Universität Koblenz-Landau

FB 4 Informatik

Prof. Dr. Viorica Sofronie-Stokkermans

January 10, 2012

Exercises for "Decision Procedures for Verification" Exercise sheet 10

Exercise 10.1: (2 P)

Let F be the following conjunction (in linear rational arithmetic):

Check the satisfiability of F using:

- (1) the Fourier-Motzking method for quantifier elimination;
- (2) the Loos-Weispfenning method for quantifier elimination.

Exercise 10.2: (4 P)

Let \mathcal{T} be the combination of $LI(\mathbb{Q})$ (linear arithmetic over \mathbb{Q}) and UIF_{Σ} , the theory of uninterpreted function symbols in the signature $\Sigma = \{\{f/1, g/2\}, \emptyset\}$.

Check the satisfiability of the following ground formulae w.r.t. \mathcal{T} using the deterministic version of the Nelson-Oppen procedure (after purifying the formulae check for entailment of equalities between shared constants and propagate the entailed equalities):

- (1) $\phi_1 = (c + d \approx e \land f(e) \approx c + d \land f(f(c + d)) \not\approx e).$
- (2) $\phi_2 = (g(c+d,e)) \approx f(g(c,d)) \wedge c + e \approx d \wedge e \geq 0 \wedge c \geq d \wedge g(c,c) \approx e \wedge f(e) \not\approx g(c+c,0)$

Exercise 10.3: (2 P)

Let \mathcal{T} be the combination of $LI(\mathbb{Z})$ (linear arithmetic over \mathbb{Z}) and UIF_{Σ} , the theory of uninterpreted function symbols in the signature $\Sigma = \{\{f/1, g/2\}, \emptyset\}$.

Check the satisfiability of the following ground formula w.r.t. \mathcal{T} using the "guessing" version of the Nelson-Oppen procedure:

•
$$\phi = (f(c) > 0 \land f(d) > 0 \land f(c) + f(d) \approx e \land g(c, e) \not\approx g(d, e))$$

Exercise 10.4: (2 P)

Let $\Sigma = (\Omega, \Pi)$ be a signature, and let $\Pi_0 \subseteq \Pi \cup \{\approx\}$.

We say that a theory \mathcal{T} is Π_0 -convex if for all atomic formulae $A_1(\overline{x}), \ldots, A_n(\overline{x})$, and all atomic formulae $B_1(\overline{x}), \ldots, B_k(\overline{x})$ which start with predicate symbols in Π_0 :

If
$$\mathcal{T} \models (\bigwedge_{i=1}^n A_i(\overline{x})) \rightarrow (\bigvee_{j=1}^k B_j(\overline{x}))$$
 then there exists $1 \leq j \leq k$ s.t. $\mathcal{T} \models (\bigwedge_{i=1}^n A_i(\overline{x})) \rightarrow B_j(\overline{x})$.

Let $\mathcal{T}_{\mathbb{Z}}$ be the theory of integers having as signature $\Sigma_{\mathbb{Z}} = (\Omega, \Pi)$, where $\Omega = \{\ldots, -2, -1, 0, 1, 2, \ldots\} \cup \{\ldots, -3\cdot, -2\cdot, 2\cdot, 3\cdot, \ldots\} \cup \{+, -\}$ and $\Pi = \{\leq\}$, where:

- ..., $-2, -1, 0, 1, 2, \ldots$ are constants (intended to represent the integers)
- ..., -3, -2, 2, 3, ... are unary functions (representing multiplication with constants)
- +, are binary functions (usual addition/subtraction)
- \leq is a binary predicate.

The intended interpretation of $\mathcal{T}_{\mathbb{Z}}$ has domain \mathbb{Z} , and the function and predicate symbols are interpreted in the obvious way.

Show that:

- $\mathcal{T}_{\mathbb{Z}} \models [(1 \leq z \land z \leq 2 \land u \approx 1 \land v \approx 2) \rightarrow (z \approx u \lor z \approx v)]$
- $\mathcal{T}_{\mathbb{Z}} \not\models [(1 \leq z \land z \leq 2 \land u \approx 1 \land v \approx 2) \rightarrow z \approx u]$
- $\mathcal{T}_{\mathbb{Z}} \not\models [(1 \leq z \land z \leq 2 \land u \approx 1 \land v \approx 2) \rightarrow z \approx v]$

Is $\mathcal{T}_{\mathbb{Z}} \ \{\approx\}$ -convex? Is $\mathcal{T}_{\mathbb{Z}} \ \{\leq\}$ -convex?

Supplementary exercises.

Exercise 10.5: (2 P)

Let \mathcal{T}_1 and \mathcal{T}_2 be two theories with signatures Σ_1, Σ_2 . Assume that Σ_1 and Σ_2 share only constants and the equality predicate. Let ϕ be a ground formula over the signature $(\Sigma_1 \cup \Sigma_2)^c = (\Omega_1 \cup \Omega_2 \cup C, \Pi_1 \cup \Pi_2)$ (the extension of the union $\Sigma_1 \cup \Sigma_2$ with a countably infinite set C of constants). The *purification* step in the Nelson-Oppen decision procedure for satisfiability of ground formulae in the combination of \mathcal{T}_1 and \mathcal{T}_2 can be described as follows:

(Step 1) Purify all terms by replacing, in a bottom-up manner, the "alien" subterms in ϕ (i.e. terms starting with a function symbol in Σ_i occurring as arguments of a function symbol in Σ_j , $j \neq i$) with new constants (from a countably infinite set C of constants). The transformations are schematically represented as follows:

$$(\neg)P(\ldots,g(\ldots,f(t_1,\ldots,t_n),\ldots) \mapsto (\neg)P(\ldots,g(\ldots,u,\ldots),\ldots) \wedge u \approx t$$

where
$$t = f(t_1, \dots, t_n), f \in \Sigma_1, g \in \Sigma_2$$
 (or vice versa).

(Step 2) Purify mixed equalities and inequalities by adding additional constants and performing the following transformations (where $f \in \Sigma_1$ and $g \in \Sigma_2$ or vice versa):

$$f(s_1, \dots, s_n) \approx g(t_1, \dots, t_m) \mapsto u \approx f(s_1, \dots, s_n) \wedge u \approx g(t_1, \dots, t_m)$$

$$f(s_1, \dots, s_n) \not\approx g(t_1, \dots, t_m) \mapsto u \approx f(s_1, \dots, s_n) \wedge v \approx g(t_1, \dots, t_m) \wedge u \not\approx v$$

(Step 3) Purify mixed literals by renaming alien terms:

$$(\neg)P(\ldots,s_i,\ldots) \mapsto (\neg)P(\ldots,u,\ldots) \wedge u \approx s_i$$

if P is a predicate symbol in Σ_1 and s_i is a Σ_2^c -term (or vice versa).

After purification we obtain a conjunction $\phi_1 \wedge \phi_2$, with ϕ_i ground Σ_i^c -formula. Prove that:

- ϕ is satisfiable w.r.t. $\mathcal{T}_1 \cup \mathcal{T}_2$ if and only if $\phi_1 \wedge \phi_2$ is satisfiable w.r.t. $\mathcal{T}_1 \cup \mathcal{T}_2$.
- If ϕ is satisfiable w.r.t. $\mathcal{T}_1 \cup \mathcal{T}_2$ then ϕ_i is satisfiable w.r.t. \mathcal{T}_i for i = 1, 2.

Exercise 10.6: (4 P)

Let \mathcal{T} be a theory with signature $\Sigma = (\Omega, \Pi)$ and $\mathsf{Mod}(\mathcal{T})$ be its class of models.

- (1) Show that if $\mathsf{Mod}(\mathcal{T})$ is closed under products then \mathcal{T} is Π -convex.
- (2) Assume that \mathcal{T} is axiomatized by a set of Horn clauses. Show that in this case $\mathsf{Mod}(\mathcal{T})$ is closed under products. Use (1) to show that \mathcal{T} is Π -convex.

Please submit your solution until Friday, January 13, 2012 at 17:00 by e-mail to sofronie@uni-koblenz.de with the keyword "Homework DP" in the subject.

Joint solutions prepared by up to two persons are allowed. Please do not forget to write your name on your solution!