Universität Koblenz-Landau

FB 4 Informatik

Prof. Dr. Viorica Sofronie-Stokkermans Dipl. Inf. Markus Bender

December 4, 2012

Exercises for "Decision Procedures for Verification" Exercise sheet 8

Exercise 8.1:

Compute a most general unifier of

(1)
$$\{f(x,y) \doteq f(g(y),h(x,x))\}$$

(2)
$$\{f(x,a) \doteq f(h(y,a),y), h(w,z) \doteq h(g(x),g(x))\}$$

using the method presented in the lecture.

Exercise 8.2:

Let \succ be a total and well-founded ordering on ground atoms such that, if the atom A contains more symbols than B, then $A \succ B$. Let N be the following set of clauses:

- (a) Which literals are maximal in the clauses of N?
- (b) Define a selection function S such that N is saturated under Res_S^{\succ} . Justify your choice.

Exercise 8.3:

Consider the notion of redundancy defined in the slides from December 3.

Assume that $S \succ P \succ Q \succ R$. Is the clause $C = \neg P \lor S$ redundant w.r.t. the set of clauses

$$N = \{ \neg Q \lor \neg P, R \lor P, Q \lor S \}?$$

Justify your answer.

Exercise 8.4:

Which of the following formulae are in the Bernays-Schönfinkel class?

(1)
$$\exists y \forall x \ ((p(x) \lor r(x,y)) \land q(y))$$

(2)
$$\forall x \exists y \forall z \exists u \ ((p(x) \lor q(y)) \land (q(y) \lor p(u)))$$

- (3) $\exists y \forall x \exists z \ ((r(x,y) \lor r(y,z)) \land q(z) \land r(y,z))$
- (4) $\exists z \forall x \forall y \exists z' \ ((r(x,y) \lor r(y,z)) \land s(z,y,z'))$

Exercise 8.5:

Let $\Sigma = (\Omega, \Pi)$. Assume that Ω does not contain any function of arity greater than or equal to 1 (i.e. Ω consists only of constants).

Let $k \in \mathbb{N}$ and let H be a set of Horn clauses (in first-order logic without equality) in which every clause contains at most k variables.

Show that the satisfiability of H can be checked in polynomial time in the size of H.

Supplementary exercise

Exercise 8.6:

A set of Horn clauses in first-order logic without equality is called *superficial* if for every clause

$$A_1 \wedge \cdots \wedge A_n \to A$$
 (alternatively written also: $\neg A_1 \vee \cdots \vee \neg A_n \vee A$)

in H (where A_1, \ldots, A_n, A are atoms), for every term t occurring in A there exists $j \in \{1, \ldots, n\}$ such that t occurs in A_j .

Let H be a superficial set of Horn clauses and let G be a conjunction of ground literals.

Prove that $H \cup G$ is satisfiable if and only if $H[G] \cup G$ is satisfiable, where H[G] is the set of all ground instances of H which contain only ground terms occurring in G or which already occur in H.

Please submit your solution until Monday, December 10, 2012 at 9:00. Joint solutions prepared by up to three persons are allowed. Please do not forget to write your name on your solution. Submission possibilities:

- By e-mail to mbender@uni-koblenz.de with the keyword "Homework DP" in the subject.
- Put it in the box in front of Room B 222.