Universität Koblenz-Landau FB 4 Informatik

Prof. Dr. Viorica Sofronie-Stokkermans

December 6, 2011

Exercises for "Decision Procedures for Verification" Exercise sheet 8

Exercise 8.1: (2 P)

Let ϕ be the following (ground) formula:

 $f(f(c)) \approx f(c) \wedge f(f(c)) \approx f(d) \wedge d \not\approx f(c).$

- Compute $FLAT(\phi)$ (the formula obtained by recursively replacing, in a bottom-up fashion, any term of the form f(c'), where c' is a constant, with a new constant).
- Compute $FC(\phi)$ (the set of functional consistency axioms associated with the flattening above):

 $FC(\phi) = \{c_1 \approx c_2 \rightarrow d_1 \approx d_2 \mid d_i \text{ is introduced as an abbreviation for } f(c_i)\}.$

Exercise 8.2: (6 P)

Check the satisfiability of the following ground formulae using the algorithm based on congruence closure presented in the lecture.

- (1) $\phi_1 = f(f(c)) \approx f(c) \wedge f(f(c)) \approx f(d) \wedge d \not\approx f(c).$
- (2) $\phi_2 = h(c, e) \approx d \wedge g(d) \approx e \wedge g(h(c, g(d))) \not\approx e.$

Exercise 8.3: (2 P)

Find the definitions for the following fragments of first-order logic in the slides of the lecture:

- The Bernays-Schönfinkel class;
- The Ackermann class.

To which of these classes do the following formulae belong (note that they can be in more than one, or in none of the classes above):

- (1) $\exists y \forall x \ ((p(x) \lor r(x,y)) \land q(y))$
- (2) $\forall x \exists y \forall z \ \exists u ((p(x) \lor q(y)) \land (q(y) \lor p(u)))$
- (3) $\exists y \forall x \exists z \ ((r(x,y) \lor r(y,z)) \land q(z) \land r(y,z))$
- (4) $\exists z \forall x \forall y \exists z' \ ((r(x,y) \lor r(y,z)) \land s(z,y,z'))$

Supplementary exercises:

Exercise 8.4: (3 P)

Prove the \Rightarrow part in the correctness proof of the algorithm for checking the validity of a conjunction of literals in UIF, under the assumption that an algorithm for computing the congruence closure of a set R of pairs of vertices in a graph G exists.

Let $\phi := \bigwedge_{i=1}^{n} s_i \approx t_i \land \bigwedge_{j=1}^{m} s'_j \not\approx t'_j$ be a ground formula. Let G = (V, E) be the labelled directed

graph constructed from ϕ as in the description of the congruence closure algorithm based on Union/Find. Let $R = \{(v_{s_i}, v_{t_i}) \mid i \in \{1, \ldots, n\}\}$, and let R^c be the congruence closure of R.

- (1) \mathcal{A} is a Σ -structure such that $\mathcal{A} \models \phi$. Prove that $[v_s]_{R^c} = [v_t]_{R^c}$ implies that $\mathcal{A} \models s = t$.
- (2) Assume that ϕ is satisfiable. Prove that $[v_{s'_j}]_{R^c} \neq [v_{t'_j}]_{R^c}$.

Hint: Use the fact that if $[v_s]_{R^c} = [v_t]_{R^c}$ then there is a derivation for $(v_s, v_t) \in R^c$ in the calculus defined before; use induction on the length of derivation to show that $\mathcal{A} \models s = t$.

Exercise 8.5: (7 P)

Let $\Sigma = (\Omega, \Pi)$ be a signature and let X be a set of variables. Let I be an index set. For every $i \in I$ let $\mathcal{A}_i = (U_i, \{f_{\mathcal{A}_i}\}_{f \in \Omega}, \{p_{\mathcal{A}_i}\}_{p \in \Pi})$ be a Σ -algebra. The product of the family of Σ -algebras $\{\mathcal{A}_i\}_{i \in I}$ is the algebra $\prod_{i \in I} \mathcal{A}_i = (U, \{f_{\prod \mathcal{A}_i}\}_{f \in \Omega}, \{p_{\prod \mathcal{A}_i}\}_{p \in \Pi})$, where:

- $U = \prod_{i \in I} U_i;$
- for every $f/n \in \Omega$, $f_{\prod \mathcal{A}_i} : U^n \to U$ is defined component-wise, i.e. for every tuple $((a_i^1)_{i \in I}, \dots, (a_i^n)_{i \in I}) \in U^n$, $f_{\prod \mathcal{A}_i}((a_i^1)_{i \in I}, \dots, (a_i^n)_{i \in I}) = (f_{\mathcal{A}_i}(a_i^1, \dots, a_i^n))_{i \in I};$
- for every $p/m \in \Pi$, $p_{\prod A_i} \subseteq U^m$ is defined by:

$$((a_i^1)_{i\in I},\ldots,(a_i^m)_{i\in I})\in p_{\prod\mathcal{A}_i}$$
 iff $(a_i^1,\ldots,a_i^m)\in p_{\mathcal{A}_i}$ for all $i\in I$.

- (1) Let $F(x_1, \ldots, x_n)$ be a conjunction of atomic formulae. Assume that for every $i \in I$ there exists a valuation $\beta_i : X \to \mathcal{A}_i$ such that $(\mathcal{A}_i, \beta_i) \models F(x_1, \ldots, x_n)$. Let $\beta : X \to \prod_{i \in I} \mathcal{A}_i$ be defined by $\beta(x) = (\beta_i(x))_{i \in I}$. Prove that $(\prod_{i \in I} \mathcal{A}_i, \beta) \models F(x_1, \ldots, x_n)$.
- (2) Assume that I is finite and let $\{A_i(x_1, \ldots, x_{n_i}) \mid i \in I\}$ be a family of atomic formulae with the property that $(\mathcal{A}_i, \beta_i) \not\models A_i(x_1, \ldots, x_{n_i})$. Let $\beta : X \to \prod_{i \in I} \mathcal{A}_i$ be defined by $\beta(x) = (\beta_i(x))_{i \in I}$. Prove that: $(\prod_{i \in I} \mathcal{A}_i, \beta) \not\models \bigvee_{i \in I} A_i(x_1, \ldots, x_{n_i})$.

Please submit your solution until Friday, December 9, 2011 at 17:00 by e-mail to sofronie@uni-koblenz.de with the keyword "Homework DP" in the subject.

Joint solutions prepared by up to two persons are allowed. Please do not forget to write your name on your solution!