Universität Koblenz-Landau FB 4 Informatik

Prof. Dr. Viorica Sofronie-Stokkermans

October 25, 2011

Exercises for "Decision Procedures for Verification" Exercise sheet 2

Exercise 2.1: (2 P)

Prove Prop. 1.4: If N is a set of propositional formulas, then $N \models F$ if and only if $N \cup \{\neg F\}$ is unsatisfiable.

(A set of propositional formulas is unsatisfiable, if and only if for every valuation \mathcal{A} there is a formula G in the set such that $\mathcal{A} \not\models G$.)

Exercise 2.2: (2 P) Let F be a formula, P a propositional variable not occurring in F, and F' a subformula of F. Prove: The formula $F[P] \land (P \leftrightarrow F')$ is satisfiable if and only if F[F'] is satisfiable.

Exercise 2.3: (4 P)Let F be the following formula:

$$\neg[((Q \land \neg P) \land \neg(Q \land R)) \to (Q \land (Q \to P) \land \neg P)] \land (P \lor R)$$

- (1) Compute the negation normal form (NNF) F' of F.
- (2) Convert F' to CNF using the satisfiability-preserving transformation described in the lecture.

Exercise 2.4: (2 P)

Determine the polarity of the following subformulae of

$$F = \neg((\neg(P \land \neg Q)) \lor (R \lor \neg S)) \lor (U \land V)$$

(1)
$$(P \land \neg Q)$$

- (2) Q
- (3) $(R \lor \neg S)$
- (4) S
- (5) V
- (6) $((\neg (P \land \neg Q)) \lor (R \lor \neg S))$

Supplementary exercises:

(submission not obligatory, will be discussed in the exercise session)

Exercise 2.5: (2 P)

Consider the formulae $F_n = \bigvee_{i=1}^n (Q_i \wedge R_i)$ for $n \in \mathbb{N}$. As a function of n, how many clauses are in:

- (1) the CNF formula F' constructed using the distributivity of disjunctions over conjunctions?
- (2) the CNF formula F'' obtained using the satisfiability-preserving translation to clause form?
- (3) For which n is the first approach better?

Reminder: The structural induction principle (for propositional logic).

Let \mathcal{B} be a property of formulae in propositional logic. Assume that the following hold:

- for every propositional variable $P \in \Pi$, P has property \mathcal{B} ;
- \perp and \top have property \mathcal{B} ;
- if $F = F_1$ op F_2 for $op \in \{ \lor, \land, \rightarrow, \leftrightarrow \}$ and if both F_1 and F_2 have property \mathcal{B} then F has property \mathcal{B} ;
- if $F = \neg F_1$ and F_1 has property \mathcal{B} then F has property \mathcal{B} .

Then property \mathcal{B} holds for all Π -formulae.

Exercise 2.6: (4 P)

Let F be a formula containing neither \rightarrow nor \leftrightarrow , P a propositional variable not occurring in F, and F' a subformula of F. Prove:

- If F' has positive polarity in F then F[F'] is satisfiable if and only if $F[P] \land (P \to F')$ is satisfiable.
- If F' has negative polarity in F then F[F'] is satisfiable if and only if $F[P] \land (F' \to P)$ is satisfiable.

Please submit your solution until Friday, October 28, 2011 at 17:00. Joint solutions prepared by up to two persons are allowed. Please do not forget to write your name on your solution.

Submission possibilities:

- By e-mail to sofronie@uni-koblenz.de with the keyword "Homework DP" in the subject.
- Put it in the box in front of Room B 225 (if you prefer to submit the written exercise like this please tell me such that I can prepare such a box).