Universität Koblenz-Landau

FB 4 Informatik

Prof. Dr. Viorica Sofronie-Stokkermans
Dipl. Inf. Markus Bender

Exercises for "Decision Procedures for Verification" Exercise sheet 7

Exercise 7.1:

What is the clausal normal form of

$$
\exists x \forall y(\forall z(p(y, z) \vee \neg x \approx y) \rightarrow(\forall z q(y, z) \wedge \neg r(x, y)))
$$

Exercise 7.2:

Compute a most general unifier of

$$
\{f(x, g(x))=y, h(y)=h(v), v=f(g(z), w)\}
$$

using the method presented in the lecture.

Exercise 7.3:

Let $\Sigma=(\Omega, \Pi)$ with $\Omega=\{b / 0, f / 1\}$ and $\Pi=\{p / 1\}$.
(a) Which is the universe of the Herbrand interpretations over this signature?

If \mathcal{A} is a Herbrand interpretation over Σ how are $b_{\mathcal{A}}$ and $f_{\mathcal{A}}$ defined?
(b) How many different Herbrand interpretations over Σ do exist? Explain briefly.
(c) How many different Herbrand models over Σ does the formula:

$$
\begin{equation*}
p(f(f(b))) \wedge \forall x(p(x) \rightarrow p(f(x))) \tag{1}
\end{equation*}
$$

have? Explain briefly.
(d) Every Herbrand model over Σ of (1) is also a model of

$$
\begin{equation*}
\forall x p(f(f(x))) \tag{2}
\end{equation*}
$$

Give an example of an algebra that is a model of (1) but not of (2).

Exercise 7.4:

Let $\Sigma=(\Omega, \Pi)$, where $\Omega=\{a / 0, f / 1, g / 1\}$ and $\Pi=\{p / 2\}$.
Use the resolution calculus Res described in the lecture to show that the following set of clauses (where x, y, z are variables) is unsatisfiable:

$$
\begin{gathered}
p(a, z) \\
\neg p(f(f(a)), a) \\
\neg p(x, g(y)) \vee p(f(x), y)
\end{gathered}
$$

For computing the most general unifiers use the method presented in the lecture.

Exercise 7.5:

Consider the following formulae:

- $F_{1}:=\forall x(S(x) \rightarrow \exists y(R(x, y) \wedge P(y)))$
- $F_{2}:=\forall x(P(x) \rightarrow Q(x))$
- $F_{3}:=\exists x S(x)$
- $G:=\exists x \exists y(R(x, y) \wedge Q(y))$

Use resolution to prove that $\left\{F_{1}, F_{2}, F_{3}\right\} \models G$.

Please submit your solution until Monday, December 3, 2012 at 9:00. Joint solutions prepared by up to three persons are allowed. Please do not forget to write your name on your solution. Submission possibilities:

- By e-mail to mbender@uni-koblenz. de with the keyword "Homework DP" in the subject.
- Put it in the box in front of Room B 222.

