Universität Koblenz-Landau

FB 4 Informatik

Prof. Dr. Viorica Sofronie-Stokkermans
Dipl. Inf. Markus Bender
November 19, 2012

Exercises for "Decision Procedures for Verification" Exercise sheet 6

Exercise 6.1:

Prove or refute the following statement:
If t, s, s^{\prime} are terms and x and y are distinct variables, then $(t[s / x])\left[s^{\prime} / y\right]=t\left[s / x, s^{\prime} / y\right]$.

Exercise 6.2:

Prove or refute the following statements:
(a) If F is a first-order formula, then F is valid if and only if $F \rightarrow \perp$ is unsatisfiable.
(b) If F and G are first-order formulae, F is valid, and $F \rightarrow G$ is valid, then G is valid.
(c) If F and G are first-order formulae, F is satisfiable, and $F \rightarrow G$ is satisfiable, then G is satisfiable.
(d) If F is a first-order formula and x a variable, then F is unsatisfiable if and only if $\exists x F$ is unsatisfiable.
(e) If F and G are first-order formulae and x is a variable then $\forall x(F \wedge G) \models \forall x F \wedge \forall x G$ and $\forall x F \wedge \forall x G \models \forall x(F \wedge G)$.
(f) If F and G are first-order formulae and x is a variable then $\exists x(F \wedge G) \vDash \exists x F \wedge \exists x G$ and $\exists x F \wedge \exists x G \models \exists x(F \wedge G)$.

Exercise 6.3:

Prove or refute the following statements:
(a) If F and G are first-order formulae and $F \models G$, then $F \models \neg G$ does not hold.
(b) If F and G are first-order formulae and $F \models G$, then $\neg F \models G$ does not hold.
(c) If F, G, and H are first-order formulae and $F \wedge G \models H$, then $F \models H$.
(d) If F, G, and H are first-order formulae and $F \vee G \models H$, then $F \models H$.
(e) If F and G are first-order formulae then if F and G are satisfiable then $F \wedge G$ is satisfiable.

Exercise 6.4:

Let $\Sigma=(\Omega, \Pi)$, where $\Omega=\{0 / 0, s / 1,+/ 2\}$ and $\Pi=\emptyset$ (i.e. the only predicate symbol is \approx). Consider the following formulae in the signature Σ :

1. $F_{1}=\forall x(x+0 \approx x)$
2. $F_{2}=\forall x, y(x+s(y) \approx s(x+y))$
3. $F_{3}=\forall x, y((x+y)+z \approx x+(y+z))$.

Find a Σ-structure in which F_{1} and F_{2} are valid but F_{3} is not.

Supplementary exercise:

Exercise 6.5:

Let Σ be a signature, \mathcal{A} a Σ-structure, $\beta: X \rightarrow U_{\mathcal{A}}$ a variable assignment and σ a substitution.
Prove:
(1) For any Σ-term $t, \mathcal{A}(\beta)(\sigma(t))=\mathcal{A}(\beta \circ \sigma)(t)$ where $\beta \circ \sigma: X \rightarrow \mathcal{A}$ is the assignment $\beta \circ \sigma(x)=\mathcal{A}(\beta)(\sigma(x))$.
(2) For any Σ-formula $F, \mathcal{A}(\beta)(F \sigma)=\mathcal{A}(\beta \circ \sigma)(F)$.

Conclude that $\mathcal{A}, \beta \models F \sigma \quad \Leftrightarrow \quad \mathcal{A}, \beta \circ \sigma \models F$.
Hint: (1) can be proved by structural induction (induction on the structure of terms); (2) can be proved by induction on the structure of formulae using (1).

Please submit your solution until Monday, November 26, 2012 at 9:00. Joint solutions prepared by up to three persons are allowed. Please do not forget to write your name on your solution. Submission possibilities:

- By e-mail to mbender@uni-koblenz.de with the keyword "Homework DP" in the subject.
- Put it in the box in front of Room B 222.

