Universität Koblenz-Landau FB 4 Informatik

Prof. Dr. Viorica Sofronie-Stokkermans

October 31, 2011

Exercises for "Decision Procedures for Verification" Exercise sheet 3

Exercise 3.1: (3 P)

Use the resolution calculus to prove that the following set of clauses is unsatisfiable:

(1)	$\neg P \vee \neg Q \vee R$
(2)	$\neg P \vee \neg Q \vee S$
(3)	P
(4)	$\neg S \vee \neg R$
(5)	Q

Exercise 3.2: (1 P)

Find a total ordering on the propositional variables A, B, C, D, E, such that the associated clause ordering \succ_C orders the clauses like this:

$$B \lor C \succ_C A \lor A \lor \neg C \succ_C C \lor E \succ_C C \lor D \succ_C \neg A \lor D \succ_C \neg E.$$

Exercise 3.3: (4 P)

Let N be the following set of clauses:

(1)	$\neg P_3 \lor P_1 \lor P_1$
(2)	$\neg P_2 \lor P_1$
(3)	$P_4 \vee P_4$
(4)	P_4
(5)	$P_3 \vee \neg P_2$
(6)	$P_4 \lor P_3$

- (1) Let \succ be the ordering on propositional variables defined by $P_4 \succ P_3 \succ P_2 \succ P_1$. Sort the clauses in N according to \succ_C . Which literals are maximal in the clauses of N?
- (2) Define a selection function S such that N is saturated under Res_S^{\succ} .
- (3) Construct a model of N using the canonical construction presented in the lecture.

Exercise 3.4: (2 P)

Use a DPLL procedure to find a model of each of the following formulae, or prove that the particular formula has no model:

- (1) $(P \lor \neg Q) \land (\neg P \lor Q) \land (Q \lor \neg R) \land (\neg Q \lor \neg R)$
- $(2) \ (P \lor Q \lor \neg R) \land (P \lor \neg Q) \land (P \lor Q \lor R) \land (R \lor Q) \land (R \lor \neg Q) \land (\neg P \lor \neg R) \land \neg U$

Supplementary exercises:

(submission not obligatory, will be discussed in the exercise session)

Reminder: The structural induction principle (for propositional logic).

Let \mathcal{B} be a property of formulae in propositional logic. Assume that the following hold:

- for every propositional variable $P \in \Pi$, P has property \mathcal{B} ;
- \perp and \top have property \mathcal{B} ;
- if $F = F_1$ op F_2 for $op \in \{ \lor, \land, \rightarrow, \leftrightarrow \}$ and if both F_1 and F_2 have property \mathcal{B} then F has property \mathcal{B} ;
- if $F = \neg F_1$ and F_1 has property \mathcal{B} then F has property \mathcal{B} .

Then property \mathcal{B} holds for all Π -formulae.

Exercise 3.5: (2 P)

Let F be a formula and F' a subformula of F, occurring only once, at a given position in F. We will denote this by F = F[F']. Let F'' be another formula. We denote by F[F''] the formula obtained from F by replacing F' by F''. Let \mathcal{A} be a valuation. Assume that $\mathcal{A}(F_1) \leq \mathcal{A}(F_2)$. Prove:

- (1) If F' has positive polarity in F then $\mathcal{A}(F[F']) \leq \mathcal{A}(F[F''])$.
- (2) If F' has negative polarity in F then $\mathcal{A}(F[F']) \ge \mathcal{A}(F[F''])$.

Hint: Use structural induction for proving both statements at the same time.

Exercise 3.6: (2 P)

Let F be a formula containing neither \rightarrow nor \leftrightarrow , P a propositional variable not occurring in F, and F' a subformula of F. Prove:

- If F' has positive polarity in F then F[F'] is satisfiable if and only if $F[P] \land (P \to F')$ is satisfiable.
- If F' has negative polarity in F then F[F'] is satisfiable if and only if $F[P] \land (F' \to P)$ is satisfiable.

Exercise 3.7: (5 P)

Let N be a set of clauses in propositional logic with the property that each clause consists of two literals. Prove that the satisfiability of N can be checked in polynomial time in the size of N.

Please submit your solution until Friday, November 4, 2011 at 17:00 (by e-mail to sofronie@uni-koblenz.de with the keyword "Homework DP" in the subject). Joint solutions prepared by up to two persons are allowed. Please do not forget to write your name on your solution!