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Abstract. This system description provides an overview of H-PILoT
(Hierarchical Proving by Instantiation in Local Theory extensions), a
program for hierarchical reasoning in extensions of logical theories with
functions axiomatized by a set of clauses. H-PILoT reduces deduction
problems in the theory extension to deduction problems in the base the-
ory. Specialized provers and standard SMT solvers can be used for testing
the satisfiability of the formulae obtained after the reduction. For local
theory extensions this hierarchical reduction is sound and complete and
– if the formulae obtained this way belong to a fragment decidable in the
base theory – H-PILoT provides a decision procedure for testing satisfi-
ability of ground formulae, and can also be used for model generation.
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1 Introduction

H-PILoT (Hierarchical Proving by Instantiation in Local Theory extensions)
is an implementation of the method for hierarchical reasoning in local theory
extensions presented in [6, 10, 12]: it reduces the task of checking the satisfiability
of a (ground) formula over the extension of a theory with additional function
symbols subject to certain axioms (a set of clauses) to the task of checking the
satisfiability of a formula over the base theory. The idea is to replace the set of
clauses which axiomatize the properties of the extension functions by a finite set
of instances thereof. This reduction is polynomial in the size of the initial set of
clauses and is always sound. It is complete in the case of so-called local extensions
[10]; in this case, it provides a decision procedure for the universal theory of the
theory extension if the clauses obtained by the hierarchical reduction belong to
a fragment decidable in the base theory. The satisfiability of the reduced set of
clauses is then checked with a specialized prover for the base theory.

State of the art SMT provers such as CVC3, Yices and Z3 [1, 5, 3] are very
efficient for testing the satisfiability of ground formulae over standard theories,
but use heuristics in the presence of universally quantified formulae, hence can-
not detect satisfiability of such formulae. H-PILoT recognizes a class of local
axiomatizations, performs the instantiation and hands in a ground problem to
the SMT provers or other specialized provers, for which they are know to ter-
minate with a yes/no answer, so it can be used as a tool for steering standard
SMT provers, in order to provide decision procedures in the case of local the-
ory extensions. H-PILoT can also be used for generating models of satisfiable
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formulae; and even more, it can be coupled to programs with graphic facilities
to provide graphical representations of these models. Being a decision procedure
for many theories important in verification, H-PILoT is extremely helpful for
deciding truth or satisfiability in a large variety of verification problems.

2 Description of the H-PILoT Implementation

H-PILoT is an implementation of the method for hierarchical reasoning in local
theory extensions presented in [6, 10–12]. H-PILoT is implemented in Ocaml.
The system (with manual and examples) can be downloaded from www.mpi-inf.

mpg.de/~ihlemann/software/. Its general structure is presented in Figure 1.

2.1 Theoretical Background

Let T0 be a Σ0-theory. We consider extensions T1 = T0 ∪ K of T0 with function
symbols in a set Σ1 (extension functions) whose properties are axiomatized by
a set K of Σ0 ∪ Σ1-clauses. Let Σc be an additional set of constants.

Task. Let G be a set of ground Σ0∪Σ1∪Σc-clauses. We want to check whether
or not G is satisfiable w.r.t. T0 ∪ K.

Method. Let K[G] be the set of those instances of K in which every subterm
starting with an extension function is a ground subterm already appearing in
K or G. If G is unsatisfiable w.r.t. T0 ∪ K[G] then it is also unsatisfiable w.r.t.
T0 ∪ K. The converse is not necessarily true. We say that the extension T0 ∪ K
of T0 is local if for each set G of ground clauses, G is unsatisfiable w.r.t. T0 ∪K
if and only if K[G]∪G has no partial Σ0 ∪Σ1-model whose Σ0-reduct is a total
model of T0 and in which all Σ1-terms of K and G are defined.

Theorem 1 ([10]). Assume that the extension T0 ⊆ T1 = T0 ∪ K is local and
let G be a set of ground clauses. Let K0 ∪ G0 ∪ D be the purified form of K ∪ G
obtained by introducing fresh constants for the Σ1-terms, adding their definitions
d ≈ f(t) to D, and replacing f(t) in G and K[G] by d. (Then Σ1-functions occur
only in D in unit clauses of the form d ≈ f(t).) The following are equivalent.

1. T0 ∪ K ∪ G has a (total) model.
2. T0 ∪ K[G] ∪ G has a partial model where all subterms of K and G and all

Σ0-functions are defined.
3. T0 ∪ K0 ∪ G0 ∪ Con0 has a total model, where

Con0 := {
∧

n

i=1
ci ≈ di → c ≈ d | f(c1, ..., cn) ≈ c, f(d1, ..., dn) ≈ d ∈ D}.

A variant of this notion, namely Ψ -locality, was also studied, where the set of
instances to be taken into account is K[Ψ(G)], where Ψ is a closure operator
which may add a (finite) number of new terms to the subterms of G. We also
analyzed a generalized version of locality, in which the clauses in K and the set
G of ground clauses are allowed to contain first-order Σ0-formulae.
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Examples of Local Extensions. Among the theory extensions which we
proved to be local or Ψ -local in previous work are:

– theories of pointers with stored scalar information in the nodes [8, 7];
– theories of arrays with integer indices, and elements in a given theory [2, 7];
– theories of functions (e.g. over an ordered domain, or over a numerical do-

main) satisfying e.g. monotonicity or boundedness conditions [10, 14];
– various combinations of such extensions [12, 7].

We can also consider successive extensions of theories: T0 ⊆ T0 ∪ K1 ⊆ · · · ⊆
T0 ∪K1 ∪ · · · ∪Kn. If every variable in Ki occurs below a function symbol in Σi,
this reduction process can be iterated [7].

2.2 Preprocessing

H-PILoT receives as input a many-sorted specification of the signature; a speci-
fication of the hierarchy of local extensions to be considered; an axiomatization
K of the theory extension(s); a set G of ground clauses containing possibly ad-
ditional constants. H-PILoT allows the following pre-processing functionality:

Translation to Clause Form. H-PILoT provides a translator to clause normal
form (CNF) for ease of use. First-order formulas can be given as input; H-PILoT
translates them into CNF.1

Flattening/Linearization. Methods for recognizing local theory extensions
usually require that the clauses in the set K extending the base theory are
flat and linear2. If the flags -linearize and/or -flatten are used then the input is
flattened and/or linearized. H-PILoT allows the user to enter a more readable
non-flattened version and will perform the flattening and linearization of K.

Recognizing Syntactic Criteria which Imply Locality. Examples of lo-
cal extensions include those mentioned in Section 2.1 (and also iterations and
combinations thereof). In the pre-processing phase H-PILoT analyzes the input
clauses to check whether they are in one of these fragments.

– If the flag - array is on: checks if the input is in the array property fragment[2];
– if the keyword “pointer” is detected: checks if the input is in the pointer

fragment in [8] and possibly adds premises of the form “t 6= null”.

If the answer is “yes”, we know that the extensions we consider are local, i.e.
that H-PILoT can be used as a decision procedure. We are currently extending
the procedure to recognize “free”, “monotone” and “bounded” functions.

1 In the present implementation, the CNF translator does not provide the full function-
ality of FLOTTER [9], but is powerful enough for most applications. (An optimized
CNF translator is being implemented.)

2 Flatness means that extension functions may not be nested; linearity means that
variables may occur only in the same extension term (which may appear repeatedly).
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2.3 Main Algorithm.

The main algorithm hierarchically reduces a decision problem in a theory exten-
sion to a decision problem in the base theory.

extension
level > 0

ext.
clauses
ground?

update K, G
linearize

quit

prover

clausify

parse

no

yes

yes

local?

all
extensions

local := false
no

local := falsegive to

yes

compute
instances

separate/
reduce

returnreturn
no

local
build
model

no

return
"unknown"

Main Loop

Postprocess

yes
local := true

no

flatten/
linearize

CNF?

yes

no

input Preprocess

"satisfiable" "unsatisfiable"
satisfiable

not local

no

Fig. 1. H-PILoT Structure

Given a set of clauses K and a ground formula
G, the algorithm we use carries out a hierarchical
reduction of G to a set of formulae in the base the-
ory, cf. Theorem 1. It then hands over the new prob-
lem to a dedicated prover such as Yices, CVC3 or
Z3. H-PILoT is also coupled with Redlog (for han-
dling non-linear real arithmetic) and with SPASS3.

Loop. For a chain of local extensions:

T0 ⊆ T1 = T0 ∪ K1 ⊆ T2 = T0 ∪ K1 ∪ K2

⊆ ... ⊆ Tn = T0 ∪ K1 ∪ ... ∪ Kn.

a satisfiability check w.r.t. the last extension can be
reduced (in n steps) to a satisfiability check w.r.t.
T0. The only caveat is that at each step the re-
duced clauses K0

i
∪ G0 ∪ Con0 need to be ground.

Groundness is assured if each variable in a clause
appears at least once under an extension function.
In that case, we know that at each reduction step
the total clause size only grows polynomially in
the size of Ψ(G) [10]. H-PILoT allows the user to
specify a chain of extensions by tagging the exten-
sion functions with their place in the chain (e.g.,
if f belongs to K3 but not to K1 ∪ K2 it is de-
clared as level 3). Let i = n. As long as the ex-
tension level i > 0, we compute Ki[G] (Ki[Ψ(G)]
in case of arrays). If no separation of the exten-
sion symbols is required, we stop here (the result will be passed to an exter-
nal prover). Otherwise, we perform the hierarchical reduction in Theorem 1 by
purifying Ki and G (to K0

i
, G0 resp.) and by adding corresponding instances

of the congruence axioms Coni. To prepare for the next iteration, we trans-
form the clauses into the form ∀x.Φ ∨ Ki (compute prenex form, skolemize). If
Ki[G]/K0

i
is not ground, we quit with a corresponding message. Otherwise we

set: G′ := K0

i
∧ G0 ∧ Coni, T

′

0
:= T0 \ {Ki−1},K

′ := Ki−1. We flatten and lin-
earize K′ and decrease i. If level i = 0 is reached, we exit the main loop and G′

is handed to an external prover4.

3 H-PILoT only calls one of these solvers once.
4 Completeness is guaranteed if all extensions are known to be local and if each re-

duction step produces a set of ground clauses for the next step.
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2.4 Post-processing

Depending on the answer of the external provers to the satisfiability problem
Gn, we can infer whether the initial set G of clauses was satisfiable or not.

– If Gn is unsatisfiable w.r.t. T0 then we know that G is unsatisfiable.
– If Gn is satisfiable, but H-PILoT failed to detect, and the user did not assert

the locality of the sets of clauses used in the axiomatization, its answer is
“unknown”.

– If Gn is satisfiable and H-PILoT detected the locality of the axiomatization,
then the answer is “satisfiable”. In this case, H-PILoT takes advantage of
the ability of SMT-solvers to provide counter-examples for the satisfiable set
Gn of ground clauses and specifies a counter-example of G by translating the
basic SMT-model of the reduced query to a model of the original query5.
The counter-examples can be graphically displayed using Mathematica. This
is currently done separately; an integration with Mathematica is planned for
the future.

3 System Evaluation

We have used H-PILoT on a variety of local extensions and on chains of lo-
cal extensions. The flags that we used are described in the manual (see www.

mpi-inf.mpg.de/~ihlemann/software/). An overview of the tests we made is
given in sections 3.1 and 3.2. In analyzing them, we distinguish between satisfi-
able and unsatisfiable problems.

Unsatisfiable Problems. For simple unsatisfiable problems, there hardly is
any difference in run-time whether one uses H-PILoT or an SMT-solver di-
rectly.6 When we consider chains of extensions the picture changes dramatically.
On one test example (array insert), checking an invariant of an array insertion
algorithm, which used a chain of two local extensions, Yices performed consider-
ably slower than H-PILoT: The original problem took Yices 318.22s to solve. The
hierarchical reduction yielded 113 clauses of the background theory (integers),
proved unsatisfiable by Yices in 0.07s.

Satisfiable Problems. For satisfiable problems over local theory extensions,
H-PILoT always provides the right answer. In local extensions, H-PILoT is a
decision procedure whereas completeness of other SMT-solvers is not guaranteed.
In the test runs, Yices either ran out of memory or took more than 6 hours when
given any of the unreduced problems. This even was the case for small problems,
e.g. problems over the reals with less than ten clauses. With H-PILoT as a front
end, Yices solved all the satisfiable problems in less than a second.

5 This improves readability greatly, especially when we have a chain of extensions.
6 This is due to the fact that a good SMT-solver uses the heuristic of trying out all the

occurring ground terms as instantiations of universal quantifiers. For local extensions
this is always sufficient to derive a contradiction.



6 System Description: H-PILoT

3.1 Test runs for H-PILoT

We analyzed the following examples7:

array insert. Insertion of an element into a sorted integer array. Arrays are
definitional extensions here.

array insert (∃). Insertion of an element into a sorted integer array. Arrays
are definitional extensions here. Alternate version with (implicit) existential
quantifier.

array insert (linear). Linear version of array insert.
array insert real. Like array insert but with an array of reals.
array insert real (linear). Linear version of array insert real.
update process priorities (∀∃). Updating of priorities of processes. This is

an example of extended locality: We have a ∀∃-clause.
list1. Made up example of integer lists. Some arithmetic is required
chain1. Simple test for chains of extensions (plus transitivity).
chain2. Simple test for chains of extensions (plus transitivity and arithmetic).
double array insert. Problem of the array property fragment [2]. (A sorted

array is updated twice.)
mono. Two monotone functions over integers/reals for SMT solver.
mono for distributive lattices.R. Two monotone functions over a distribu-

tive lattice. The axioms for a distributive lattice are stated together with
the definition of a relation R: R(x, y) :⇔ x∧ y = x. Monotonicity of f (resp.
of g) is given in terms of R: R(x, y) → R(f(x), f(y)). Flag -freeType must
be used.

mono for distributive lattices. Same as mono for distributive lattices.R
except that no relation R is defined. Monotonicity of the two functions f, g is
directly given: x∧ y = x → f(x) ∧ f(y) = f(x). (Much harder than defining
R.) Flag -freeType must be used.

mono for poset. Two monotone functions over a poset with poset axioms.
Same as mono, except the order modeled by a relation R. Flag -freeType

should be used.
mono for total order. Same as mono except linearity is an axiom. This makes

no difference unless SPASS is used.
own. Simple test for monotone function.
mvLogic/mv1.sat. Example for MV-algebras. The  Lukasiewicz connectives

can be defined in terms of the (real) operations +,−,≤. Linearity is de-
ducible from axioms.

mvLogic/mv2. Example for MV-algebras. The  Lukasiewicz connectives can be
defined in terms of +,−,≤. The BL axiom is deducible.

mvLogic/bl1. Example for MV-algebras with BL axiom (redundantly) included.
The  Lukasiewicz connectives can be defined in terms of +,−,≤.

mvLogic/example 6.1. Example for MV-algebras with monotone and bounded
function. The  Lukasiewicz connectives can be defined in terms of +,−,≤.

RBC simple. Example with train controller.
RBC variable2. Example with train controller.

7 The satisfiable variant of a problem carries the suffix “.sat”.
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3.2 Test results

Name status #cl. H-PILoT H-PILoT yices
+ yices + yices

stop at K[G]

array insert (implicit ∃) Unsat 310 0.29 0.06 0.36

array insert (implicit ∃).sat Sat 196 0.13 0.04 time out

array insert Unsat 113 0.07 0.03 318.221

array insert (linear version) Unsat 113 0.07 0.03 7970.532

array insert.sat Sat 111 0.07 0.03 time out

array insert real Unsat 113 0.07 0.03 360.001

array insert real (linear) Unsat 113 0.07 0.03 7930.002

array insert real.sat Sat 111 0.07 0.03 time out

update process priorities Unsat 45 0.02 0.02 0.03

update process priorities.sat Sat 37 0.02 0.02 unkown

list1 Unsat 18 0.02 0.01 0.02

list1.sat Sat 18 0.02 0.01 unknown

chain1 Unsat 22 0.01 0.01 0.02

chain2 Unsat 46 0.02 0.02 0.02

mono Unsat 20 0.01 0.01 0.01

mono.sat Sat 20 0.01 0.01 unknown

mono for distributive lattices.R Unsat 27 0.22 0.06 0.03

mono for distributive lattices.R.sat Sat 27 unknown∗ unknown∗ unknown

mono for distributive lattices Unsat 17 0.01 0.01 0.02

mono for distributive lattices.sat Sat 17 0.01 0.01 unknown

mono for poset Unsat 20 0.02 0.02 0.02

mono for poset.sat Sat 20 unknown∗ unknown∗ unknown

mono for total order Unsat 20 0.02 0.02 0.02

own Unsat 16 0.01 0.01 0.01

mvLogic/mv1 Unsat 10 0.01 0.01 0.02

mvLogic/mv1.sat Sat 8 0.01 0.01 unknown

mvLogic/mv2 Unsat 8 0.01 0.01 0.06

mvLogic/bl1 Unsat 22 0.02 0.01 0.03

mvLogic/example 6.1 Unsat 10 0.01 0.01 0.03

mvLogic/example 6.1.sat Sat 10 0.01 0.01 unknown

RBC simple Unsat 42 0.03 0.02 0.03

double array insert Unsat 606 1.16 0.20 0.07

double array insert Sat 605 1.10 0.20 unknown

RBC simple.sat Sat 40 0.03 0.02 out. mem.

RBC variable2 Unsat 137 0.08 0.04 0.04

RBC variable2.sat Sat 136 0.08 0.04 out. mem.

User + sys times (in s). Run on an Intel Xeon 3 GHz, 512 K-byte cache.
Median of 100 runs (entries marked with 1: 10 runs; marked with 2: 3 runs).
The third column lists the number of clauses produced; “unknown” means
Yices answer was “unknown”, “out. mem.” means out of memory and time
out was set at 6h. For an explanation of “unknown∗” see below.

(*) The answer “unknown” for the satisfiable example with monotone functions over

distributive lattices/posets (H-Pilot followed by Yices) is due to the fact that Yices
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cannot handle the universal axioms of distributive lattices/posets. A translation of

such problems to SAT provides a decision procedure (cf. [10] and also [15]).
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