Universität Koblenz-Landau

FB 4 Informatik

Prof. Dr. Viorica Sofronie-Stokkermans
Dipl. Inf. Markus Bender
December 18, 2012

Exercises for "Decision Procedures for Verification" Exercise sheet 10

Exercise 10.1:

Check the satisfiability of the following ground formulae using the algorithm based on congruence closure presented in the lecture.
(1) $\phi_{1}: f(f(f(a))) \approx a \wedge f(f(f(f(f(a))))) \approx a \wedge f(a) \not \approx a$
(2) $\phi_{2}: f(a) \approx f(b) \wedge a \not \approx b$.
(3) $\phi_{3}: h(c, e) \approx d \wedge g(d) \approx e \wedge h(c, g(d)) \approx b \wedge g(h(c, b)) \approx b \wedge g(g(h(c, b))) \not \approx e$.

Exercise 10.2:

Check the satisfiability of the following formulae in (positive) difference logic w.r.t. \mathbb{Q}; in case of satisfiability find a satisfying assignment.
(1) $\phi_{1}=x-y \leq 3 \wedge y-z \leq 2 \wedge x-z \leq 1 \wedge x-u \leq-3$.
(2) $\phi_{2}=x-y \leq 3 \wedge y-z \leq 2 \wedge x-z \leq 1 \wedge x-u \leq-3 \wedge u-x \leq 1$.
(3) $\phi_{3}=x-y \leq 3 \wedge y-z \leq 2 \wedge x-z \leq 1 \wedge x-u \leq-3 \wedge u-z \leq 3 \wedge z-x \leq 1$.
(Note that all graphs have the same sets of nodes, and ϕ_{2} and ϕ_{3} are obtained from ϕ_{1} by adding some constraints.)

Hint: It is sufficient to check the existence of negative cycles in $G\left(\phi_{i}\right)$ by looking at the graphs; in this assignment you do not have to use the Bellman-Ford algorithm for this.

Supplementary exercise Prove the \Rightarrow part in the correctness proof of the algorithm for checking the validity of a conjunction of literals in UIF, under the assumption that an algorithm for computing the congruence closure of a set R of pairs of vertices in a graph G exists.
Let ϕ be the ground formula: $\bigwedge_{i=1}^{n} s_{i} \approx t_{i} \wedge \bigwedge_{j=1}^{m} s_{j}^{\prime} \not \approx t_{j}^{\prime}$. Let $G=(V, E)$ be the labelled directed graph constructed from ϕ as in the description of the congruence closure algorithm based on Union/Find.
Let $R=\left\{\left(v_{s_{i}}, v_{t_{i}}\right) \mid i \in\{1, \ldots, n\}\right\}$, and let R^{c} be the congruence closure of R.
(1) \mathcal{A} is a Σ-structure such that $\mathcal{A} \models \phi$. Prove that $\left[v_{s}\right]_{R^{c}}=\left[v_{t}\right]_{R^{c}}$ implies that $\mathcal{A} \models s=t$.
(2) Assume that ϕ is satisfiable. Prove that $\left[v_{s_{j}^{\prime}}\right]_{R^{c}} \neq\left[v_{t_{j}^{\prime}}\right]_{R^{c}}$.

Hint: Use the fact that if $\left[v_{s}\right]_{R^{c}}=\left[v_{t}\right]_{R^{c}}$ then there is a derivation for $\left(v_{s}, v_{t}\right) \in R^{c}$ in the calculus defined before; use induction on the length of derivation to show that $\mathcal{A} \models s=t$.

Please submit your solution until Monday, January 7, 2013 at 9:00. Joint solutions prepared by up to three persons are allowed. Please do not forget to write your name on your solution. Submission possibilities:

- By e-mail to mbender@uni-koblenz.de with the keyword "Homework DP" in the subject.
- Put it in the box in front of Room B 222.

