Universität Koblenz-Landau

FB 4 Informatik

Prof. Dr. Viorica Sofronie-Stokkermans
January 10, 2012

Exercises for "Decision Procedures for Verification"
 Exercise sheet 10

Exercise 10.1: ($2 P$)
Let F be the following conjunction (in linear rational arithmetic):

$$
F: \quad \begin{aligned}
x_{1}+x_{2}+2 x_{3} & =2 \\
x_{1}+x_{3}+\frac{1}{5} & <0 \\
x_{2}-x_{3} & \leq \frac{1}{2} \\
x_{1}+5 x_{3} & \leq 5
\end{aligned}
$$

Check the satisfiability of F using:
(1) the Fourier-Motzking method for quantifier elimination;
(2) the Loos-Weispfenning method for quantifier elimination.

Exercise 10.2: (4 P)

Let \mathcal{T} be the combination of $L I(\mathbb{Q})$ (linear arithmetic over \mathbb{Q}) and $U I F_{\Sigma}$, the theory of uninterpreted function symbols in the signature $\Sigma=\{\{f / 1, g / 2\}, \emptyset\}$.
Check the satisfiability of the following ground formulae w.r.t. \mathcal{T} using the deterministic version of the Nelson-Oppen procedure (after purifying the formulae check for entailment of equalities between shared constants and propagate the entailed equalities):
(1) $\phi_{1}=(c+d \approx e \wedge f(e) \approx c+d \wedge f(f(c+d)) \not \approx e)$.
(2) $\phi_{2}=(g(c+d, e) \approx f(g(c, d)) \wedge c+e \approx d \wedge e \geq 0 \wedge c \geq d \wedge g(c, c) \approx e \wedge f(e) \not \approx g(c+c, 0))$

Exercise 10.3: ($2 P$)
Let \mathcal{T} be the combination of $L I(\mathbb{Z})$ (linear arithmetic over \mathbb{Z}) and $U I F_{\Sigma}$, the theory of uninterpreted function symbols in the signature $\Sigma=\{\{f / 1, g / 2\}, \emptyset\}$.
Check the satisfiability of the following ground formula w.r.t. \mathcal{T} using the "guessing" version of the Nelson-Oppen procedure:

- $\phi=(f(c)>0 \wedge f(d)>0 \wedge f(c)+f(d) \approx e \wedge g(c, e) \not \approx g(d, e))$

Exercise 10.4: ($2 P$)
Let $\Sigma=(\Omega, \Pi)$ be a signature, and let $\Pi_{0} \subseteq \Pi \cup\{\approx\}$.
We say that a theory \mathcal{T} is Π_{0}-convex if for all atomic formulae $A_{1}(\bar{x}), \ldots, A_{n}(\bar{x})$, and all atomic formulae $B_{1}(\bar{x}), \ldots, B_{k}(\bar{x})$ which start with predicate symbols in Π_{0} :

$$
\text { If } \mathcal{T} \models\left(\bigwedge_{i=1}^{n} A_{i}(\bar{x})\right) \rightarrow\left(\bigvee_{j=1}^{k} B_{j}(\bar{x})\right) \text { then there exists } 1 \leq j \leq k \text { s.t. } \mathcal{T} \models\left(\bigwedge_{i=1}^{n} A_{i}(\bar{x})\right) \rightarrow B_{j}(\bar{x})
$$

Let $\mathcal{T}_{\mathbb{Z}}$ be the theory of integers having as signature $\Sigma_{\mathbb{Z}}=(\Omega, \Pi)$, where $\Omega=\{\ldots,-2,-1,0,1,2, \ldots\} \cup$ $\{\ldots,-3 \cdot,-2 \cdot, 2 \cdot, 3 \cdot, \ldots\} \cup\{+,-\}$ and $\Pi=\{\leq\}$, where:

- $\ldots,-2,-1,0,1,2, \ldots$ are constants (intended to represent the integers)
- ..., $-3 \cdot,-2 \cdot, 2 \cdot, 3 \cdot, \ldots$ are unary functions (representing multiplication with constants)
-,+- are binary functions (usual addition/subtraction)
- \leq is a binary predicate.

The intended interpretation of $\mathcal{I}_{\mathbb{Z}}$ has domain \mathbb{Z}, and the function and predicate symbols are interpreted in the obvious way.
Show that:

- $\mathcal{I}_{\mathbb{Z}} \models[(1 \leq z \wedge z \leq 2 \wedge u \approx 1 \wedge v \approx 2) \rightarrow(z \approx u \vee z \approx v)]$
- $\mathcal{I}_{\mathbb{Z}} \mid \vDash[(1 \leq z \wedge z \leq 2 \wedge u \approx 1 \wedge v \approx 2) \rightarrow z \approx u]$
- $\mathcal{I}_{\mathbb{Z}} \not \vDash[(1 \leq z \wedge z \leq 2 \wedge u \approx 1 \wedge v \approx 2) \rightarrow z \approx v]$

Is $\mathcal{I}_{\mathbb{Z}}\{\approx\}$-convex? Is $\mathcal{I}_{\mathbb{Z}}\{\leq\}$-convex?

Supplementary exercises.

Exercise 10.5: (2 P)
Let \mathcal{T}_{1} and \mathcal{T}_{2} be two theories with signatures Σ_{1}, Σ_{2}. Assume that Σ_{1} and Σ_{2} share only constants and the equality predicate. Let ϕ be a ground formula over the signature $\left(\Sigma_{1} \cup \Sigma_{2}\right)^{c}=$ $\left(\Omega_{1} \cup \Omega_{2} \cup C, \Pi_{1} \cup \Pi_{2}\right)$ (the extension of the union $\Sigma_{1} \cup \Sigma_{2}$ with a countably infinite set C of constants). The purification step in the Nelson-Oppen decision procedure for satisfiability of ground formulae in the combination of \mathcal{T}_{1} and \mathcal{T}_{2} can be described as follows:
(Step 1) Purify all terms by replacing, in a bottom-up manner, the "alien" subterms in ϕ (i.e. terms starting with a function symbol in Σ_{i} occurring as arguments of a function symbol in $\Sigma_{j}, j \neq i$) with new constants (from a countably infinite set C of constants). The transformations are schematically represented as follows:

$$
(\neg) P\left(\ldots, g\left(\ldots, f\left(t_{1}, \ldots, t_{n}\right), \ldots\right), \ldots\right) \mapsto \quad(\neg) P(\ldots, g(\ldots, u, \ldots), \ldots) \wedge u \approx t
$$

where $t=f\left(t_{1}, \ldots, t_{n}\right), f \in \Sigma_{1}, g \in \Sigma_{2}$ (or vice versa).
(Step 2) Purify mixed equalities and inequalities by adding additional constants and performing the following transformations (where $f \in \Sigma_{1}$ and $g \in \Sigma_{2}$ or vice versa):

$$
\begin{aligned}
f\left(s_{1}, \ldots, s_{n}\right) \approx g\left(t_{1}, \ldots, t_{m}\right) & \mapsto \quad u \approx f\left(s_{1}, \ldots, s_{n}\right) \wedge u \approx g\left(t_{1}, \ldots, t_{m}\right) \\
f\left(s_{1}, \ldots, s_{n}\right) \not \approx g\left(t_{1}, \ldots, t_{m}\right) & \mapsto u \approx f\left(s_{1}, \ldots, s_{n}\right) \wedge v \approx g\left(t_{1}, \ldots, t_{m}\right) \wedge u \not \approx v
\end{aligned}
$$

(Step 3) Purify mixed literals by renaming alien terms:

$$
(\neg) P\left(\ldots, s_{i}, \ldots\right) \mapsto(\neg) P(\ldots, u, \ldots) \wedge u \approx s_{i}
$$

if P is a predicate symbol in Σ_{1} and s_{i} is a Σ_{2}^{c}-term (or vice versa).
After purification we obtain a conjunction $\phi_{1} \wedge \phi_{2}$, with ϕ_{i} ground Σ_{i}^{c}-formula. Prove that:

- ϕ is satisfiable w.r.t. $\mathcal{T}_{1} \cup \mathcal{T}_{2}$ if and only if $\phi_{1} \wedge \phi_{2}$ is satisfiable w.r.t. $\mathcal{T}_{1} \cup \mathcal{T}_{2}$.
- If ϕ is satisfiable w.r.t. $\mathcal{T}_{1} \cup \mathcal{T}_{2}$ then ϕ_{i} is satisfiable w.r.t. \mathcal{T}_{i} for $i=1,2$.

Exercise 10.6: (4 P)

Let \mathcal{T} be a theory with signature $\Sigma=(\Omega, \Pi)$ and $\operatorname{Mod}(\mathcal{T})$ be its class of models.
(1) Show that if $\operatorname{Mod}(\mathcal{T})$ is closed under products then \mathcal{T} is Π-convex.
(2) Assume that \mathcal{T} is axiomatized by a set of Horn clauses. Show that in this case $\operatorname{Mod}(\mathcal{T})$ is closed under products. Use (1) to show that \mathcal{T} is Π-convex.

Please submit your solution until Friday, January 13, 2012 at 17:00 by e-mail to sofronie@uni-koblenz.de with the keyword "Homework DP" in the subject.

Joint solutions prepared by up to two persons are allowed.
Please do not forget to write your name on your solution!

