Universität Koblenz-Landau

FB 4 Informatik

Prof. Dr. Viorica Sofronie-Stokkermans
Dipl.-Inform. Markus Bender
October 30, 2012

Exercises for "Decision Procedures for Verification" Exercise sheet 3

Exercise 3.1:

Determine the polarity of the following subformulae of

$$
F=\neg((\neg(P \wedge \neg Q)) \vee(R \vee \neg S)) \vee(U \wedge V)
$$

(1) $(P \wedge \neg Q)$
(4) Q
(2) $(R \vee \neg S)$
(5) S
(3) $((\neg(P \wedge \neg Q)) \vee(R \vee \neg S))$
(6) V

Exercise 3.2:

Let F be the following formula in NNF:

$$
[((Q \wedge \neg P) \wedge(\neg Q \vee \neg R)) \vee(Q \wedge(\neg Q \vee P) \wedge \neg P)] \wedge(P \vee R)
$$

Convert F to CNF using the satisfiability-preserving transformation described in the lecture.

Exercise 3.3:

Consider the formulae $F_{n}=\bigvee_{i=1}^{n}\left(Q_{i} \wedge R_{i}\right)$ for $n \in \mathbb{N}$.
In the previous exercise we saw that the CNF formula F_{n}^{\prime} constructed using the distributivity of disjunctions over conjunctions from F has 2^{n} clauses.

- As a function of n, how many clauses are in the CNF formula $F_{n}^{\prime \prime}$ obtained using the structure-preserving translation to clause form?
- For which n is the first approach better?

Exercise 3.4:

Use the resolution calculus to prove that the following set of clauses is unsatisfiable:
(1) $\neg Q \vee \neg R \vee P$
(2) $\neg Q \vee \neg R \vee S$
(3) $\quad Q \vee \neg R$
(4) $\quad \neg S \vee \neg P$
(5) $\quad R$

Exercise 3.5:

Find a total ordering on the propositional variables A, B, C, D, E, such that the associated clause ordering \succ_{C} orders the clauses like this:

$$
B \vee C \succ_{C} A \vee A \vee \neg C \succ_{C} C \vee E \succ_{C} C \vee D \succ_{C} \neg A \vee D \succ_{C} \neg E
$$

Exercise 3.6:

Let N be the following set of clauses:

$$
\begin{array}{cc}
(1) & \neg P_{3} \vee P_{1} \vee P_{1} \\
(2) & \neg P_{2} \vee P_{1} \\
(3) & P_{4} \vee P_{4} \\
(4) & P_{4} \\
(5) & P_{3} \vee \neg P_{2} \\
(6) & P_{4} \vee P_{3} \tag{6}
\end{array}
$$

(1) Let \succ be the ordering on propositional variables defined by $P_{4} \succ P_{3} \succ P_{2} \succ P_{1}$. Sort the clauses in N according to \succ_{C}. Which literals are maximal in the clauses of N ?
(2) Can you construct a model of N using the canonical construction presented in the lecture.

Supplementary exercise (continuation from sheet 2)

Let F be a formula, P a propositional variable not occurring in F, and F^{\prime} a subformula of F. We will write F also as $F\left[F^{\prime}\right]$ in order to emphasize that F^{\prime} occurs in F. Let $F[P]$ be the formula obtained from F by replacing the subformula F^{\prime} with the propositional variable P.

Prove:
The formula $F[P] \wedge\left(P \leftrightarrow F^{\prime}\right)$ is satisfiable if and only if $F\left[F^{\prime}\right]$ is satisfiable.
Hint: The original property itself is to weak and cannot be proven by induction, due to the fact that we cannot assume satisfiability for $\neg G$ in the induction step $F=\neg G$.
A way to still prove this property is to prove the following two things:

- Let $\mathcal{A}: \Pi \rightarrow\{0,1\}$ such that $\mathcal{A}(P)=\mathcal{A}\left(F^{\prime}\right)$, then $\mathcal{A}(F[P])=\mathcal{A}\left(F\left[F^{\prime}\right]\right)$.
- $F[P] \wedge\left(P \leftrightarrow F^{\prime}\right)$ is satisfiable if and only if $F\left[F^{\prime}\right]$ is satisfiable.

Supplementary exercise

Let F be a formula containing neither \rightarrow nor \leftrightarrow, P a propositional variable not occurring in F, and F^{\prime} a subformula of F.
We will write F also as $F\left[F^{\prime}\right]$ in order to emphasize that F^{\prime} occurs in F. Let $F[P]$ be the formula obtained from F by replacing the subformula F^{\prime} with the propositional variable P.

Prove:
(1) If F^{\prime} has positive polarity in F then $F\left[F^{\prime}\right]$ is satisfiable if and only if $F[P] \wedge\left(P \rightarrow F^{\prime}\right)$ is satisfiable.
(2) If F^{\prime} has negative polarity in F then $F\left[F^{\prime}\right]$ is satisfiable if and only if $F[P] \wedge\left(F^{\prime} \rightarrow P\right)$ is satisfiable.

Hint: You can prove by simultaneous structural induction that for every valuation \mathcal{A} the following hold (assuming that $0 \leq 0,0 \leq 1,1 \leq 1$) :

- If F^{\prime} has positive polarity in F and $\mathcal{A}(P) \leq \mathcal{A}\left(F^{\prime}\right)$ then $\mathcal{A}(F[P]) \leq \mathcal{A}\left(F\left[F^{\prime}\right]\right)$.
- If F^{\prime} has negative polarity in F and $\mathcal{A}\left(F^{\prime}\right) \leq \mathcal{A}(P)$ then $\mathcal{A}(F[P]) \leq \mathcal{A}\left(F\left[F^{\prime}\right]\right)$.
and use this result in order to prove (1) and (2).

Please submit your solution until Monday, November 5, 2012 at 09:00 . Joint solutions prepared by up to three persons are allowed. Please do not forget to write your name on your solution.
Submission possibilities:

- By e-mail to mbender@uni-koblenz.de with the keyword "Homework DP" in the subject.
- Put it in the box in front of Room B 222.

