichbarkeitsproblems in Graphen

Erreichbarkeitsproblem

Gegeben: Ein Graph mit Ecken v_1 bis v_n

Frage: Gibt es einen Weg von Ecke v_1 zu Ecke v_n ?

Signatur für Graphen

Signatur: $\Sigma_{graph} := \{v, e, 0, 1, (,), \#\}$

Darstellung von

Ecke v_i als v gefolgt i binär kodiert

Kante $e_{i,j}$ als $e(string_1 \# string_2)$, wobei

- string₁ die binäre Darstellung von i,
- string₂ die binäre Darstellung von j

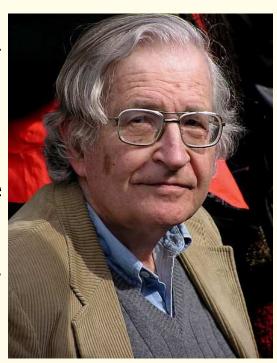
Darstellung des Erreichbarkeitsproblems in Graphen

Erreichbarkeitsproblem

Sprache

Noam Chomsky (born 1928)

- Professor f
 ür Linguistik und Philosophie am MIT
- Bedeutender Linguist
- Bedeutender Beitrag zur Informatik:
 Erste Beschreibung der Chomsky-Hierarchie
 (1956)
- Bedeutender linker Intellektueller und Globalisierungskritiker



Was muss eine Grammatik erfüllen?

- Sie darf nur endlich viele Regeln haben
- Jede Regelprämisse muss mindestens eine Variable enthalten

Was muss eine Grammatik erfüllen?

- Sie darf nur endlich viele Regeln haben
- Jede Regelprämisse muss mindestens eine Variable enthalten

Das Wort kann im Lauf der Ableitung beliebig wachsen und wieder schrumpfen.

(Weitere) Beschränkung der Form, die Regeln haben dürfen, führt zu

- Grammatiktypen und damit auch zu
- Sprachtypen

von verschiedenen Schwierigkeitsgraden.

Definition (Rechtlineare Grammatik)

Eine Grammatik G = (V, T, R, S) heißt rechtslinear gdw

$$\forall (P \rightarrow Q) \in R \ \left(P \in V \ \text{und} \ Q \in T^* \cup T^+ V\right)$$

Definition (Rechtlineare Grammatik)

Eine Grammatik G = (V, T, R, S) heißt rechtslinear gdw

$$\forall (P \rightarrow Q) \in R \ \left(P \in V \ \text{und} \ Q \in T^* \cup T^+ V\right)$$

Das heißt, bei jeder Regelanwendung:

- Links eine einzelne Variable
- Rechts höchstens eine Variable
- Wenn rechts eine Variable steht, steht sie ganz rechts im Wort.

Definition (Kontextfreie Grammatik)

Eine Grammatik G = (V, T, R, S) heißt kontextfrei gdw

$$\forall (P o Q) \in R \ \left(P \in V \ \mathsf{und} \ Q \in (V \cup T)^*\right)$$

Definition (Kontextfreie Grammatik)

Eine Grammatik G = (V, T, R, S) heißt kontextfrei gdw

$$\forall (P \rightarrow Q) \in R \ \left(P \in V \ \mathsf{und} \ Q \in (V \cup T)^*\right)$$

Das heißt, bei jeder Regelanwendung:

- Links eine einzelne Variable
- Die Prämisse macht keine Aussage, was der Kontext dieser Variablen ist ("kontextfrei")
- Rechts steht etwas beliebiges

Definition (Kontextsensitive Grammatik)

Eine Grammatik G = (V, T, R, S) heißt kontextsensitiv gdw

 $\forall (P \rightarrow Q) \in R$:

- 1. $\exists u, v, \alpha \in (V \cup T)^* \ \exists A \in V \ (P = uAv \ und \ Q = u\alpha v \ mit \ |\alpha| \ge 1)$, oder die Regel hat die Form $S \to \varepsilon$
- 2. S nicht in Q

Definition (Kontextsensitive Grammatik)

Eine Grammatik G = (V, T, R, S) heißt kontextsensitiv gdw

 $\forall (P \rightarrow Q) \in R$:

- 1. $\exists u, v, \alpha \in (V \cup T)^* \ \exists A \in V \ (P = uAv \ und \ Q = u\alpha v \ mit \ |\alpha| \ge 1)$, oder die Regel hat die Form $S \to \varepsilon$
- 2. S nicht in Q

Das heißt, bei jeder Regelanwendung:

- Eine Variable A wird in einen String α mit $|\alpha| \geq 1$ überführt
- Die Ersetzung von A durch α findet nur statt, wenn der in der Regel geforderte Kontext (u und v), vorhanden ist
- Das Wort wird nicht kürzer, außer bei $\varepsilon \in L$

Beschränkte Grammatik

Definition (Beschränkte Grammatik)

Eine Grammatik G = (V, T, R, S) heißt beschränkt gdw

 $\forall (P \rightarrow Q) \in R$:

- 1. $|P| \leq |Q|$, oder die Regel hat die Form $S \to \varepsilon$
- 2. S nicht in Q

Beschränkte Grammatik

Definition (Beschränkte Grammatik)

Eine Grammatik G = (V, T, R, S) heißt beschränkt gdw

$$\forall (P \rightarrow Q) \in R$$
:

- 1. $|P| \leq |Q|$, oder die Regel hat die Form $S \to \varepsilon$
- 2. S nicht in Q

Das heißt, bei jeder Regelanwendung:

- Die Conclusio ist mindestens so lang wie die Prämisse, außer bei $\varepsilon \in L$.
- Das Wort wird nicht kürzer, außer bei $\varepsilon \in L$

Aufbauend auf den Grammatikarten kann man Sprachklassen definieren.

Definition (Sprachklassen)

Klasse	definiert als	Sprache heißt
L ₃ , REG	$\{L(G) \mid G \text{ ist rechtslinear}\}$	Typ 3, regulär
L ₂ , CFL	$\{L(G) \mid G \text{ ist kontextfrei}\}$	Typ 2, kontextfrei
L ₁ , CSL	$\{L(G) \mid G \text{ ist kontextsensitiv}\}$	Typ 1, kontextsensitiv
L ₁ , CSL	$\{L(G) \mid G \text{ ist beschränkt}\}$	Typ 1, beschränkt
L ₀ , r.e.	$\{L(G) \mid G \text{ beliebig}\}$	Typ 0, aufzählbar
L	$\{L \mid L \subseteq \Sigma^* \}$	beliebige Sprache

Grammatiken können kompliziert sein!

Beispiel (Grammatik für
$$\{a^nb^nc^n\mid n\geq 1\}$$
):
Grammatik $G_{abc}=(\{S,X_1,X_2\},\{a,b,c\},\{R_1,\dots R_5\},S)$ mit
 $R_1=S \rightarrow abc\mid aX_1bc$
 $R_2=X_1b \rightarrow bX_1$
 $R_3=X_1c \rightarrow X_2bcc$
 $R_4=bX_2 \rightarrow X_2b$
 $R_5=aX_2 \rightarrow aa\mid aaX_1$

- Ist diese Grammatik kontextsensitiv?
- Ist sie beschränkt?

Probleme über Sprachen

Probleme über Sprachen

Interessante Probleme (informell)

- Ist ein gegebenes Wort in einer Sprache (definiert durch eine Grammatik) enthalten?
- Erzeugen zwei gegebene Grammatiken dieselbe Sprache?

Mit welchen Algorithmen können diese Probleme gelöst werden?

Probleme und Algorithmen im allgemeine

Definition (Problem, Algorithmus)

Ein Problem P ist die Frage, ob eine bestimmte Eigenschaft auf gegebene Objekte zutrifft.

Dabei ist eine bekannte, abzählbaren Grundmenge solcher Objekte gegeben.

Für jedes Objekt o gilt: die Eigenschaft trifft auf o zu oder nicht.

Ein Algorithmus für ein Problem P ist eine Vorschrift (ein Programm), die zu beliebigem Objekt o berechnet, ob die Eigenschaft für o zutrifft oder nicht.

Probleme und Algorithmen im allgemeinen

Beispiel (Einige Probleme)

- Für $n \in \mathbb{N}$: Ist n eine Primzahl?
- Für ein Wort $w \in \Sigma^*$ und ein Element G aus der Menge aller Grammatiken über Σ : Gilt $w \in L(G)$?
- Für ein Element G aus der Menge aller Grammatiken: Ist L(G) leer (endlich, unendlich)?
- Für $(a, b, c) \in \mathbb{N}^3$: Hat $a^n + b^n = c^n$ eine Lösung in den natürlichen Zahlen?
- Für ein Programm p aus der Menge aller Java-Programme:
 Terminiert p?