Universität Koblenz-Landau

FB 4 Informatik

Prof. Dr. Viorica Sofronie-Stokkermans
Dipl. Inf. Markus Bender
December 10, 2012

Exercises for "Decision Procedures for Verification" Exercise sheet 9

Let $\Sigma=(\Omega, \Pi)$ such that $\Pi=\emptyset$ (i.e. \approx is the unique predicate symbol).
For every ground formula $\phi:=s_{1} \approx s_{1}^{\prime} \wedge \cdots \wedge s_{k} \approx s_{k}^{\prime} \wedge t_{1} \not \approx t_{1}^{\prime} \wedge \cdots \wedge t_{m} \not \approx t_{m}^{\prime}$ we denote by $F L A T(\phi)$ the formula obtained by replacing, in a bottom-up fashion, every term of the form $f\left(c_{1}, \ldots, c_{n}\right)$ with a new constant c_{f}.

The set of functional consistency axioms associated with the flattening is the set of clauses:

$$
\begin{array}{r}
F C=\left\{\left(c_{1} \approx c_{1}^{\prime} \wedge \cdots \wedge c_{n} \approx c_{n}^{\prime}\right) \rightarrow d \approx d^{\prime} \mid d \text { introduced as abbreviation for } f\left(c_{1}, \ldots, c_{n}\right)\right. \\
\\
\left.d^{\prime} \text { introduced as abbreviation for } f\left(c_{1}^{\prime}, \ldots, c_{n}^{\prime}\right)\right\}
\end{array}
$$

Example: If ϕ is $f(a, b) \approx a \wedge f(f(a, b), b) \not \approx a$
then $F L A T[\phi]$ is computed by introducing new constants renaming terms starting with f and then replacing the terms with the constants:

- FLAT $[\underbrace{f(a, b)}_{a_{1}} \approx a \wedge \underbrace{f(\underbrace{f(a, b)}_{a_{1}}, b)} \not \approx a]:=a_{1} \approx a \wedge a_{2} \not \approx a \quad$ Abbreviations: $\begin{array}{r}f(a, b)=a_{1} \\ f\left(a_{1}, b\right)=a_{2}\end{array}$
- $F C:=\left(a \approx a_{1} \wedge b \approx b\right) \xrightarrow{a_{2}} a_{1} \approx a_{2}$.

Exercise 9.1:

Let ϕ be the following (ground) formula:

$$
f(f(c)) \approx f(c) \wedge f(f(c)) \approx f(d) \wedge d \not \approx f(c)
$$

- Compute $F L A T(\phi)$ (the formula obtained by recursively replacing, in a bottom-up fashion, any term of the form $f\left(c^{\prime}\right)$, where c^{\prime} is a constant, with a new constant).
- Compute the set $F C$ of functional consistency axioms associated with the flattening in $F L A T(\phi)$:

$$
F C=\left\{c_{1} \approx c_{2} \rightarrow d_{1} \approx d_{2} \mid d_{i} \text { is introduced as an abbreviation for } f\left(c_{i}\right)\right\}
$$

Exercise 9.2:

Let $\bar{c}=\left(c_{1}, \ldots, c_{n}\right)$ be a sequence of constants. We write $s(\bar{c})$ in order to emphasize that the term s contains some of the constants in \bar{c}.

Prove that the following are equivalent:
(1) $\left(\bigwedge_{i} s_{i}(\bar{c}) \approx t_{i}(\bar{c})\right) \wedge \bigwedge_{j} s_{j}^{\prime}(\bar{c}) \not \approx t_{j}^{\prime}(\bar{c}) \quad$ is satisfiable
(2) $F C \wedge F L A T\left[\left(\bigwedge_{i} s_{i}(\bar{c}) \approx t_{i}(\bar{c})\right) \wedge \bigwedge_{j} s_{j}^{\prime}(\bar{c}) \not \approx t_{j}^{\prime}(\bar{c})\right]$ is satisfiable

Exercise 9.3:

Consider the fragments of first-order logic studied in the class, namely the Bernays-Schönfinkel class and the Ackermann class. To which of these classes do the following formulae belong (note that they can be in more than one, or in none of the classes above):
(1) $\exists y_{1} \exists y_{2} \forall x_{1} \forall x_{2} \quad\left(\left(p\left(x_{1}, y_{1}\right) \vee r\left(x_{2}, y_{1}\right)\right) \wedge q\left(y_{2}\right)\right)$
(2) $\forall x \exists y \forall z \exists u \quad((p(x) \vee q(y)) \wedge(q(y) \vee p(u))$
(3) $\exists y \forall x \exists z \quad((r(x, y) \vee r(y, z)) \wedge q(z) \wedge r(y, z))$
(4) $\exists z \forall x \forall y \exists z^{\prime} \quad\left((r(x, y) \vee r(y, z)) \wedge s\left(z, y, z^{\prime}\right)\right)$

Supplementary exercise:

Exercise 9.4:

Let $\Sigma=\left(\left\{c_{1} / 0, \ldots, c_{n} / 0, f_{1} / 1, \ldots, f_{n} / 1\right\}, \Pi\right)$. Consider the following classes of Σ-clauses:

- G (denoted in the lecture also $\left.G\left(c_{1}, \ldots, c_{n}\right)\right)$ is the class of all ground clauses in the signature Σ which do not contain any occurrence of a unary function symbol.
- $V\left(\right.$ denoted in the lecture also $\left.V\left(x, c_{1}, \ldots, c_{n}\right)\right)$ is the class of all clauses with one variable (x) in the signature Σ which do not contain any occurrence of a unary function symbol.
- $G_{f}\left(\right.$ denoted in the lecture also $\left.G\left(c_{1}, \ldots, c_{n}, f_{k}\left(c_{j}\right)\right)\right)$ is the class of ground clauses in the signature Σ which contain at least one occurrence of a unary function symbol (having as argument a constant); no nested applications of unary function symbols are allowed.

$$
\begin{aligned}
& \text { Example: Assume } p / 3 . q / 2 \in \Pi \text { Then: } \\
& C_{1}: p\left(c_{1}, c_{2}, c_{3}\right) \vee \neg q\left(c_{2}, c_{1}\right) \text { is in } G \text { but is not in } G_{f} \\
& C_{2}: q\left(c_{1}, c_{2}\right) \vee \neg q\left(f_{1}\left(c_{3}\right), c_{4}\right) \in G_{f} \\
& C_{3}: q\left(c_{1}, c_{2}\right) \vee \neg q\left(f_{1}\left(c_{3}\right), f_{2}\left(f_{3}\left(c_{4}\right)\right)\right) \notin G_{f} .
\end{aligned}
$$

- V_{f} (denoted in the lecture also $\left.V\left(x, c_{1}, \ldots, c_{n}, f_{j}(x)\right)\right)$ is the class of all clauses in the signature Σ which contain only one variable (x), at least one occurrence of a unary function symbol (having as argument the variable x), no occurrences of terms of the form $f_{k}\left(c_{j}\right)$; in addition no nested applications of unary function symbols are allowed.

$$
\begin{aligned}
& \text { Example: Assume } p / 3 . q / 2 \in \Pi \text { Then: } \\
& C_{1}^{\prime}: p\left(x, c_{2}, x\right) \vee \neg q\left(c_{2}, c_{1}\right) \text { is in } V \text { but is not in } V_{f} \\
& C_{2}^{\prime}: q\left(x, c_{2}\right) \vee \neg q\left(f_{1}\left(c_{3}\right), x\right) \notin V_{f} \\
& C_{3}^{\prime}: q\left(c_{1}, x\right) \vee \neg q\left(x, f_{2}\left(f_{3}(x)\right)\right) \notin V_{f} C_{4}^{\prime}: p\left(x, c_{2}, x\right) \vee \neg p\left(c_{2}, x, f(x)\right) \in V_{f} .
\end{aligned}
$$

Consider a term ordering \succ in which $f(t) \succ t$ for every term t and terms containing function symbols of arity 1 are larger than those who do not. Consider the general ordered resolution calculus Res ${ }^{\succ}$. Prove that in this calculus:
(1) The resolvent of a clause in G_{f} and a clause in V_{f} is a clause in G_{f} of G.
(2) The resolvent of two clauses in V_{f} is a clause in G, G_{f}, V or V_{f}.

Please submit your solution until Monday, December 17, 2012 at 9:00. Joint solutions prepared by up to three persons are allowed. Please do not forget to write your name on your solution. Submission possibilities:

- By e-mail to mbender@uni-koblenz. de with the keyword "Homework DP" in the subject.
- Put it in the box in front of Room B 222.

