Universität Koblenz-Landau FB 4 Informatik

Prof. Dr. Viorica Sofronie-Stokkermans

November 15, 2011

Exercises for "Decision Procedures for Verification" Exercise sheet 5

Exercise 5.1: (4 P) Prove or refute the following statements:

- (a) If F is a first-order formula, then F is valid if and only if $F \to \bot$ is unsatisfiable.
- (b) If F and G are first-order formulae, F is valid, and $F \to G$ is valid, then G is valid.
- (c) If F and G are first-order formulae, F is satisfiable, and $F \to G$ is satisfiable, then G is satisfiable.
- (d) If F is a first-order formula and x a variable, then F is unsatisfiable if and only if $\exists xF$ is unsatisfiable.
- (e) If F and G are first-order formulae and x is a variable then $\forall x(F \land G) \models \forall xF \land \forall xG$ and $\forall xF \land \forall xG \models \forall x(F \land G)$.
- (f) If F and G are first-order formulae and x is a variable then $\exists x(F \land G) \models \exists xF \land \exists xG$ and $\exists xF \land \exists xG \models \exists x(F \land G)$.

Exercise 5.2: (3 P)

Let $\Sigma = (\Omega, \Pi)$, where $\Omega = \{0/0, s/1, +/2\}$ and $\Pi = \emptyset$ (i.e. the only predicate symbol is \approx). Consider the following formulae in the signature Σ :

- 1. $F_1 = \forall x \ (x + 0 \approx x)$
- 2. $F_2 = \forall x, y \ (x + s(y) \approx s(x + y))$
- 3. $F_3 = \forall x, y \ (x + y \approx y + x).$

Find a Σ -structure in which F_1 and F_2 are valid but F_3 is not.

Exercise 5.3: (3 P) What is the clausal normal form of

$$\exists x \,\forall y \,(\forall z \,(p(y,z) \lor \neg x \approx y) \to (\forall z \,q(y,z) \land \neg r(x,y)))$$

Supplementary exercise.

Exercise 5.4: (3 P)

Let F be a closed first-order formula with equality over a signature $\Sigma = (\Omega, \Pi)$. Let $\sim \notin \Omega$ be a new binary relation symbol (written as an infix operator). Let the set $Eq(\Sigma)$ contain the formulas

$$\begin{aligned} &\forall x \, (x \sim x) \\ &\forall x, y \, (x \sim y \rightarrow y \sim x) \\ &\forall x, y, z \, (x \sim y \wedge y \sim z \rightarrow x \sim z) \end{aligned}$$

and for every $f/n \in \Omega$ the formula

$$\forall x_1, \dots, x_n, y_1, \dots, y_n \left(x_1 \sim y_1 \land \dots \land x_n \sim y_n \to f(x_1, \dots, x_n) \sim f(y_1, \dots, y_n) \right)$$

and for every $p/n \in \Pi$ the formula

$$\forall x_1, \dots, x_n, y_1, \dots, y_n (x_1 \sim y_1 \land \dots \land x_n \sim y_n \land p(x_1, \dots, x_n) \to p(y_1, \dots, y_n)).$$

Let \tilde{F} be the formula that one obtains from F if every occurrence of the equality symbol \approx is replaced by the relation symbol \sim .

- (a) Let \mathcal{A} be a model of $\tilde{F} \cup Eq(\Sigma)$. Show that the interpretation $\sim_{\mathcal{A}}$ of \sim in \mathcal{A} is a congruence relation. (It is enough if you prove *one* of the properties of congruence relations, say symmetry; the other properties are proved analogously.)
- (b) Let \mathcal{A} be a model of $\tilde{F} \cup Eq(\Sigma)$. Use the congruence relation $\sim_{\mathcal{A}}$ to construct a model of F and prove that it is a model.
- (c) Prove that a formula F is satisfiable if and only if $Eq(\Sigma) \cup \{\tilde{F}\}$ is satisfiable.

Please submit your solution until Friday, November 18, 2011 at 17:00 by e-mail to sofronie@uni-koblenz.de with the keyword "Homework DP" in the subject.

Joint solutions prepared by up to two persons are allowed. Please do not forget to write your name on your solution!