Universität Koblenz-Landau

FB 4 Informatik

Prof. Dr. Viorica Sofronie-Stokkermans
December 6, 2011

Exercises for "Decision Procedures for Verification"
 Exercise sheet 8

Exercise 8.1: (2 P)

Let ϕ be the following (ground) formula:

$$
f(f(c)) \approx f(c) \wedge f(f(c)) \approx f(d) \wedge d \not \approx f(c)
$$

- Compute $F L A T(\phi)$ (the formula obtained by recursively replacing, in a bottom-up fashion, any term of the form $f\left(c^{\prime}\right)$, where c^{\prime} is a constant, with a new constant).
- Compute $F C(\phi)$ (the set of functional consistency axioms associated with the flattening above):

$$
F C(\phi)=\left\{c_{1} \approx c_{2} \rightarrow d_{1} \approx d_{2} \mid d_{i} \text { is introduced as an abbreviation for } f\left(c_{i}\right)\right\}
$$

Exercise 8.2: (6 P)

Check the satisfiability of the following ground formulae using the algorithm based on congruence closure presented in the lecture.
(1) $\phi_{1}=f(f(c)) \approx f(c) \wedge f(f(c)) \approx f(d) \wedge d \not \approx f(c)$.
(2) $\phi_{2}=h(c, e) \approx d \wedge g(d) \approx e \wedge g(h(c, g(d))) \not \approx e$.

Exercise 8.3: (2 P)

Find the definitions for the following fragments of first-order logic in the slides of the lecture:

- The Bernays-Schönfinkel class;
- The Ackermann class.

To which of these classes do the following formulae belong (note that they can be in more than one, or in none of the classes above):
(1) $\exists y \forall x \quad((p(x) \vee r(x, y)) \wedge q(y))$
(2) $\forall x \exists y \forall z \quad \exists u((p(x) \vee q(y)) \wedge(q(y) \vee p(u))$
(3) $\exists y \forall x \exists z \quad((r(x, y) \vee r(y, z)) \wedge q(z) \wedge r(y, z))$
(4) $\exists z \forall x \forall y \exists z^{\prime} \quad\left((r(x, y) \vee r(y, z)) \wedge s\left(z, y, z^{\prime}\right)\right)$

Supplementary exercises:

Exercise 8.4: (3 P)
Prove the \Rightarrow part in the correctness proof of the algorithm for checking the validity of a conjunction of literals in UIF, under the assumption that an algorithm for computing the congruence closure of a set R of pairs of vertices in a graph G exists.
Let $\phi:=\bigwedge_{i=1}^{n} s_{i} \approx t_{i} \wedge \bigwedge_{j=1}^{m} s_{j}^{\prime} \not \approx t_{j}^{\prime}$ be a ground formula. Let $G=(V, E)$ be the labelled directed graph constructed from ϕ as in the description of the congruence closure algorithm based on Union/Find. Let $R=\left\{\left(v_{s_{i}}, v_{t_{i}}\right) \mid i \in\{1, \ldots, n\}\right\}$, and let R^{c} be the congruence closure of R.
(1) \mathcal{A} is a \sum-structure such that $\mathcal{A} \models \phi$. Prove that $\left[v_{s}\right]_{R^{c}}=\left[v_{t}\right]_{R^{c}}$ implies that $\mathcal{A} \models s=t$.
(2) Assume that ϕ is satisfiable. Prove that $\left[v_{s_{j}^{\prime}}\right]_{R^{c}} \neq\left[v_{t_{j}^{\prime}}\right]_{R^{c}}$.

Hint: Use the fact that if $\left[v_{s}\right]_{R^{c}}=\left[v_{t}\right]_{R^{c}}$ then there is a derivation for $\left(v_{s}, v_{t}\right) \in R^{c}$ in the calculus defined before; use induction on the length of derivation to show that $\mathcal{A} \models s=t$.

Exercise 8.5: (7P)

Let $\Sigma=(\Omega, \Pi)$ be a signature and let X be a set of variables. Let I be an index set. For every $i \in I$ let $\mathcal{A}_{i}=\left(U_{i},\left\{f_{\mathcal{A}_{i}}\right\}_{f \in \Omega},\left\{p_{\mathcal{A}_{i}}\right\}_{p \in \Pi}\right)$ be a Σ-algebra. The product of the family of Σ-algebras $\left\{\mathcal{A}_{i}\right\}_{i \in I}$ is the algebra $\prod_{i \in I} \mathcal{A}_{i}=\left(U,\left\{f_{\Pi \mathcal{A}_{i}}\right\}_{f \in \Omega},\left\{p_{\Pi \mathcal{A}_{i}}\right\}_{p \in \Pi}\right)$, where:

- $U=\prod_{i \in I} U_{i}$;
- for every $f / n \in \Omega, f_{\Pi \mathcal{A}_{i}}: U^{n} \rightarrow U$ is defined component-wise, i.e. for every tuple $\left(\left(a_{i}^{1}\right)_{i \in I}, \ldots,\left(a_{i}^{n}\right)_{i \in I}\right) \in U^{n}, \quad f_{\Pi \mathcal{A}_{i}}\left(\left(a_{i}^{1}\right)_{i \in I}, \ldots,\left(a_{i}^{n}\right)_{i \in I}\right)=\left(f_{\mathcal{A}_{i}}\left(a_{i}^{1}, \ldots, a_{i}^{n}\right)\right)_{i \in I} ;$
- for every $p / m \in \Pi, p_{\Pi \mathcal{A}_{i}} \subseteq U^{m}$ is defined by:

$$
\left(\left(a_{i}^{1}\right)_{i \in I}, \ldots,\left(a_{i}^{m}\right)_{i \in I}\right) \in p_{\Pi \mathcal{A}_{i}} \text { iff }\left(a_{i}^{1}, \ldots, a_{i}^{m}\right) \in p_{\mathcal{A}_{i}} \text { for all } i \in I .
$$

(1) Let $F\left(x_{1}, \ldots, x_{n}\right)$ be a conjunction of atomic formulae. Assume that for every $i \in I$ there exists a valuation $\beta_{i}: X \rightarrow \mathcal{A}_{i}$ such that $\left(\mathcal{A}_{i}, \beta_{i}\right) \models F\left(x_{1}, \ldots, x_{n}\right)$. Let $\beta: X \rightarrow \prod_{i \in I} \mathcal{A}_{i}$ be defined by $\beta(x)=\left(\beta_{i}(x)\right)_{i \in I}$. Prove that $\left(\prod_{i \in I} \mathcal{A}_{i}, \beta\right) \models F\left(x_{1}, \ldots, x_{n}\right)$.
(2) Assume that I is finite and let $\left\{A_{i}\left(x_{1}, \ldots, x_{n_{i}}\right) \mid i \in I\right\}$ be a family of atomic formulae with the property that $\left(\mathcal{A}_{i}, \beta_{i}\right) \not \models A_{i}\left(x_{1}, \ldots, x_{n_{i}}\right)$. Let $\beta: X \rightarrow \prod_{i \in I} \mathcal{A}_{i}$ be defined by $\beta(x)=\left(\beta_{i}(x)\right)_{i \in I}$. Prove that: $\left(\prod_{i \in I} \mathcal{A}_{i}, \beta\right) \not \vDash \bigvee_{i \in I} A_{i}\left(x_{1}, \ldots, x_{n_{i}}\right)$.

Please submit your solution until Friday, December 9, 2011 at 17:00 by e-mail to sofronie@uni-koblenz.de with the keyword "Homework DP" in the subject.

Joint solutions prepared by up to two persons are allowed.
Please do not forget to write your name on your solution!

