Grundlagen der Theoretischen Informatik

Komplexitätstheorie (III)

20.07.2017

Viorica Sofronie-Stokkermans

e-mail: sofronie@uni-koblenz.de

Organisatorisches

2. Teilklausur: Freitag, 28.07.2017, 10:00-11:00, Raum D 028

Anmeldung bis 20.07.2017

Rücktritt: bis 20.07.2017

Question/Answer Session: Montag, 24.07.2017, 13:00-15:00

Nachklausur: Freitag, 29.09.2017, 13:00s.t.-15:00 (120 min), Raum D028.

Anmeldung: 1.09.2017-22.09.2017

Rücktritt: nis 22.09.2017

Übersicht

- 1. Motivation
- 2. Terminologie
- 3. Endliche Automaten und reguläre Sprachen
- 4. Kellerautomaten und kontextfreie Sprachen
- 5. Turingmaschinen und rekursiv aufzählbare Sprachen
- 6. Berechenbarkeit, (Un-)Entscheidbarkeit
- 7. Komplexitätsklassen P und NP

Komplexitätstheorie

Inhalt

- Definition der Komplexitätsklassen P und NP.
- Begriff der Reduktion: ein Problem (eine Sprache) wird auf ein zweites reduziert. Das erste Problem ist dann höchstens so schwer wie das zweite.
- Der Begriff eines NP -schweren Problems.
- Einige Probleme der Graphentheorie: sie sind NP-vollständig.
- Die wichtigsten Komplexitätsklassen und ihre Struktur.

Komplexitätstheorie

Inhalt

- Definition der Komplexitätsklassen P und NP .
- Begriff der Reduktion: ein Problem (eine Sprache) wird auf ein zweites reduziert. Das erste Problem ist dann höchstens so schwer wie das zweite.
- Der Begriff eines NP -schweren Problems.
- Einige Probleme der Graphentheorie: sie sind NP-vollständig.
- Die wichtigsten Komplexitätsklassen und ihre Struktur.

Wachstumsrate von DTIME und DSPACE

Definition [P, NP, PSPACE]

```
\mathsf{P} \qquad := \quad \bigcup_{i\geqslant 1} \mathsf{DTIME}(n^i)
```

 $NP := \bigcup_{i\geqslant 1} NTIME(n^i)$

PSPACE := $\bigcup_{i\geqslant 1}$ **DSPACE** (n^i)

Intuitiv

- Probleme in **P** sind effizient lösbar, jene aus **NP** können in exponentieller Zeit gelöst werden.
- **PSPACE** ist eine sehr große Klasse, weit größer als **P** oder **NP** .

$$P \subseteq NP \subseteq PSPACE$$

Komplexitätsklassen für Funktionen

Komplexitätsklassen für Funktionen

Eine Funktion $f: \mathbb{N} \to \mathbb{N}$ ist in \mathbf{P} , falls es eine DTM \mathcal{M} und ein Polynom p(n) gibt, so dass für jedes n der Funktionswert f(n) in höchstens p(länge(n)) Schritten von \mathcal{M} berechnet wird.

Dabei gilt länge $(n) = \lg n$, denn man braucht $\lg n$ Zeichen, um die Zahl n binär darzustellen.

Reduktion

Definition (Polynomial-Zeit-Reduzibilität)

Seien L_1 , L_2 Sprachen.

 L_1 ist Polynomial-Zeit reduzibel auf L_2 , bezeichnet mit $L_1 \leq_{pol} L_2$, wenn es eine **Polynomial-Zeit beschränkte DTM** gibt, die für jede Eingabe w eine Ausgabe f(w) erzeugt, so dass

$$w \in L_1 \operatorname{\underline{gdw}} f(w) \in L_2$$

Lemma [Polynomial-Zeit-Reduktionen]

1. Sei L_1 Polynomial-Zeit-reduzibel auf L_2 ($L_1 \leq_{pol} L_2$). Dann gilt

Wenn L_2 in **NP** ist dann ist auch L_1 in **NP** Wenn L_2 in **P** ist dann ist auch L_1 in **P**

2. Die Komposition zweier Polynomial-Zeit-Reduktionen ist wieder eine Polynomial-Zeit-Reduktion.

NP

Theorem.

Eine Sprache L is in **NP** genau dann wenn es eine Sprache L' in **P** und ein $k \geq 0$ gibt, so das für alle $w \in \Sigma$ gilt:

 $w \in L$ gdw. es gibt ein $c : \langle w, c \rangle \in L'$ und $|c| < |w|^k$.

c wird **Zeuge** (witness oder Zertifikat/certificate) von w in L genannt.

Eine DTM, die die Sprache L' akzeptiert, wird **Prüfer** (*verifier*) von L genannt.

Wichtig:

Ein Entscheidungsproblem ist in **NP** genau dann wenn **jede Ja-Instanz ein kurzes Zertifikat** hat (d.h. seine Länge polynomial in der Länge der Eingabe ist), welche in polynomial-Zeit verifiziert werden kann.

Definition [NP-vollständig, NP-hart]

- Eine Sprache L heißt NP-hart (NP-schwer) wenn jede Sprache $L' \in NP$ polynomial-zeit-reduzibel auf L ist.
- Eine Sprache *L* heißt **NP-vollständig** wenn sie
 - 1. in **NP** ist $(L \in NP)$, und
 - 2. NP-hart ist

Definition [NP-vollständig, NP-hart]

- Eine Sprache L heißt NP-hart (NP-schwer) wenn jede Sprache $L' \in NP$ polynomial-zeit-reduzibel auf L ist.
- Eine Sprache L heißt NP-vollständig wenn sie
 - 1. in **NP** ist $(L \in NP)$, und
 - 2. NP-hart ist

Definition [PSPACE-vollständig, PSPACE-hart]

- Eine Sprache L heißt **PSPACE-hart (PSPACE-schwer)** wenn jede Sprache $L' \in PSPACE$ polynomial-zeit-reduzibel auf L ist.
- Eine Sprache *L* heißt **PSPACE-vollständig** wenn sie
 - 1. in **PSPACE** ist $(L \in PSPACE)$ und
 - 2. **PSPACE**-hart ist

Bemerkenswert

- Wenn gezeigt werden kann, dass auch nur ein einziges **NP**-hartes Problem in **P** liegt, dann ist P = NP.
- Wenn $P \neq NP$ gilt, dann ist kein einziges NP-vollständiges Problem in polynomieller Zeit lösbar.

Bemerkenswert

- Wenn gezeigt werden kann, dass auch nur ein einziges **NP**-hartes Problem in **P** liegt, dann ist P = NP.
- Wenn $P \neq NP$ gilt, dann ist kein einziges NP-vollständiges Problem in polynomieller Zeit lösbar.

Eine Million Euro für den, der das "P = NP"-Problem löst! (Millenium Probleme)

Wie zeigt man NP-Vollständigkeit?

Um zu zeigen, dass eine Sprache L NP-vollständig ist:

- Zeige, dass $L \in \mathbf{NP}$
- Finde bekanntermaßen NP-vollständige Sprache L' und
- reduziere sie auf *L*:

$$L' \leq_{pol} L$$

Das genügt, da jede Sprache aus **NP** auf L' reduzierbar ist und wegen $L' \leq_{pol} L$ dann auch auf L.

Hierfür häufig verwendet:

SAT-Problem, d.h.

 $L' = L_{sat} = SAT = \{w \mid w \text{ ist eine erfüllbare aussagenlogische Formel}\}$

Theorem $SAT = \{ w \mid w \text{ ist eine erfüllbare aussagenlogische Formel} \}$ ist NP-vollständig.

Theorem $SAT = \{ w \mid w \text{ is a satisfiable formula of propositional logic} \}$ ist NP-vollständig.

Beweis: (Idee)

Zu zeigen: (1) $SAT \in NP$

(2) für alle $L \in NP$, $L \leq_{pol} SAT$

Theorem $SAT = \{w \mid w \text{ is a satisfiable formula of propositional logic}\}$ ist NP-vollständig.

Beweis: (Idee)

Zu zeigen: (1) $SAT \in NP$

(2) für alle $L \in NP$, $L \leq_{pol} SAT$

(1) Gegeben sei F. Man kann in polynomieller Zeit bestimmen, ob F eine aussagenlogische Formel ist. Falls F aussagenlogische Formel: Wertebelegung $\mathcal A$ "raten", in polynomieller Zeit zeigen, dass $\mathcal A(F)=1$.

Theorem $SAT = \{ w \mid w \text{ is a satisfiable formula of propositional logic} \}$ ist NP-vollständig.

Beweis: (Idee)

Zu zeigen: (1) $SAT \in NP$

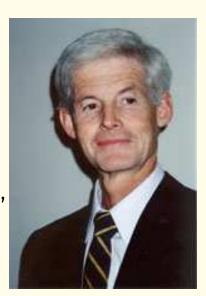
- (2) für alle $L \in NP$, $L \leq_{pol} SAT$
- (1) Gegeben sei F. Man kann in polynomieller Zeit bestimmen, ob F eine aussagenlogische Formel ist. Falls F aussagenlogische Formel: Wertebelegung $\mathcal A$ "raten", in polynomieller Zeit zeigen, dass $\mathcal A(F)=1$.
- (2) Sei $L \in NP$. Dann existiert eine polynomiell zeitgebundene NTM \mathcal{M} , mit $L(\mathcal{M}) = L$. Für \mathcal{M} und w kann man eine aussagenlogische Sprache definieren und in polynomieller Zeit eine Formel $T_{M,w}$ finden, so dass

 $w \in L(\mathcal{M})$ gdw. $T_{M,w}$ erfüllbar ist.

Stephen Cook

Stephen Arthur Cook (geboren 1939)

- Einer der bedeutendsten Forschern in der Komplexitätstheorie.
- 1971 'The Complexity of Theorem Proving Procedures'
 - formalisiert die Polynomialzeitreduktion
 - begründet mit dem Satz von Cook das Problem der NP-Vollständigkeit und im Besonderen das P-NP-Problem.
- Professor der Informatik an der University of Toronto in Kanada.
- 1982: Turing award



Nota Bene: Es gibt NP-harte Probleme, die nicht in NP sind (und z.B. sogar nicht entscheidbar sein können).

Beispiel: $SAT \leq_{pol} SAT_{PL}$, wobei:

$$SAT = \{ w \mid w \text{ ist eine erfüllbare aussagenlogische Formel} \}$$

 $SAT_{PL} = \{ w \mid w \text{ ist eine erfüllbare Formel in der Prädikatenlogik} \}$

Sei
$$f: \Sigma^* \to \Sigma^*$$
 mit $\left\{ \begin{array}{ll} f(w) = w & \text{falls } w \text{ eine aussagenlogische Formel ist} \\ f(w) = \varepsilon \text{ sonst} \end{array} \right.$

(kann von einer polynomial-Zeit beschränkte DTM berechnet werden).

Dann:
$$F \in SAT$$
 gdw. F ist eine erfüllbare aussagenlogische Formel gdw. $f(F) = F$ ist eine erfüllbare Formel in der Prädikatenlogik gdw. $f(F) \in SAT_{PL}$

- SAT ist NP-vollständig, also ist SAT_{PL} NP-hart.
- $SAT_{PL} \not\in NP$. (SAT_{PL} ist nicht entscheidbar: die Menge aller erfüllbaren prädikatenlogischen Formeln ist nicht entscheidbar).

P, PSPACE sind abgeschlossen unter Komplement

Alle Komplexitätsklassen, die mittels deterministischer Turing-Maschinen definiert sind, sind abgeschlossen unter Komplement-Bildung

Denn:

Wenn eine Sprache L dazu gehört, dann auch ihr Komplement (einfach die alte Maschine ausführen und die Ausgabe invertieren).

Abgeschlossenheit von NP unter Komplement

Frage:

Ist NP abgeschlossen unter Komplementbildung?

Abgeschlossenheit von NP unter Komplement

Frage:

Ist **NP** abgeschlossen unter Komplementbildung?

Antwort:

Keiner weiß es!

Die Kompexitätsklasse co-NP

Definition [co-NP]

co-NP ist die Klasse dr Sprachen deren Komplemente in NP liegen:

$$\mathsf{co}\mathsf{-NP} = \{L \mid \overline{L} \in \mathsf{NP}\}\$$

Beziehungen zwischen Komplexitätsklassen

Die folgenden Beziehungen sind momentan noch unbekannt

- 1. **P** =? **NP**.
- 2. NP = ? co-NP.
- 3. P = ? PSPACE.
- 4. **NP** =? **PSPACE**.

Beispiele

- Ist eine logische Formel erfüllbar? (Satisfiability)
- Ist ein (un-) gerichteter Graph hamiltonsch? (Hamiltonian circle)
- Gibt es in einem Graphen eine Clique der Größe k? (Clique of size k)
- Ist ein Graph mit drei Farben zu färben? (3-colorability)
- Gibt es in einer Menge von ganzen Zahlen eine Teilmenge mit der Gesamtsumme x? (Subset Sum)

- Ist eine logische Formel erfüllbar? (Satisfiability)
- Ist ein (un-) gerichteter Graph hamiltonsch? (Hamiltonian circle)
- Gibt es in einem Graphen eine Clique der Größe k? (Clique of size k)
- Ist ein Graph mit drei Farben zu färben? (3-colorability)
- Gibt es in einer Menge von ganzen Zahlen eine Teilmenge mit der Gesamtsumme x? (Subset Sum)

Definition[CNF, DNF]

DNF: Eine Formel ist in **disjunktiver Normalform**, wenn sie von folgender Form ist:

$$(I_{11} \wedge \ldots \wedge I_{1n_1}) \vee \ldots \vee (I_{m1} \wedge \ldots \wedge I_{mn_m})$$

CNF: Eine Formel ist in **konjunktiver Normalform**, wenn sie von folgender Form ist:

$$(I_{11} \vee \ldots \vee I_{1n_1}) \wedge \ldots \wedge (I_{m1} \vee \ldots \vee I_{mn_m})$$

.

Definition[k-CNF, k-DNF]

k-DNF: Eine Formel ist in k-DNF wenn sie in DNF ist und jede ihrer Konjuntionen genau k Literale hat.

k-CNF: Eine Formel ist in k-CNF wenn sie in CNF ist und jede ihrer Disjunktion genau k Literale hat.

Definition[SAT, CNF-SAT, k-CNF-SAT]

- SAT = $L_{sat} = \{ w \mid w \text{ ist eine erfüllbare aussagenlogische Formel} \}$
- $CNF-SAT = \{ w \mid w \text{ ist eine erfüllbare aussagenlogische Formel in CNF} \}$
- k-CNF-SAT= { $w \mid w$ ist eine erfüllbare aussagenlogische Formel in k-CNF}

Definition[DNF-SAT, k-DNF-SAT]

- DNF-SAT = $\{w \mid w \text{ ist eine erfüllbare aussagenlogische Formel in DNF}\}$
- k-DNF-SAT= { $w \mid w$ ist eine erfüllbare aussagenlogische Formel in k-DNF}

Theorem [NP-vollständige Probleme]

Die folgenden Probleme liegen in NP und sind NP-vollständig:

- L_{sat} (SAT)
- CNF-SAT
- k-CNF-SAT für $k \ge 3$

Theorem [NP-vollständige Probleme]

Die folgenden Probleme liegen in NP und sind NP-vollständig:

- L_{sat} (SAT)
- CNF-SAT
- k-CNF-SAT für $k \ge 3$

Theorem [Probleme in P]

Die folgenden Probleme liegen in P:

- DNF-SAT
- k-DNF-SAT für alle k
- 2-CNF-SAT

- Ist eine logische Formel erfüllbar? (Satisfiability)
- Ist ein (un-) gerichteter Graph hamiltonsch? (Hamiltonian circle)
- Gibt es in einem Graphen eine Clique der Größe k? (Clique of size k)
- Ist ein Graph mit drei Farben zu färben? (3-colorability)
- Gibt es in einer Menge von ganzen Zahlen eine Teilmenge mit der Gesamtsumme x? (Subset Sum)

Definition [Hamilton Circle]

Hamilton-Kreis: Weg entlang der Kanten in einem Graphen, der jeden Knoten genau einmal besucht und wieder zum Ausgangspunkt zurückkehrt.

 $L_{\mathsf{Ham}_{\mathsf{undir}}}$: Die Sprache, die aus allen ungerichteten Graphen besteht, in denen es einen Hamilton-Kreis gibt.

 $L_{\mathsf{Ham}_{\mathsf{dir}}}$: Die Sprache, die aus allen gerichteten Graphen besteht, in denen es einen Hamilton-Kreis gibt.

- Ist eine logische Formel erfüllbar? (Satisfiability)
- Ist ein (un-) gerichteter Graph hamiltonsch? (Hamiltonian circle)
- Gibt es in einem Graphen eine Clique der Größe k? (Clique of size k)
- Ist ein Graph mit drei Farben zu färben? (3-colorability)
- Gibt es in einer Menge von ganzen Zahlen eine Teilmenge mit der Gesamtsumme x? (Subset Sum)

Definition[Maximale Clique: L_{Clique_k}]

Eine Clique in einem Graphen ist ein vollständiger Teilgraph von G.

Für $k \in \mathbb{N}$:

 L_{Clique_k} Die Sprache, die aus allen ungerichteten Graphen besteht, die eine Clique der Größe k enthalten.

 $L_{\text{Clique}_{\leq k}}$ Die Sprache, die aus allen ungerichteten Graphen besteht, die eine Clique der Größe $\leq k$ enthalten.

 $L_{Clique} = \{(G, k) \mid G \text{ ungerichteter Graph, der eine }$ Clique der Größe k enthält. $\}$

- Ist eine logische Formel erfüllbar? (Satisfiability)
- Ist ein (un-) gerichteter Graph hamiltonsch? (Hamiltonian circle)
- Gibt es in einem Graphen eine Clique der Größe k? (Clique of size k)
- Ist ein Graph mit drei Farben zu färben? (3-colorability)
- Gibt es in einer Menge von ganzen Zahlen eine Teilmenge mit der Gesamtsumme x? (Subset Sum)

Definition[k-colorability: $L_{Color_{< k}}$]

Ein (ungerichteter) Graph heißt k-färbbar, falls jeder Knoten mit einer von k Farben so gefärbt werden kann, dass benachbarte Knoten verschiedene Farben haben.

Für $k \in \mathbb{N}$:

 $L_{Color_{\leq k}}$ Die Sprache, die aus allen ungerichteten, mit höchstens k Farben färbbaren Graphen besteht.

Einige Beispiel-Reduktionen

- $L_{\text{CNF-SAT}} \leq_{\text{pol}} L_{\text{Clique}_{\leq k}}$,
- $L_{\text{Ham}_{\text{dir}}} \leq_{\text{pol}} L_{\text{Ham}_{\text{undir}}}$,
- $L_{\text{Ham}_{\text{undir}}} \leq_{\text{pol}} L_{\text{Ham}_{cost} \leq_k}$, L_{Clique_k} ,
- $L_{SAT} \leq_{pol} L_{3-CNF-SAT}$,
- $L_{SAT} \leq_{pol} L_{CNF-SAT}$,
- $L_{3-CNF-SAT} \leq_{pol} L_{Color_{< k}}$.

Beispiel: SAT \leq_{pol} 3-CNF-SAT

- **1. Schritt:** Wir eliminieren \rightarrow , \leftrightarrow und ziehen \neg ganz nach innen (NNF)
- 2. Schritt: Zusätzliche Klammern einführen (∧, ∨ binär)
- **3. Schritt:** Wir ordnen jedem Klammerausdruck A op B (op $\in \{\lor, \land\}$) ein neues Atom $P_{A \text{ op} B}$ zu. Das $P_{A \text{ op } B}$ denselben Wahrheitswert erhält wie A op B erzwingen wir durch die Formel $P_{A \text{ op } B} \leftrightarrow (A \text{ op } B)$.
- **4. Schritt:** Wir ersetzen:

$$P_{A\vee B} \leftrightarrow (A\vee B)$$
 durch $(\neg P_{A\vee B}\vee A\vee B)\wedge (\neg A\vee P_{A\vee B})\wedge (\neg A\vee P_{A\vee B})$
 $P_{A\wedge B} \leftrightarrow (A\wedge B)$ durch $(\neg P_{A\vee B}\vee A)\wedge (\neg P_{A\vee B}\vee B)\wedge (\neg A\vee \neg B\vee P_{A\vee B})$
 $\mapsto P_F\wedge \text{Rename}(F)=:f(F)$

$$F \in \mathsf{SAT}$$
 gdw. F erfüllbare aussagenlogische Formel gdw. $P_F \wedge Rename(F)$ erfüllbar gdw. $f(F) \in \mathsf{3}\text{-}\mathsf{CNF}\text{-}\mathsf{SAT}$

Beispiel

Sei F die Formel:

$$[(Q \land \neg P \land \neg (\neg (\neg Q \lor \neg R))) \lor (Q \land \neg P \land \neg (Q \land \neg P))] \land (P \lor R).$$

1. Schritt: Wir eliminieren \rightarrow , \leftrightarrow und ziehen \neg ganz nach innen (NNF)

$$F_1 = [(Q \land \neg P \land (\neg Q \lor \neg R)) \lor (Q \land \neg P \land (\neg Q \lor P))] \land (P \lor R)$$

2. Schritt: Zusätzliche Klammern einführen (\land , \lor binär)

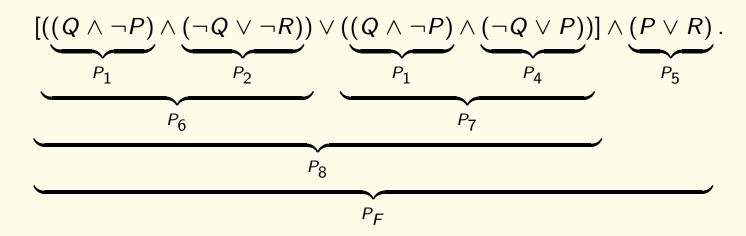
$$F_2 = [((Q \land \neg P) \land (\neg Q \lor \neg R)) \lor (Q \land (\neg Q \lor P) \land \neg P)] \land (P \lor R)$$

3. Schritt: Wir ordnen jedem Klammerausdruck ein neues Atom:

$$\underbrace{[(\underbrace{(Q \land \neg P) \land (\neg Q \lor \neg R)}_{P_1}) \lor (\underbrace{(Q \land \neg P) \land (\neg Q \lor P)}_{P_2})] \land \underbrace{(P \lor R)}_{P_5}}_{P_8}.$$

Example

3. Schritt: Wir ordnen jedem Klammerausdruck ein neues Atom: inside).



F ist erfüllbar genau dann, wenn $P_F \wedge \text{Rename}(F)$ erfüllbar:

$$P_F$$
 \wedge $(P_F \leftrightarrow (P_8 \wedge P_5) \wedge (P_1 \leftrightarrow (Q \wedge \neg P))$
 \wedge $(P_8 \leftrightarrow (P_6 \vee P_7)) \wedge (P_2 \leftrightarrow (\neg Q \vee \neg R))$
 \wedge $(P_6 \leftrightarrow (P_1 \wedge P_2)) \wedge (P_4 \leftrightarrow (\neg Q \vee P))$
 \wedge $(P_7 \leftrightarrow (P_1 \wedge P_4)) \wedge (P_5 \leftrightarrow (P \vee R))$

Example

F ist erfüllbar genau dann, wenn $P_F \wedge \text{Rename}(F)$ erfüllbar:

$$P_F$$
 \wedge $(P_F \leftrightarrow (P_8 \wedge P_5) \wedge (P_1 \leftrightarrow (Q \wedge \neg P))$
 \wedge $(P_8 \leftrightarrow (P_6 \vee P_7)) \wedge (P_2 \leftrightarrow (\neg Q \vee \neg R))$
 \wedge $(P_6 \leftrightarrow (P_1 \wedge P_2)) \wedge (P_4 \leftrightarrow (\neg Q \vee P))$
 \wedge $(P_7 \leftrightarrow (P_1 \wedge P_4)) \wedge (P_5 \leftrightarrow (P \vee R))$

Step 4: CNF berechnen:

$$P_{F} \wedge (\neg P_{F} \vee P_{8}) \wedge (\neg P_{F} \vee P_{5}) \wedge (\neg P_{1} \vee Q) \wedge (\neg P_{1} \vee \neg P)$$

$$\wedge (\neg P_{8} \vee \neg P_{5} \vee P_{F}) \wedge (\neg Q \vee P \vee P_{1})$$

$$\wedge (\neg P_{8} \vee P_{6} \vee P_{7}) \wedge (\neg P_{2} \vee \neg Q \vee \neg R)$$

$$\wedge (\neg P_{6} \vee P_{8}) \wedge (\neg P_{7} \vee P_{8}) \wedge (Q \vee P_{2}) \wedge (R \vee P_{2})$$

$$\wedge (\neg P_{6} \vee P_{1}) \wedge (\neg P_{6} \vee P_{2}) \wedge (\neg P_{4} \vee \neg Q \vee P)$$

$$\wedge (\neg P_{1} \vee \neg P_{2} \vee P_{6}) \wedge (Q \vee P_{4}) \wedge (\neg P \vee P_{4})$$

$$\wedge (\neg P_{7} \vee P_{1}) \wedge (\neg P_{7} \vee P_{4}) \wedge (\neg P_{5} \vee P \vee R)$$

$$\wedge (\neg P_{1} \vee \neg P_{4} \vee P_{7}) \wedge (\neg P \vee P_{5}) \wedge (\neg R \vee P_{5})$$

Beispiel: CNF-SAT \leq_{pol} Clique $<_k$

Gegeben eine Instanz von CNF (eine Konjunktion von Klauseln $C_1 \wedge C_2 \wedge \ldots \wedge C_k$)

Wir konstruieren daraus einen Graphen:

Knoten: die Paare (x, i), so dass x ein Literal ist, dass in der Klausel C_i vorkommt.

Kanten: Es gibt eine Kante zwischen (x, i) und (y, j) falls:

- (1) $i \neq j$, und
- $(2) \times y$ sind nicht komplementär.

Es gilt dann:

Die CNF-Formel ist erfüllbar genau dann, wenn der zugeordnete Graph eine Clique der Größe k hat.

- Ist eine logische Formel erfüllbar? (Satisfiability)
- Ist ein (un-) gerichteter Graph hamiltonsch? (Hamiltonian circle)
- Gibt es in einem Graphen eine Clique der Größe k? (Clique of size k)
- Ist ein Graph mit drei Farben zu färben? (3-colorability)
- Gibt es in einer Menge von ganzen Zahlen eine Teilmenge mit der Gesamtsumme x? (Subset Sum)