
H-PILoT User Manual

Version 1.95

Carsten Ihlemann

October 21, 2010

Abstract

H-PILoT (Hierarchical Proving by Instantiation in Local Theory exten-
sions) is a program that employs hierarchical reasoning for a distinct class
of theory extensions. It serves as a front end which produces a reduction
of a set of clauses to a set of clauses of the base theory and then calls
a dedicated solver for the base theory. The extensions for which these
reductions are possible are called local extensions. They include many
examples of theories found in real-life software verification.

Contents

1 Introduction 3

2 Background 3

3 Examples 4

4 Advanced features 10

4.1 Arrays . 10
4.2 Global constraints . 12
4.3 Types . 14
4.4 Pointers . 16
4.5 Extended locality . 19
4.6 Clausification . 21

5 Parameters of H-PILoT 23

6 Error handling 25

7 The input grammar 26

References 30

1 Introduction

H-PILoT (Hierarchical Proving by Instantiation in Local Theory extensions)
reduces queries over an extended theory to an equivalent query over the base
theory. This reduction is always possible in the case of so-called local extensions
[4]. This approach is quite relevant for real-life verification tasks where one
typically faces queries over a mixed bag of (multi-sorted) theories, e.g lists or
arrays with integers as indices and some type of entries. Further, particularly in
recent years, very efficient solvers for prominent background theories have been
developed (e.g. real number and integers). However, to take advantage of these,
one needs to find a way of using these provers as background theory solvers in
extended cases. Even in the case of extending a theory such as the real numbers
with some free (uninterpreted) functions this is not a trivial task.

To deal with these types of problems, the theory of local theory extensions
was developed and H-PILoT is an implementation of this approach. H-PILoT
will carry out a reduction and will hand over the transformed problem to a
dedicated prover such as Yices or CVC.

Examples of local extension appearing in verification include:

• Extensions by free/uninterpreted functions.

• Extensions by monotone functions.

• Definitional extensions (case distinctions).

• Fragments of the theory of arrays.

• The theory of pointer structures.

2 Background

The theory of locality was developed by Harald Ganzinger and Viorica Sofronie-
Stokkermans [2, 4, 5, 7]. The main idea is to limit the search space for counterex-
amples (hence the name). Suppose we have a set of universal clauses ∀K and
some ground clause G and we want to check whether ∀K |= G or equivalently if
∀K,¬G |= ⊥.

If K is a local set of (Horn) clauses we need not consider the whole universe of
a model but only certain (ground) instances of K, viz. those (ground) instances
of K in which each term was already a ground term of K or G. Let us denote
this set of instances of K by K[G]. A theory, then, is local if we have for an
arbitrary ground Horn clause G that ∀K, G |= ⊥ ⇔ K[G], G |= ⊥.

The same idea works for theory extensions. Here we start with a base theory
T0 and extend it by a set of clauses K. K contains new function symbols (and
possibly new sorts). We change the definition of K[G] slightly. We consider
again instances of K, but now we only care about those subterms which start
with an extension function. Only of those we demand that they already appear
as a ground term in K or G.

Now the extension T0 ⊆ T0 ∪ K is called local if we have for each set of

3

ground clauses G1 that

T0, ∀K, G |= ⊥ ⇔ T0,K[G], G |=∗ ⊥.

There is an additional twist, however, due to the fact that elements of K[G]
need no longer be ground. We compensate by considering models with partial
functions and weak (partial) semantics [4]. That is, by T0,K[G], G |=∗ ⊥ we
mean that there is no (total) model of T0 with partial extension functions in
which all ground subterms of K and G are defined and which satisfies K[G]∪G.

Not only can we get rid of universal quantifiers in a local theory extension
by substituting dedicated instances but we can also carry out a full-fledged
reduction to the base theory. We do this in the following manner. First we
purify T0,K[G], G by introducing fresh names for all the extension terms. Call
these unit clauses D. Outside D, we only use these new names. This gives us
a set T0,K0, G0, D where only D contains extension terms now. In a final step,
we eliminate even those by replacing each definition of an extension term by a
certain congruence axiom which no longer contains extension functions.

In this way, we have gotten rid of all extension terms and face now a sat-
isfiability problem over the base theory T0. Further, we need no longer worry
about partial models. Provided we have an efficient prover for this base theory,
we have now an efficient way of dealing with a large class of theory extensions.
H-PILoT is a program carrying out this very reduction and handing over to
such a prover.

Let us start with an easy example.

3 Examples

As a first example let us consider monotone functions over some partially ordered
set. We consider two monotone functions f and g as extension over the base
theory of a partial order. That is our base theory consists of the axioms for
reflexivity, transitivity and anti-symmetry.

(1) ∀x. x ≤ x.

(2) ∀x, y. x ≤ y ∧ y ≤ x→ x = y.

(3) ∀x, y, z. x ≤ y ∧ y ≤ z → x ≤ z.

Our extension consists of the two new function symbols together with the
clauses expressing monotonicity.

(1) ∀x, y. x ≤ y → f(x) ≤ f(y).

(2) ∀x, y. x ≤ y → g(x) ≤ g(y).

We will always call our base theory T0 and the extension clauses K. Our
query will usually be denoted by G. That is, we want to know whether T0 ∪
K, G |= ⊥.

1G may contain new constants.

4

In this case, we want to show that c0 ≤ c1 ≤ d1 ∧ c2 ≤ d1 ∧ d2 ≤ c3 ∧ d2 ≤
c4 ∧ f(d1) ≤ g(d2) implies f(c0) ≤ g(c4). Expressed as a satisfiability problem,
this gives us the following query G:

c0 ≤ c1 ≤ d1 ∧ c2 ≤ d1 ∧ d2 ≤ c3 ∧ d2 ≤ c4 ∧ f(d1) ≤ g(d2) ∧ ¬f(c0) ≤ g(c4).

As an input file for H-PILoT this looks as follows (we use “R” as order relation
because ≤ is reserved).

% Two monotone functions over a poset.

% Status: unsatisfiable

Base_functions:={}

Extension_functions:={(f, 1), (g, 1)}

Relations:={(R, 2)}

% R is partial order

Base := (FORALL x). R[x, x];

(FORALL x,y,z). R[x, y], R[y, z] --> R[x, z];

(FORALL x,y). R[x, y], R[y, x] --> x = y;

Clauses := (FORALL x,y). R[x, y] --> R[f(x), f(y)];

(FORALL x,y). R[x, y] --> R[g(x), g(y)];

Query := R[c0, c1];

R[c1, d1];

R[c2, d1];

R[d2, c3];

R[d2, c4];

R[f(d1), g(d2)];

NOT(R[f(c0), g(c4)]);

In this case we have no function symbols at all in our base theory and two
functions symbols f and g of arity 1 in our extension clauses. This is expressed
by:

Base_functions:={}

Extension_functions:={(f, 1), (g, 1)}

We have only one relation in our (base) clauses, viz. ’R’. It has arity 2 of
course. This we express by

Relations:={(R, 2)}

Relations require square brackets as seen above. The symbols <=, <,>=
and > are reserved for arithmetic over the integers or over the reals. They
may be written infix and there are provers (Yices, CVC) that “understand”

5

arithmetic and orderings. We wouldn’t have needed to axiomatize ’≤’ at all. It
is already built into Yices and CVC.

However, the above problem is more general. It concerns every partial order
not only numbers. By default, H-PILoT calls SPASS. SPASS has no in-built
understanding of orderings and, thus, ’<=’ would be just any old symbol. For
clarity we used the letter ’R’.

As for the syntax of clauses, one should note that each clause must end
with a semicolon, be in prenex normal form and all names meant to be (univer-
sal) variables must be explicitly quantified. Every name which is not explicitly
quantified will be considered a constant! As we can see in our query:

Query := R[c0, c1];

R[c1, d1];

R[c2, d1];

R[d2, c3];

R[d2, c4];

R[f(d1), g(d2)];

NOT(R[f(c0), g(c4)]);

Note further that because the background theory, extension theory and the
query must all be clauses2, we need to break up the conjunction in our original
query into a set of unit clauses. A non-unit clause may be written as above in
a “sorted” manner ϕ1, ..., ϕn → ψ1, ..., ψk for ϕ1 ∧ ... ∧ ϕn → ψ1 ∨ ... ∨ ψk, i.e.
as an implication with the negated atoms in the antecedent and the (positive)
atoms in the consequent, or as an arbitrary disjunctions of literals.

The name of the input files to H-PILoT can be freely chosen, although it is
customary to have them have the suffix “.loc”. We run H-PILoT by calling

hpilot.opt mono_for_poset.loc

H-PILoT will parse the input file, carry out the reduction and then will hand
over the reduced problem to SPASS (using the same name but with the suffix
“.dfg”). SPASS terminates quickly with the result that a proof exists

SPASS beiseite: Proof found.

Problem: mono_for_poset.dfg

SPASS derived 35 clauses, backtracked 0 clauses and kept 41 clauses.

SPASS allocated 496 KBytes.

SPASS spent 0:00:02.32 on the problem.

0:00:00.00 for the input.

0:00:00.00 for the FLOTTER CNF translation.

0:00:00.00 for inferences.

0:00:00.00 for the backtracking.

0:00:00.10 for the reduction.

--------------------------SPASS-STOP-------------------------

2In fact, the extension clauses might be more general as we will see later.

6

meaning that the set of clauses is inconsistent. Just what we wanted to
show.

If you would like to see more of the reduction process use the option -prClauses.
For more on the rationale of the reduction please refer to [4].

For a more complicated example let us consider an algorithm for inserting
an element x into a sorted array a with the bounds l and u. We want to check
that the algorithm is correct, i.e. that the updated array a′ remains sorted.
This could be an invariant being checked in a verification task. There are three
different cases. First, x could be smaller than any element in a (equivalently,
x < a[l]), x could be greater than any element of a (x > a[u]) or, thirdly, there
is a position p (l < p < u) such that a[p − 1] < x and x ≤ a[p]. In the first
two cases we put x at the first resp. last position of the array. In the third
case, we insert x at position p and shift the other elements to t he right, i.e.
a′[i + 1] = a[i] for i > p. We have to take care to cover aberrant cases where
the array contains only 1 or 2 elements. As input it will look as follows.

Clauses :=

% case 1

(FORALL i). i = l, x <= a(i) --> a’(i) = x;

(FORALL i). x <= a(l), l < i, i <= u + _1 --> a’(i) = a(i - _1);

% case 2

(FORALL i). i = u, a(i) <= x --> x <= a(l), a’(i + _1) = x;

(FORALL i). a(u) <= x, l - _1 <= i, i < u

--> x <= a(l), a’(i + _1) = a(i + _1);

% case 3

(FORALL i). x < a(u), l <= i, i < u, a(i) < x, x <= a(i + _1)

--> a’(i + _1) = x;

(FORALL i). a(l) < x, x < a(u), l <= i, i < u, x <= a(i),

x <= a(i + _1) --> a’(i + _1) = a(i);

(FORALL i). a(l) < x, x < a(u), i = u + _1 --> a’(i) = a(i - _1);

(FORALL i). a(l) < x, x < a(u), l - _1 <= i, i < u, a(i + _1) < x

--> a’(i + _1) = a(i + _1);

(FORALL i,j). l <= i, i <= j, j <= u --> a(i) <= a(j);

with the last clause saying that a was sorted at the beginning.
There are several things to note. Most importantly, we now have a two step

extension. First, an array can be simply seen as a partial function. This gives
us the first extension T0 ⊆ T1. T0 here is the theory of indices (integers, say)
which we extend by the function a and the axiom for monotonicity of a. Now
we update a, giving us a second extension T2 ⊇ T1 where our extension clauses
K2 are given by the three cases above.

Of course, we need to make sure that the last extension is also local. This
is easy to establish, however, because K2 is a definitional extension or case

7

distinction, cf. [8]. A definitional extension is one where extension functions
f only appear in the form ϕi(x̄) → f(x̄) = ti(x̄) with ti being a base theory
term and the ϕi are mutually exclusive base theory clauses. This is the reason
that we have written ∀i.i = l, x ≤ a(i) → a′(i) = x instead of the shorter
x ≤ a(l) → a′(l) = x: to ensure that the antecedents of the clauses are all
mutually exclusive. Now we know that we are dealing with a definitional and
therefore local extension. (Remember that for assessing if T2 ⊇ T1 is a local
extension, T1 is our base theory. That T1 is itself an extension is of no moment.)

We need to tell the program that we are dealing with a chain of extensions
instead of a single one. We do this by the simple expedient of declaring to which
level of the chain an extension function belongs, like thus (f, arity, level).

In our example that would be

Extension_functions:={(a’, 1, 2), (a, 1, 1)}

The program will now automatically determine the level of an extension
clause. In our example, an extension clause will have level 2 iff a′ occurs in it
and level 1 otherwise (level 0 means base clause).

Also note that numerals (names for integers) must be preceded by an un-
derscore such as _1 and that + and − may be written infix for readability;
(=,+,−, ∗, /) are the only functions for which this is allowed3.
Our declarations, therefore should look like this.

Base_functions:={(+,2), (-, 2)}

Extension_functions:={(a’, 1, 2), (a, 1, 1)}

Relations:={(<=, 2), (<, 2)}

All that is left to do now is add our query - the negation of
∀i, j. l ≤ i ≤ j ≤ u→ a′(i) ≤ a′(j) - to the mix and hand it over.
The entire file looks like this.

% ai.loc

% Arrays for definitional extensions;

Base_functions:={(+,2), (-, 2)}

Extension_functions:={(a’, 1, 2), (a, 1, 1)}

Relations:={(<=, 2), (<, 2)}

% K

Clauses :=

% case 1

(FORALL i). i = l, x <= a(i) --> a’(i) = x;

(FORALL i). x <= a(l), l < i, i <= u + _1 --> a’(i) = a(i - _1);

% case 2

3When using SPASS they may also be written infix, but nevertheless they are just free
functions for SPASS.

8

(FORALL i). i = u, a(i) <= x --> x <= a(l), a’(i + _1) = x;

(FORALL i). a(u) <= x, l - _1 <= i, i < u

--> x <= a(l), a’(i + _1) = a(i + _1);

% case 3

(FORALL i). x < a(u), l <= i, i < u, a(i) < x, x <= a(i + _1)

--> a’(i + _1) = x;

(FORALL i). a(l) < x, x < a(u), l <= i, i < u, x <= a(i),

x <= a(i + _1) --> a’(i + _1) = a(i);

(FORALL i). a(l) < x, x < a(u), i = u + _1 --> a’(i) = a(i - _1);

(FORALL i). a(l) < x, x < a(u), l - _1 <= i, i < u, a(i + _1) < x

--> a’(i + _1) = a(i + _1);

(FORALL i,j). l <= i, i <= j, j <= u --> a(i) <= a(j);

Query := l <= m;

m <= n;

n <= u + _1;

NOT(a’(m) <= a’(n));

We do not need to declare a base theory here because we will be using Yices
and Yices already knows arithmetic. We call H-PILoT thus.

hpilot.opt -yices -preprocess ai.loc

H-PILoT will produce a reduction, put it in a file name ai.ys and pass it over to
Yices which will say unsat or sat. A note on the flag -preprocess. Establishing
that some extension is local, presupposes that the extension clauses K be flat and
linear. Flatness simply means that we have no nesting of functions. Linearity
means first, that we have no variable occurring twice in any extension term and,
further, that if any variable occurs in two extension terms, the terms are the
same. In this example, we have non-flat clauses such as

(FORALL i). i = u, a(i) <= x --> x <= a(l), a’(i + _1) = x;

We rectify matters by a flattening operation - rewriting the above clause to

(FORALL i,j). j = i + _1, i = u, a(i) <= x --> x <= a(l), a’(j) = x;

This will not affect consistency of any query w.r.t. K. It hardly improves
readability however. Therefore the program will do it for you if you tell it to
-preprocess the input.

9

4 Advanced features

4.1 Arrays

In [1] Bradley, Manna and Sipma showed a large fragment of the theory of arrays
to be decidable, the so called array property fragment. This is a ∃∀-fragment
of the theory of arrays that imposes syntactical restrictions. In a nutshell these
restrictions are:

(1) An Index guard is a positive Boolean combination of atoms of the form
t ≤ u or t = u where t and u are either a variable or a ground term of
linear arithmetic.

(2) A universal formula of the form (∀x̄)(ϕI(x̄) → ϕV (x̄)) is an array property
if it is flat, if ϕI is an index guard and if all occurrences of the variables
are shielded by extension functions in ϕV , i.e. variables x only occur as
direct array reads a[x] in ϕV .

In this section we will only consider extensions by clauses of the above form.
Our base theory will always be linear integer arithmetic (Presburger). In the
paper [1], it was shown that a limited set of instances is sufficient to decide any
query over the fragment. This is not quite locality since the set of instances is
slightly larger. This led us to the generalization of minimal locality, see [9] for
details. In H-PILoT minimal locality is also implemented.
Call

hpilot.opt -arrays k.loc

to use this feature.

Let us (again) consider the example of inserting into a sorted array a. Let d
be just like a but for position k which is w and let e be just like d except maybe
at position l where we have written x and similarly for c,b and a.

Our set K of extension clauses looks as follows.

(∀i, j)(0 ≤ i ≤ j ≤ n− 1 → c[i] ≤ c[j]), (1)

(∀i, j)(0 ≤ i ≤ j ≤ n− 1 → e[i] ≤ e[j]), (2)

(∀i)(i 6= l → b[i] = c[i]), (3)

(∀i)(i 6= k → a[i] = b[i]), (4)

(∀i)(i 6= l → d[i] = e[i]), (5)

(∀i)(i 6= k → a[i] = d[i]). (6)







































K

Our query (with additional constraints) is

10

w < x < y < z,

0 < k < l < n,

k + 3 < l,

c[l] = x,

b[k] = w,

e[l] = z,

d[k] = y.



















































G

The input file looks just like that (with + and − written prefix).

% Arrays for minimal locality

Base_functions:={(plus,2), (minus, 2)}

Extension_functions:={(a, 1), (b, 1), (c, 1), (d, 1), (e, 1)}

Relations:={(<=, 2)}

% K

Clauses := (FORALL i,j). _0 <= i, i <= j, j <= minus(n, _1)

--> c(i) <= c(j);

(FORALL i,j). _0 <= i, i <= j, j <= minus(n, _1)

--> e(i) <= e(j);

(FORALL i). --> i=l, b(i) = c(i);

(FORALL i). --> i=k, a(i) = b(i);

(FORALL i). --> i=l, d(i) = e(i);

(FORALL i). --> i=k, a(i) = d(i);

Query := plus(w, _1) <= x;

plus(x, _1) <= y;

plus(y, _1) <= z;

plus(_0, _1) <= k;

plus(k, _1) <= l;

plus(l, _1) <= n;

plus(k, _3) <= l;

c(l) = x;

b(k) = w;

e(l) = z;

d(k) = y;

We need to put the requirement that e and c should be sorted in K because G
must be ground. K does not yet fulfill the syntactic requirements (index guards
must be positive!). We must rewrite K in a suitable fashion. We change an
expression i 6= l where i is the (universally quantified) variable to i ≤ l−1∨l+1 ≤
i. We have to rewrite it like this because the universally quantified variable i

11

must appear unshielded in the index guard. This gives us the following set of
clauses.

(∀i, j)(0 ≤ i ≤ j ≤ n− 1 → c[i] ≤ c[j]), (1)

(∀i, j)(0 ≤ i ≤ j ≤ n− 1 → e[i] ≤ e[j]), (2)

(∀i)(i ≤ l − 1 → b[i] = c[i]), (3)

(∀i)(l + 1 ≤ i→ b[i] = c[i]), (4)

(∀i)(i ≤ k − 1 → a[i] = b[i]), (5)

(∀i)(k + 1 ≤ i→ a[i] = b[i]), (6)

(∀i)(i ≤ l − 1 → d[i] = e[i]), (7)

(∀i)(l + 1 ≤ i→ d[i] = e[i]), (8)

(∀i)(i ≤ k − 1 → a[i] = d[i]), (9)

(∀i)(k + 1 ≤ i→ a[i] = d[i]). (10)















































































K′

Also, K is not linear, this must also be taken care of. H-PILoT will carry
out all these necessary rewrite steps for the user. He can simply input the above
file to deal with this example.

You can also use a “write” function when specifying array problems. For
example, use write(a, i, x) to denote a new array which is just like a except
(possibly) at position i where the value of the new array is set to x. In this way
we could have specified our problem above as

% Arrays for minimal locality with ’write’function.

Base_functions:={(+, 2), (-, 2)}

Extension_functions:={(a, 1)}

Relations:={(<=, 2)}

% K

Clauses :=

(FORALL i,j). _0 <= i, i <= j, j <= n - _1 -->

write(write(a,k,w), l, x)(i) <= write(write(a,k,w), l, x)(j);

(FORALL i,j). _0 <= i, i <= j, j <= n - _1 -->

write(write(a,k,y), l, z)(i) <= write(write(a,k,y), l, z)(j);

Query := w + _1 <= x;

x + _1 <= y;

y + _1 <= z;

_0 + _1 <= k;

k + _1 <= l;

l + _1 <= n;

k + _3 <= l;

12

As above, H-PILoT will also automatically split on disequations in the an-
tecedent. Note also that since we assume that indices of arrays are integers, it
makes no difference whether we write w + _1 or plus(w, _1) in the input file.
Linear integer arithmetic will be used (Yices is default).

4.2 Global constraints4

Sometimes we want to restrict the domain of the problem, e.g. we want to
consider natural numbers instead of integers or we are interested in a real interval
[a, b] only. Yices and CVC support the definition of subtypes. When using one
of these it is possible to state a global constraint on the domain of the models
in the preamble like thus.

Interval := 0 <= x <= 1;

This will restrict the domain of the models of the theory to the unit interval
[0, 1]. It is equivalent to adding the antecedent 0 ≤ x∧ x ≤ 1 for every variable
x to each formula in the clauses and the query.

The bounds of the interval can also be exclusive or mixed as in

Interval := 0 < x <= 1;

or one-sided as in

Interval := 2 <= x;

As an example, consider the case of multiple-valued logic [8]. The class
MV of all MV-algebras is the quasi-variety generated by the real unit interval
[0, 1] with the Lukasiewicz connectives {∨,∧, ◦,⇒}, i.e. the algebra [0, 1]L =
([0, 1],∨,∧, ◦,⇒). Further the Lukasiewicz connectives can be defined in terms
of the real ’+,−’ and ’≤’ giving us a local extension over the real unit interval.

Therefore, the following are equivalent:

(1) MV |= ∀x
∧n

i=1
si(x) = ti(x) → s(x) = t(x)

(2) [0, 1]L |= ∀x
∧n

i=1
si(x) = ti(x) → s(x) = t(x)

(3) T0 ∪ DefL ∧
∧n

i=1
si(c) = ti(c) ∧ s(c) 6= t(c) |=⊥,

where T0 consists of the real unit interval [0, 1] with the operations +,− and
predicate symbol ≤.

For instance, we might want to establish that linearity x ⇒ y. ∨ .y ⇒ x = 1
follows from the axioms. As an input file for H-PILoT it looks like this.

% file mv1.loc

% Example for MV-algebras

% The Lukasiewicz connectives can be defined

4This feature is not supported for SMT/Z3 settings.

13

% in terms of the (real) connectives +,-,<=

Base_functions:={(+, 2), (-, 2)}

Extension_functions:={(V, 1), (M, 1), (o, 1), (r, 1)}

Relations:={(<=, 2), (<, 2), (>, 2), (>=, 2)}

Interval := 0 <= x <= 1;

% K

Clauses := % definition of \/

(FORALL x,y). x <= y --> V(x, y) = y;

(FORALL x,y). x > y --> V(x, y) = x;

% definition of /\

(FORALL x,y). x <= y --> M(x, y) = x;

(FORALL x,y). x > y --> M(x, y) = y;

% definition of o

(FORALL x,y). x + y < _1 --> o(x, y) = _0;

(FORALL x,y). x + y >= _1 --> o(x, y) = (x + y) - _1;

% definition of =>

(FORALL x,y). x <= y --> r(x, y) = _1;

(FORALL x,y). x > y --> r(x, y) = (_1 - x) + y;

Query := % linearity: x => y . \/ . y => x = 1

NOT(V(r(a, b), r(b, a)) = _1);

14

4.3 Types

In default mode, using SPASS, H-PILoT hands over a set of general first-order
formulas without types. However, H-PILoT also provides support for the stan-
dard types int, real, bool and for free types. When using CVC or Yices the
default type is int, for REDLOG it is real. The default type does not need to
be specified in the input file. You can also use the -real flag to set the default
type to real for Yices and CVC 5.

Free types are specified as free#i, i = 1, 2.. or simply as free if there is only
one free type. When using free types the flag -freeType must be set. Only
Yices and CVC are able to handle free types (Yices is default).

When using mixed type in one input file the types of the functions and the
constants need to be declared. H-PILoT does not try to deduce types. If the
domain of a function is the same as the range it is enough to specify the domain
as in

(foo, arity, level, domainType)

if they differ say

(foo, arity, level, domainType, rangeType).
Constants are simply declared as

(name, type).

We offer the following example taken from [6].

% Pointers

% status unsatisfiable

Base_functions:={(+,2), (-, 2)}

Extension_functions:={(next, 1, 1, free#1), (prev, 1, 1, free#1),

(priority, 1, 1, free#1, real),

(state, 1, 1, free#1, free#2)}

Relations:={(>=, 2)}

Constants:={(null, free#1), (eps, real), (a, free#1), (b, free#1),

(RUN, free#2), (WAIT, free#2), (IDLE, free#2)}

% K

Clauses :=

(FORALL x). OR(state(x) = RUN, state(x) = WAIT, state(x) = IDLE);

% prev and next are inverse

(FORALL p). OR(p = null, prev(next(p)) = null, prev(next(p)) = p);

(FORALL p). --> p = null, next(prev(p)) = null, next(prev(p)) = p;

(FORALL p, q). next(q) = next(p) --> p = null, q = null, p = q;

(FORALL p, q). prev(q) = prev(p) --> p = null, q = null, p = q;

(FORALL p). --> p = null, next(p) = null, state(p) = IDLE,

state(next(p)) = IDLE, state(p) = state(next(p));

(FORALL p). OR(p = null, next(p) = null, NOT(state(p) = RUN),

priority(p) >= priority(next(p)));

5But recall that they are only able to handle linear arithmetic for reals.

15

Query := NOT(eps = _5);

NOT(eps = _6);

priority(a) = _5;

priority(b) = _6;

a = prev(b);

state(a) = RUN;

NOT(next(a) = null);

NOT(a = null);

NOT(b = null);

16

4.4 Pointers

We consider pointer problems over a two-typed language. One of which is
the type pointer and the other is some scalar type. The scalar type can be
concrete like real, say, or kept abstract in which case it is written as scalar. In
[3] Necula and McPeak investigate reasoning about pointers in this two-typed
language with the additional features that there are only two function types, viz.
pointer → pointer and pointer → scalar, where scalar is either a concrete
scalar type (e.g. real) or the abstract scalar type.

H-PILoT allows the user to specify multiple pointer types p1, . . . , pn, n ≥ 1
as pointer#1,...,pointer#n (or simply as pointer if n = 1). There are two
types of pointer functions. Functions Σp

ij of signature pi → pj from one pointer
type to another and functions Σs

i of signature pi → s from a pointer type into
scalars. A constant nulli of sort pi exists for each i, 1 ≤ i ≤ n. The only
predicate of sort pi, 1 ≤ i ≤ n is equality; predicates of sort s are allowed and
can have any arity.

The axioms considered are all of the form

∀p̄. E ∨ C

where p̄ is a set of pointer variables containing all the pointer variables occurring
in E ∨ C, E contains disjunctions of pointer equalities and C is a disjunction of
scalar constraints (i.e. literals of scalar type). E ∨ C may also contain free
variables of scalar type or, equivalently, free scalar constants.

In order to rule out null pointer errors, Necula and McPeak demanded
that pointer terms appearing below a function should not be null. That is
for all pointer terms f1(f2(. . . fn(p))), fi ∈ Σp ∪ Σs, i = 1, .., n, occurring
in the axiom, the axiom also contains the disjunction p = nullj1 ∨ fn(p) =
nullj2 ∨ · · · ∨ f2(. . . fn(p)) = nulljn

where the nulljk
are of the appropriate type.

We will call pointer/scalar formulas complying with this restriction nullable.
It was shown in [9] that nullable pointer/scalar axioms of the above form are
(ψ) stably local. This result allows the integration of pointer reasoning with the
above features into H-PILoT .

As an example (cf. [3]) consider doubly linked lists of decreasing priorities.

Base_functions:={(+,2), (-, 2)}

Extension_functions:={(next, 1, 1, pointer),

(prev, 1, 1, pointer),

(priority, 1, 1, pointer, real)}

Relations:={(>=, 2)}

Constants:={(a, pointer), (b, pointer)}

Clauses :=

(FORALL p). prev(next(p)) = p;

(FORALL p). --> next(prev(p)) = p;

(FORALL p). --> q = null, priority(p) >= priority(next(p));

17

Query := priority(a) = _5;

priority(b) = _6;

a = prev(b);

NOT(a = null);

NOT(b = null);

H-PILoT can be called without any parameters because the keyword pointer

is present. This will set H-PILoT into pointer mode so that it will add all the
nullable terms to the axioms and use the specific ψ-locality required.

Because the scalar type is concrete here (real) H-PILoT will use Yices as the
prover (its default for arithmetic). If we want to leave the scalar type abstract
we could write something like

%psiPointers.scalar.loc

Base_functions:={}

Extension_functions:={(next, 1, 1, pointer),

(prev, 1, 1, pointer),

(priority, 1, 1, pointer, scalar)}

Relations:={}

Constants:={(a, pointer), (b, pointer), (c5, scalar), (c6, scalar)}

Clauses := (FORALL p). prev(next(p)) = p;

(FORALL p). next(prev(p)) = p;

(FORALL p). NOT(priority(p) = priority(next(p)));

Query := priority(a) = c5;

priority(b) = c6;

a = prev(b);

c5 = c6;

NOT(a = null);

NOT(b = null);

We again can simply type hpilot.opt -preprocess psiPointers.scalar.loc

without any parameters. H-PILoT will again recognize this as a pointer problem
and use Yices as default, this time because of the free type scalar.

Pointer extensions can be fused with other types of extensions in a hierarchy.
However, due to the different types of locality that need to be employed, the
user must specify which levels are pointer extensions. He does this by using the
keyword Stable6.

For example the header of a more complicated verification task which mixes
different pointer types might look like this.

Base_functions:={(-, 2), (+, 2)}

Extension_functions:=

6Which stands for stable locality which is the type of locality used for pointer extensions.

18

{ % level 4

(next’,1,4, pointer#2,pointer#2), (pos’,1,4,pointer#2,real)

% level 3

(next,1,3,pointer#2,pointer#2), (pos,1,3,pointer#2,real),

(spd,1,3,pointer#2,real), (segm,1,3,pointer#2,pointer#1),

% level 2

(bd,1,2,real,real),

% level 1

(lmax,1,1,pointer#1,real), (length,1,1,pointer#1,real),

(nexts,1,1,pointer#1,pointer#1), (alloc,1,1,pointer#1,int)}

Relations :={(<=, 2), (>=, 2), (>, 2), (<, 2)}

Constants:= {(t3,pointer#2), (t2,pointer#2), (t1,pointer#2),

(d,real), (State0,int), (s,pointer#1), (State1,int)}

Stable := 1, 3;

Note that the type pointer#2 must be declared higher than pointer#1

because pointer#2 refers to pointer#1 but not vice versa.
Here is an example of a header with multiple pointer types at one level.

Base_functions:={(-, 2), (+, 2)}

Extension_functions:={

(bd,1,1,real,real),

% pointer type 1

(lmax,1,2,pointer#1,real),(length,1,2,pointer#1,real),

(alloc,1,2,pointer#1,int), (nexts,1,2,pointer#1,pointer#1),

% pointer type 2

(next,1,2,pointer#2,pointer#2),(pos,1,2,pointer#2,real),

(spd,1,2,pointer#2,real), (segm,1,2,pointer#2,pointer#1),

% third extension: updated functions

(next’,1,3,pointer#2,pointer#2),

}

Relations:={(<= , 2), (>=, 2), (>, 2), (<, 2)}

Constants:={

(t7,pointer#2), (t6,pointer#2), (t5,pointer#2),(t4,pointer#2)}

Stable := 2;

19

4.5 Extended locality

For some applications we would like that the extension clauses K were allowed
to be more complicated, say being inductive (∀∃) instead of universal. Consider
the following example, taken from [9].

Consider a parametric number m of processes. The priorities associated with
the processes (non-negative real numbers) are stored in an array p. The states
of the process – enabled (1) or disabled (0) are stored in an array a. At each step
only the process with maximal priority is enabled, its priority is set to x and
the priorities of the waiting processes are increased by y. This can be expressed
with the following set of axioms which we denote by Update(p, p′, a, a′)

∀i(1 ≤ i ≤ m ∧ (∀j(1 ≤ j ≤ m ∧ j 6=i → p(i)>p(j))) → a′(i) = 1)
∀i(1 ≤ i ≤ m ∧ (∀j(1 ≤ j ≤ m ∧ j 6=i → p(i)>p(j))) → p′(i)=x)
∀i(1 ≤ i ≤ m ∧ ¬(∀j(1 ≤ j ≤ m ∧ j 6=i → p(i)>p(j))) → a′(i)=0)
∀i(1 ≤ i ≤ m ∧ ¬(∀j(1 ≤ j ≤ m ∧ j 6=i → p(i)>p(j))) → p′(i)=p(i)+y)

where x and y are considered to be parameters. We may need to check whether
if at the beginning the priority list is injective, i.e. formula (Inj)(p) holds:

(Inj)(p) ∀i, j(1 ≤ i ≤ m ∧ 1 ≤ j ≤ m ∧ i 6= j → p(i) 6= p(j))

then it remains injective after the update, i.e. check whether:

(Inj)(p)∧Update(p, p′, a, a′)∧(1 ≤ c ≤ m∧1 ≤ d ≤ m∧c 6= d∧p′(c) = p′(d)) |= ⊥.

The problem here is that we need to deal with alternations of quantifiers in
the extension. To deal with cases like this, the notion of locality needs to be ex-
tended. That is exactly what was done [4, 7]. In extended locality the extension
formulas K may now have the form ∀x1, ..., xn. (Φ(x1, . . . , xn)∨C(x1, . . . , xn)),
where Φ(x1, . . . , xn) is an arbitrary first-order formula in the base signature with
free variables x1, . . . , xn and C(x1, . . . , xn) is a clause in the extended signature.

In H-PILoT extended locality is also implemented. Extended clauses may
be either written as ∀x̄. (Φ(x̄)∨C(x̄)) or as ∀x̄. (Φ(x̄) → C′(x̄)). The input file
for H-PILoT simply looks like this.

% Updating of priorities of processes

% File update_AE.loc

Base_functions:={(+,2), (-, 2)}

Extension_functions:={(a’, 1, 2, bool), (a, 1, 1, bool),

(p’, 1, 2, real), (p, 1, 1, real)}

Relations:={(<=, 2), (<, 2), (>, 2)}

Constants:={(x, real), (y, real)}

% K

Clauses :=

(FORALL i). _1 <= i, i <= m --> _0 <= p(i);

(FORALL i). { AND(_1 <= i, i <= m,

(FORALL j). (AND(_1 <= j, j <= m, NOT(j = i)) --> p(i) > p(j)))}

--> a’(i) = _1;

20

(FORALL i). { AND(_1 <= i, i <= m,

(FORALL j). (AND(_1 <= j, j <= m, NOT(j = i)) --> p(i) > p(j)))}

--> p’(i) = x;

(FORALL i). { AND(_1 <= i, i <= m,

NOT((FORALL j,i).(AND(_1 <= j, j <= m, NOT(j = i))

--> p(i) > p(j))))}

--> a’(i) = _0;

(FORALL i). { AND(_1 <= i, i <= m,

NOT((FORALL j).(AND(_1 <= j, j <= m, NOT(j = i))

--> p(i) > p(j))))}

--> p’(i) = p(i) + y;

(FORALL i,j). _1 <= i, i <= m, _1 <= j, j <= m, p(i) = p(j) --> i = j;

Query := _1 <= c;

c <= m;

_1 <= d;

d <= m;

x <= _0;

y > _0;

NOT(c=d);

p’(c) = p’(d);

The curly braces ’{’, ’}’ are required to demarcate the beginning and the end
of the base formula Φ.

21

4.6 Clausification

H-PILoT also provides a simple clausifier for ease of use. First-order formulas
can be given as input (with the syntax of the above subsection) and H-PILoT
will translate them into clausal normal form (CNF). The CNF-translator does
not provide the full functionality of FLOTTER7 but should be quite powerful
enough for most applications.

As a simple example consider the following.

% cnf.fol

Base_functions:={(delta, 2), (abs, 1), (-, 2)}

Extension_functions:={(f, 1)}

Relations:={}

Formulas :=

(FORALL eps, a, x). (_0 < eps -->

AND(_0 < delta(eps, a),

(abs(x - a) < delta(eps, a) --> abs(f(x) - f(a)) < eps)));

Query :=

H-PILoT will clausify the Formulas for us. To see the output let us use

hpilot.opt -preprocess -prClauses cnf.fol

We will see an output like

!-Adding formula:

(FORALL eps, a, x).

(_0 < eps --> AND(_0 < delta(eps, a), (abs(-(x, a)) < delta(eps, a)

--> abs(-(f(x), f(a))) < eps)))

!-add_formulas

!-We have 1 levels.

!-done

!-Our base theory is:

!-empty.

!-Clausifying formulas...

!-(FORALL z_1, z_3). OR(_0 < delta(z_1, z_3), NOT(_0 < z_1))

!-(FORALL z_1, z_2, z_3). OR(NOT(abs(-(z_2, z_3)) < delta(z_1, z_3)),

abs(-(f(z_2), f(z_3))) < z_1, NOT(_0 < z_1))

!-Yielding 2 new clauses:

!-[z_1, z_2, z_3] abs(-(z_2, z_3)) < delta(z_1, z_3), _0 < z_1

---> abs(-(f(z_2), f(z_3))) < z_1 L: 1;

!-[z_1, z_3] _0 < z_1 ---> _0 < delta(z_1, z_3) L: 0;

7It only provides standard formula renaming and standard Skolemization.

22

!-After rewriting we have as clauses K:

!-[z_1, z_2, z_3] abs(-(z_2, z_3)) < delta(z_1, z_3), _0 < z_1

---> abs(-(f(z_2), f(z_3))) < z_1 L: 1;

!-[z_1, z_3] _0 < z_1 ---> _0 < delta(z_1, z_3) L: 0;

telling us that the above formula resulted in two new clauses (in addition to
those outright given under Clauses, viz.

∀z1, z3. 0 < delta(z1, z3) ∨ ¬(0 < z1)

and

∀z1, z2, z3. ¬(abs(z2−z3) < delta(z1, z3))∨abs(f(z2)−f(z3)) < z1∨¬(0 < z1).

In this case no ground clause resulted and H-PILoT stops.

23

5 Parameters of H-PILoT

H-PILoT has several input parameters controlling its behavior. They can be
listed by calling hpilot.opt -help.

-min Use minimal Locality. This is only relevant
for the array property fragment right now.

-prClauses Produce output: print all the clauses calculated and used.
-noProver Do not hand over to prover, just produce output.
-yices Use Yices as background solver. arithmetics: ’plus’, ’+’ etc.

are predefined as are the order relations ≤,≥, <,>.
Numbers can also be given in the input. (i is translated to i).
Numbers are integers by default (use ’-real’ for real numbers).

-cvc Use CVC as background solver.
Arithmetic is predefined as with ’-yices’

-z3 Use Z3 as background solver.
Arithmetic is predefined as with ’-yices’

-flatten Flatten clauses first.
-linearize Linearize clauses first.
-flattenQuery Flattens the query first.
-preprocess Preprocess input: flatten/linearize clauses, flatten query.

In array-context: split clauses which contain inequalities
like i 6= j, ... into two clauses.

-noSeparation Stop at calculating instances K[G]. Don’t introduce
names for extension terms and don’t reduce to base theory.
See [4] for background.

-unPseudofy Eliminate pseudo-quantifiers like ∀i.i = 3...
before handing over to a prover8.

-noProcessing No computation. Just translate into prover syntax and
hand over. Overrides ’-preprocess’ and turns off clausification.
When using this flag one should provide the domains
of functions too. When used in combination with CVC
there may arise problems with boolean types.9

-clausification (true/false). Turns clausification of general formulas on or off.
The default is ’true’. Implies ’-noProcessing’.

-real Use real instead of integer linear arithmetic as the default type.
-redlog Call Redlog for base prover. Assumes ’-real’.
-version Print version number.
-freeType Enables the use of an unspecified type ’free’ in addition

to ’real’ and ’int’. Only CVC, Z3 and Yices accept free types.
Yices is default.

9This is automatically carried out if we have a multiple-step extension. This is because
the next step can only be carried out if the current step resulted in ground clauses.

9This is because CVC only provides booleans as bit-vectors of length 1. The type
’BOOLEAN’ is the type of formulas.

24

-arrays Use settings for array. This combines -preprocess, -min
and -arith; it also splits clauses on negative equalities.

-model Gives a counter-model for satisfiable queries.
Needs Yices or CVC (implies Yices by default).

-smt Produce SMT-LIB output without calling a prover.
-isLocal Use this flag (true/false) to tell the program whether all the extensions

are local or not. In the first case h-pilot is a full decision procedure
in the latter it will only solve unsatisfiable problems. Default is false.
This matters only if H-PILoT cannot derive a contradiction.
In that case this means that there really is none
only if the extensions are local.

-renameSubformulas (true/false). Use subformula renaming
when clausifying the input in order to avoid exponential growth.
Default is true.

-sc “Sanity check”. If this flag is set the query clauses are left out.
This is meant as a test in order to ensure that the axioms
are not inconsistent already on their own.

-verbosity This flags determines the verbosity level (0,1,2) in the output
gotten from ’-prClauses’. From taciturn to garrulous.
Default is 0

25

6 Error handling

In case you get a parsing error you can use

export OCAMLRUNPARAM=’p’ (in bash syntax).

This will give you a walk-through of the parsing process. This is of great help
in localizing syntax errors. To turn it back off use

export OCAMLRUNPARAM=’’.

26

7 The input grammar

〈start〉 ::= 〈base functions〉 〈extension functions〉 〈relations〉 〈constants〉 〈interval〉
〈baseTheory〉 〈formulasOrClauses〉 〈groundformulas〉 〈query〉

〈base functions〉 ::= Base functions := { 〈function list〉 }

〈extension functions〉 ::= Extension functions := { 〈function list〉 }

〈relations〉 ::= Relations := { 〈relation list〉 }

〈constants〉 ::= ǫ | Constants := { constant list }

〈interval〉 ::= ǫ
| Interval := 〈int〉 〈sm〉 〈identifier〉;
| Interval := 〈identifier〉 〈sm〉 〈int〉;
| Interval := 〈int〉 〈sm〉 〈identifier〉 〈sm〉 〈int〉;

〈base theory〉 ::= ǫ | Base := 〈clause list〉

〈formulasOrClauses〉 ::= ǫ | 〈formulas〉 | 〈clauses〉
| 〈formulas〉〈clauses〉 | 〈clauses〉〈formulas〉

〈ground formulas〉 ::= ǫ | Ground Formulas := 〈formula list〉

〈query〉 ::= Query := 〈ground clauses〉

〈formulas〉 ::= Formulas := 〈formula list〉

〈clauses〉 ::= Clauses := 〈clause list〉

〈function list〉 ::= ǫ | 〈function〉 〈additional functions〉

〈additional functions〉 ::= ǫ | , 〈function〉 〈additional functions〉

〈relation list〉 ::= ǫ | 〈relation〉 〈additional relations〉

〈additional relations〉 ::= ǫ | , 〈relation〉 〈additional relations〉

〈relation〉 ::= (〈uneqs〉 , 〈int〉) | (〈identifier〉 , 〈int〉)

〈function〉 ::= (〈identifier〉 , 〈int〉)
| (〈arithop〉 , 〈int〉)
| (〈arithop〉 , 〈int〉 , 〈int〉 , int)

| (〈arithop〉 , 〈int〉 , 〈int〉 , real)

| (〈identifier〉 , 〈int〉 , 〈int〉)
| (〈identifier〉 , 〈int〉 , 〈int〉 , 〈domain〉)
| (〈identifier〉 , 〈int〉 , 〈int〉 , 〈domain〉 , 〈domain〉)

〈domain〉 ::= bool | int | real | pointer | pointer# 〈int〉
| scalar | free | free# 〈int〉

27

〈base clause list〉 ::= ǫ | 〈clause〉 ; 〈additional base clauses〉

〈additional base clauses〉 ::= ǫ | 〈base clause〉 ; 〈additional base clauses〉

〈constant list〉 ::= 〈constant〉 〈additional constants〉

〈additional constants〉 ::= ǫ | , 〈constant〉 〈additional constant〉

〈constant〉 ::= (〈identifier〉 , bool)

| (〈identifier〉 , int)

| (〈identifier〉 , real)

| (〈identifier〉 , scalar)

| (〈identifier〉 , pointer)

| (〈identifier〉 , pointer# 〈int〉)
| (〈identifier〉 , free)

| (〈identifier〉 , free# 〈int〉)

〈base clause〉 ::= 〈clausematrix〉 | 〈universalQuantifier〉 〈clausematrix〉

〈formula list〉 ::= 〈formula〉 | 〈formula〉 ; 〈additional formulas〉

〈additional formulas〉 ::= ǫ | 〈formula〉 ; 〈additional formulas〉

〈clause list〉 ::= 〈clause〉 | 〈clause〉 ; 〈additional clauses〉

〈additional clauses〉 ::= ǫ | 〈clause〉 ; 〈additional clauses〉

〈clause〉 ::= 〈clausematrix〉
| 〈universalQuantifier〉 〈clausematrix〉
| { 〈formula〉 } OR 〈clausematrix〉
| 〈universalQuantifier〉 { 〈formula〉 } OR 〈clausematrix〉
| { 〈formula〉 } --> 〈clausematrix〉
| 〈universalQuantifier〉 { 〈formula〉 } --> 〈clausematrix〉

〈universalQuantifier〉 ::= (FORALL 〈variables〉) .

〈variables〉 ::= 〈name〉 〈additional variable〉

〈additional variables〉 ::= ǫ | , 〈name〉 〈additional variables〉

〈ground clauses〉 ::= ǫ | 〈clausematrix〉 ; 〈ground clauses〉

〈clausematrix〉 ::= 〈literal〉 | 〈disjunctive clause〉 | 〈sorted clause〉

〈formula〉 ::= 〈atom〉
| NOT (〈formula〉)
| OR (〈formula〉 〈formula plus〉)
| AND (〈formula〉 〈formula plus〉)
| (〈formula〉 --> 〈formula〉)
| (〈formula〉 <--> 〈formula〉)
| (FORALL 〈variables〉) . 〈formula〉
| (EXISTS 〈variables〉) . 〈formula〉

28

〈formula plus〉 ::= , 〈formula〉 〈formula star〉

〈formula star〉 ::= ǫ | , 〈formula〉 〈formula star〉

〈disjunctive clause〉 ::= OR (〈literal〉 〈literal plus〉)

〈literal plus〉 ::= , 〈literal〉 〈literal star〉

〈literal star〉 ::= ǫ | , 〈literal〉 〈literal star〉

〈sorted clause〉 ::= 〈atom list〉 --> 〈atom list〉

〈atom list〉 ::= ǫ | 〈atom〉 〈atom star〉

〈atom star〉 ::= ǫ | , 〈atom〉 〈atom star〉

〈literal〉 ::= 〈atom〉 | NOT (〈atom〉)

〈atom〉 ::= 〈equality atom〉 | 〈ineq atom〉 | 〈predicate atom〉

〈equality atom〉 ::= 〈term〉 = 〈term〉

〈ineq atom〉 ::= 〈term〉 〈uneqs〉 〈term〉

〈predicate atom〉 ::= 〈identifier〉 [〈term〉 〈additional terms〉]

〈arguments〉 ::= 〈term〉 〈additional terms〉

〈additional terms〉 ::= ǫ | , 〈term〉 〈additional terms〉

〈term〉 ::= 〈name〉
| 〈operator〉 (〈arguments〉)
| 〈array〉 (〈arguments〉)
| 〈update〉 (〈arguments〉)
| 〈term arith〉 〈arithop〉 〈term arith〉
| - 〈term arith〉

〈term arith〉 ::= 〈name〉
| 〈operator〉 (〈arguments〉)
| (〈term arith〉 〈arithop〉 〈term arith〉)
| (- 〈term arith〉)

〈sm〉 ::= ≤ |<

〈arithop〉 ::= + | - | * | /

〈uneqs〉 ::= <= | >= | < | >

〈operator〉 ::= 〈identifier〉

〈array:〉 ::= write (〈identifier〉 , 〈term〉 , 〈term〉)
| write (〈array〉 , 〈term〉 , 〈term〉)

〈update〉 ::= update (〈identifier〉 , 〈term〉 , 〈term〉)
| update (〈update〉 , 〈term〉 , 〈term〉)

29

〈name〉 ::= 〈identifier〉

〈identifier〉 ::= any string consisting of letters and numbers starting with a letter.
It may end with “’”.

〈int〉 ::= any non-negative number.

30

References

[1] A. R. Bradley, Z. Manna, and H.B. Sipma, What’s decidable about arrays?,
Proceedings of 7th Int. Conf. on Verification, Model Checking and Abstract
Interpretation, LNCS, vol. 3855, 2006.

[2] Harald Ganzinger, Relating semantic and proof-theoretic concepts for poly-
nomial time decidability of uniform word problems., Proceedings of the 16th
IEEE Symposion on Logic in Computer Science (LICS’01), IEEE Comp.
Soc. Press, 2001, pp. 81–92.

[3] S. McPeak and G.C. Necula., Data structure specifications via local equality
axioms., Computer Aided Verification, 17th International Conference (CAV
2005), LNCS, vol. 3576, 2005, pp. 476–490.

[4] V. Sofronie-Stokkermans, Hierarchic reasoning in local theory exten-
sions., 20th International Conference on Automated Deduction (CADE-20)
(R. Nieuwenhuis, ed.), LNAI, no. 3632, Springer, 2005, pp. 219–234.

[5] , Interpolation in local theory extensions., International Joint Con-
ference on Automated Reasoning (IJCAR 2006) (U. Furbach and Natarajan
Shankar, eds.), LNAI, no. 4130, Springer, 2006, pp. 235–250.

[6] , Local reasoning in verification, Proceedings of the Verification
Workshop VERIFY’06, 2006.

[7] , Hierarchical and modular reasoning in complex theories: The case of
local theory extensions., Proceedings 6th International Symposion on Fron-
tiers of Combining Systems (FroCos 2007), LNCS, no. 4720, Springer, 2007,
invited paper, pp. 47–71.

[8] Viorica Sofronie-Stokkermans and Carsten Ihlemann, Automated reasoning
in some local extensions of ordered structures, Proceedings of ISMVL 2007.,
IEEE Computer Society, 2007, http://dx.doi.org/10.1109/ISMVL.2007.
10.

[9] Viorica Sofronie-Stokkermans, Swen Jacobs, and Carsten Ihlemann, On lo-
cal reasoning in verification, Proceedings of TACAS’08., LNCS, vol. 4963,
Springer, 2008, pp. 265–281.

31

