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Until now:

Logical Theories: generalities

• Theory of Uninterpreted Function Symbols

• Decision procedures for numeric domains

Difference logic

Linear arithmetic: Fourier-Motzkin

• Combinations of decision procedures
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3.5. Combinations of theories
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Problems

The combined decidability problem

For i = 1, 2 • let Ti be a first-order theory in signature Σi

• let Li be a class of (closed) Σi -formulae
• Pi decision procedure for Ti -validity for Li

Let T1
⊕

T2 be a combination of T1 and T2
Let L1

⊕
L2 be a combination of L1 and L2

Question: Can we combine P1 and P2 modularly into a decision

procedure for the T1
⊕

T2-validity problem for L1
⊕

L2?

Main issue: How are T1
⊕

T2 and L1
⊕

L2 defined?
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Combinations of theories and models

Forgetting symbols

Let Σ = (Ω,Π) and Σ′ = (Ω′, Π′) s.t. Σ ⊆ Σ′, i.e., Ω ⊆ Ω′ and Π ⊆ Π′

For A ∈ Σ′-alg, we denote by A|Σ the Σ-structure for which:

UA|Σ
= UA, fA|Σ

= fA for f ∈ Ω;

PA|Σ
= PA for P ∈ Π

(ignore functions and predicates associated with symbols in Σ′\Σ)

A|Σ is called the restriction (or the reduct) of A to Σ.

Example: Σ′ = ({+/2, ∗/2, 1/0}, {≤ /2, even/1, odd/1})

Σ = ({+/2, 1/0}, {≤ /2}) ⊆ Σ′

N = (N, +, ∗, 1,≤, even, odd) N|Σ = (N, +, 1,≤)
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One possibility of combining theories

Syntactic view: T1 + T2 = T1 ∪ T2 ⊆ FΣ1∪Σ2(X )

Mod(T1 ∪ T2) = {A ∈ (Σ1 ∪ Σ2)-alg | A |= G , for all G in T1 ∪ T2}

where Σ1 ∪ Σ2 = (Ω1, Π1) ∪ (Ω2, Π2) = (Ω1 ∪ Ω2, Π1 ∪ Π2)
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One possibility of combining theories

Syntactic view: T1 + T2 = T1 ∪ T2 ⊆ FΣ1∪Σ2(X )

Mod(T1 ∪ T2) = {A ∈ (Σ1 ∪ Σ2)-alg | A |= G , for all G in T1 ∪ T2}

Semantic view: Let Mi = Mod(Ti), i = 1, 2

M1 +M2 = {A ∈ (Σ1 ∪ Σ2)-alg | A|Σi
∈ Mi for i = 1, 2}
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One possibility of combining theories

Syntactic view: T1 + T2 = T1 ∪ T2 ⊆ FΣ1∪Σ2(X )

Mod(T1 ∪ T2) = {A ∈ (Σ1 ∪ Σ2)-alg | A |= G , for all G in T1 ∪ T2}

Semantic view: Let Mi = Mod(Ti), i = 1, 2

M1 +M2 = {A ∈ (Σ1 ∪ Σ2)-alg | A|Σi
∈ Mi for i = 1, 2}

A ∈ Mod(T1 ∪ T2) iff A |= G , for all G in T1 ∪ T2

iff A|Σi
|= G , for all G in Ti , i = 1, 2

iff A|Σi
∈ Mi , i = 1, 2

iff A ∈ M1 +M2
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One possibility of combining theories

Syntactic view: T1 + T2 = T1 ∪ T2 ⊆ FΣ1∪Σ2(X )

Mod(T1 ∪ T2) = {A ∈ (Σ1 ∪ Σ2)-alg | A |= G , for all G in T1 ∪ T2}

Semantic view: Let Mi = Mod(Ti), i = 1, 2

M1 +M2 = {A ∈ (Σ1 ∪ Σ2)-alg | A|Σi
∈ Mi for i = 1, 2}

Remark: A∈Mod(T1 ∪ T2) iff (A|Σ1
∈Mod(T1) and A|Σ2

∈Mod(T2))

Consequence: Th(Mod(T1 ∪ T2)) = Th(M1 +M2)
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Example

1. Presburger arithmetic + UIF

Th(Z+) ∪ UIF Σ = (Ω,Π)

Models: (A, 0, s, +, {fA}f∈Ω,≤, {PA}P∈Π)

where (A, 0, s, +,≤) ∈ Mod(Th(Z+)).

2. The theory of reals + the theory of a monotone function f

Th(R) ∪Mon(f ) Mon(f ) : ∀x , y(x ≤ y → f (x) ≤ f (y))

Models: (A, +, ∗, fA, {≤}), where

where (A, +, ∗,≤) ∈ Mod(Th(R)).

(A, fA,≤) |= Mon(f ), i.e. fA : A → A monotone.

Note: The signatures of the two theories share the ≤ predicate symbol
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Combinations of theories

Definition. A theory is consistent if it has at least one model.

Question: Is the union of two consistent theories always consistent?

Answer: No. (Not even when the two theories have disjoint

signatures)

Example: Σ1 = (Ω1, ∅), Σ2 = ({c/0, d/0}, ∅), c, d 6∈ Ω1

T1 = {∃x , y , z(x 6≈ y ∧ x 6≈ z ∧ y 6≈ z)}

T2 = {∀x(x ≈ c ∨ x ≈ d)}

A ∈ Mod(T1) iff |UA| ≥ 3.

B ∈ Mod(T2) iff |UB| ≤ 2.
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Combinations of theories

The combined decidability problem

For i = 1, 2 • let Ti be a first-order theory in signature Σi

• assume the Ti ground satisfiability problem

is decidable

Let T1

⊕
T2 be a combination of T1 and T2

Question:

Is the T1

⊕
T2 ground satisfiability problem decidable?
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Goal: Modularity

Modular Reasoning Example:

T1 T0 T2
T0: Σ0-theory. lists(R) ∪ arrays(R)

Ti : Σi -theory; T0 ⊆ Ti Σ0 ⊆ Σi .

Can use provers for T1, T2 as blackboxes to prove theorems in T1 ∪ T2?

Which information needs to be exchanged between the provers?
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Combinations of theories

For i = 1, 2 • let Ti be a first-order theory in signature Σi

• s.t. the ground satisfiability problem for Ti is decidable

Question: Is the ground satisfiability problem for T1 ∪ T2 decidable?

14



Combinations of theories

For i = 1, 2 • let Ti be a first-order theory in signature Σi

• s.t. the ground satisfiability problem for Ti is decidable

Question: Is the ground satisfiability problem for T1 ∪ T2 decidable?

In general: No (restrictions needed for affirmative answer)

Example. Word problem for T : Decide if T |= ∀x(s ≈ t)

A: theory of associativity G finite set of ground equations
(presentation for semigroup
with undecidable word problem)

↑
(∃ finitely-presented semigroup with
undecidable word problem [Matijasevic’67])

Word problem: decidable for A,G; undecidable for A ∪ G
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Combinations of theories

For i = 1, 2 • let Ti be a first-order theory in signature Σi

• s.t. the ground satisfiability problem for Ti is decidable

Question: Is the ground satisfiability problem for T1 ∪ T2 decidable?

In general: No (restrictions needed for affirmative answer)

Example. Word problem for T : Decide if T |= ∀x(s ≈ t)

Simpler instances: combinations of theories over disjoint signatures,

theories sharing constructors, compatibility with shared theory ...
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Combinations of theories

For i = 1, 2 • let Ti be a first-order theory in signature Σi

• s.t. the ground satisfiability problem for Ti is decidable

Question: Is the ground satisfiability problem for T1 ∪ T2 decidable?

In general: No (restrictions needed for affirmative answer)

Theorem [Bonacina, Ghilardi et.al, IJCAR 2006]

There are theories T1, T2 with disjoint signatures and decidable ground satis-

fiability problem such that ground satisfiability in T1 ∪ T2 is undecidable.

Idea: Construct T1 such that ground satisfiability is decidable, but it is

undecidable whether a constraint Γ1 is satisfiable in an infinite model of T1.

(Construction uses Turing Machines). Let T2 having only infinite models.
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Combination of theories over disjoint signatures

The Nelson/Oppen procedure

Given: T1, T2 first-order theories with signatures Σ1, Σ2

Assume that Σ1 ∩ Σ2 = ∅ (share only ≈)

Pi decision procedures for satisfiability of ground formulae w.r.t. Ti

φ quantifier-free formula over Σ1 ∪ Σ2

Task: Check whether φ is satisfiable w.r.t. T1 ∪ T2

Note: Restrict to conjunctive quantifier-free formulae

φ 7→ DNF (φ)

DNF (φ) satisfiable in T iff one of the disjuncts satisfiable in T

18



Example

[Nelson & Oppen, 1979]

Theories

R theory of rationals ΣR = {≤, +,−, 0, 1} ≈

L theory of lists ΣL = {car, cdr, cons} ≈

E theory of equality (UIF) Σ: free function and predicate symbols ≈
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Example

[Nelson & Oppen, 1979]

Theories

R theory of rationals ΣR = {≤, +,−, 0, 1} ≈

L theory of lists ΣL = {car, cdr, cons} ≈

E theory of equality (UIF) Σ: free function and predicate symbols ≈

Problems:

1. R∪L∪E |= ∀x , y(x≤y ∧ y≤x+car(cons(0, x)) ∧ P(h(x)−h(y)) → P(0))

2. Is the following conjunction:

c ≤ d ∧ d ≤ c + car(cons(0, c)) ∧ P(h(c)− h(d)) ∧ ¬P(0)

satisfiable in R∪ L ∪ E?
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An Example

R L E

Σ {≤, +,−, 0, 1} {car, cdr, cons} F ∪ P

Axioms x + 0 ≈ x car(cons(x , y))≈x

x − x ≈ 0 cdr(cons(x , y))≈y

(univ. + is A,C at(x)∨cons(car(x), cdr(x))≈x

quantif.) ≤ is R,T ,A ¬at(cons(x , y))

x ≤ y ∨ y ≤ x

x≤y→x+z≤y+z

Is the following conjunction:

c ≤ d ∧ d ≤ c + car(cons(0, c)) ∧ P(h(c)− h(d)) ∧ ¬P(0)

satisfiable in R∪ L ∪ E ?

21



Step 1: Purification

c ≤ d ∧ d ≤ c + car(cons(0, c)) ∧ P(h(c)− h(d)) ∧ ¬P(0)
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Step 1: Purification

c ≤ d ∧ d ≤ c + car(cons(0, c))
︸ ︷︷ ︸

c1

∧ P(h(c)− h(d)) ∧ ¬P(0)

22



Step 1: Purification

c ≤ d ∧ d ≤ c + car(cons(0, c))
︸ ︷︷ ︸

c1

∧ P(h(c)− h(d)
︸ ︷︷ ︸

c2

) ∧ ¬P(0)
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Step 1: Purification

c ≤ d ∧ d ≤ c + car(cons(0, c))
︸ ︷︷ ︸

c1

∧ P(h(c)
︸︷︷︸

c3

− h(d)
︸︷︷︸

c4
︸ ︷︷ ︸

c2

) ∧ ¬P( 0
︸︷︷︸

c5

)
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Step 1: Purification

c ≤ d ∧ d ≤ c + car(cons(0, c))
︸ ︷︷ ︸

c1

∧ P(h(c)
︸︷︷︸

c3

− h(d)
︸︷︷︸

c4
︸ ︷︷ ︸

c2

) ∧ ¬P( 0
︸︷︷︸

c5

)

R L E

c ≤ d c1 ≈ car(cons(c5, c)) P(c2)

d ≤ c + c1 ¬P(c5)

c2 ≈ c3 − c4 c3 ≈ h(c)

c5 ≈ 0 c4 ≈ h(d)
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Step 1: Purification

c ≤ d ∧ d ≤ c + car(cons(0, c))
︸ ︷︷ ︸

c1

∧ P(h(c)
︸︷︷︸

c3

− h(d)
︸︷︷︸

c4
︸ ︷︷ ︸

c2

) ∧ ¬P( 0
︸︷︷︸

c5

)

R L E

c ≤ d c1 ≈ car(cons(c5, c)) P(c2)

d ≤ c + c1 ¬P(c5)

c2 ≈ c3 − c4 c3 ≈ h(c)

c5 ≈ 0 c4 ≈ h(d)

satisfiable satisfiable satisfiable
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Step 2: Propagation

c ≤ d ∧ d ≤ c + car(cons(0, c))
︸ ︷︷ ︸

c1

∧ P(h(c)
︸︷︷︸

c3

− h(d)
︸︷︷︸

c4
︸ ︷︷ ︸

c2

) ∧ ¬P( 0
︸︷︷︸

c5

)

R L E

c ≤ d c1 ≈ car(cons(c5, c)) P(c2)

d ≤ c + c1 ¬P(c5)

c2 ≈ c3 − c4 c3 ≈ h(c)

c5 ≈ 0 c4 ≈ h(d)

deduce and propagate equalities between constants entailed by components
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Step 2: Propagation

c ≤ d ∧ d ≤ c + car(cons(0, c))
︸ ︷︷ ︸

c1

∧ P(h(c)
︸︷︷︸

c3

− h(d)
︸︷︷︸

c4
︸ ︷︷ ︸

c2

) ∧ ¬P( 0
︸︷︷︸

c5

)

R L E

c ≤ d c1 ≈ car(cons(c5, c)) P(c2)

d ≤ c + c1 ¬P(c5)

c2 ≈ c3 − c4 c3 ≈ h(c)

c5 ≈ 0 c4 ≈ h(d)

c1 ≈ c5
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Step 2: Propagation

c ≤ d ∧ d ≤ c + car(cons(0, c))
︸ ︷︷ ︸

c1

∧ P(h(c)
︸︷︷︸

c3

− h(d)
︸︷︷︸

c4
︸ ︷︷ ︸

c2

) ∧ ¬P( 0
︸︷︷︸

c5

)

R L E

c ≤ d c1 ≈ car(cons(c5, c)) P(c2)

d ≤ c + c1 ¬P(c5)

c2 ≈ c3 − c4 c3 ≈ h(c)

c5 ≈ 0 c4 ≈ h(d)

c1 ≈ c5 c1 ≈ c5

c ≈ d
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Step 2: Propagation

c ≤ d ∧ d ≤ c + car(cons(0, c))
︸ ︷︷ ︸

c1

∧ P(h(c)
︸︷︷︸

c3

− h(d)
︸︷︷︸

c4
︸ ︷︷ ︸

c2

) ∧ ¬P( 0
︸︷︷︸

c5

)

R L E

c ≤ d c1 ≈ car(cons(c5, c)) P(c2)

d ≤ c + c1 ¬P(c5)

c2 ≈ c3 − c4 c3 ≈ h(c)

c5 ≈ 0 c4 ≈ h(d)

c1 ≈ c5 c1 ≈ c5 c ≈ d

c ≈ d c3 ≈ c4
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Step 2: Propagation

c ≤ d ∧ d ≤ c + car(cons(0, c))
︸ ︷︷ ︸

c1

∧ P(h(c)
︸︷︷︸

c3

− h(d)
︸︷︷︸

c4
︸ ︷︷ ︸

c2

) ∧ ¬P( 0
︸︷︷︸

c5

)

R L E

c ≤ d c1 ≈ car(cons(c5, c)) P(c2)

d ≤ c + c1 ¬P(c5)

c2 ≈ c3 − c4 c3 ≈ h(c)

c5 ≈ 0 c4 ≈ h(d)

c1 ≈ c5 c1 ≈ c5 c ≈ d

c ≈ d c3 ≈ c4

c2 ≈ c5 ⊥
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The Nelson-Oppen algorithm

φ conjunction of literals

Step 1. Purification T1 ∪ T2 ∪ φ 7→ (T1 ∪ φ1) ∪ (T2 ∪ φ2):

where φi is a pure Σi -formula and φ1 ∧ φ2 is equisatisfiable with φ.

Informally: “Separate” the formula φ into two “pure” formulae using renaming.

Step 2. Propagation.

The decision procedure for ground satisfiability for T1 and T2 fairly

exchange information concerning entailed unsatisfiability

of constraints in the shared signature

i.e. clauses over the shared variables.

until an inconsistency is detected or a saturation state is reached.

Informally: Provers for component theories exchange information about shared

symbols.
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Step 1: Purification

Given: φ conjunctive quantifier-free formula over Σ1 ∪ Σ2

Task: Find φ1,φ2 s.t. φi is a pure Σi -formula and φ1 ∧ φ2 equivalent with φ

f (s1, . . . , sn) ≈ g(t1, . . . , tm) 7→ u≈f (s1, . . . , sn) ∧ u≈g(t1, . . . , tm)

f (s1, . . . , sn) 6≈ g(t1, . . . , tm) 7→ u≈f (s1, . . . , sn) ∧ v≈g(t1, . . . , tm) ∧ u 6≈ v

(¬)P(. . . , si , . . . ) 7→ (¬)P(. . . , u, . . . ) ∧ u≈si

(¬)P(. . . , si [t], . . . ) 7→ (¬)P(. . . , si [t 7→ u], . . . ) ∧ u≈t

where t ≈ f (t1, . . . , tn)

Termination: Obvious

Correctness: φ1 ∧ φ2 and φ equisatisfiable.
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The Nelson-Oppen algorithm

φ conjunction of literals

Step 1. Purification T1 ∪ T2 ∪ φ 7→ (T1 ∪ φ1) ∪ (T2 ∪ φ2):

where φi is a pure Σi -formula and φ1 ∧ φ2 is equisatisfiable with φ.

Step 2. Propagation.

The decision procedure for ground satisfiability for T1 and T2 fairly

exchange information concerning entailed unsatisfiability

of constraints in the shared signature

i.e. clauses over the shared variables.

until an inconsistency is detected or a saturation state is reached.

not problematic; requires linear time
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The Nelson-Oppen algorithm

φ conjunction of literals

Step 1. Purification T1 ∪ T2 ∪ φ 7→ (T1 ∪ φ1) ∪ (T2 ∪ φ2):

where φi is a pure Σi -formula and φ1 ∧ φ2 is equisatisfiable with φ.

Step 2. Propagation.

The decision procedure for ground satisfiability for T1 and T2 fairly

exchange information concerning entailed unsatisfiability

of constraints in the shared signature

i.e. clauses over the shared variables.

until an inconsistency is detected or a saturation state is reached.

not problematic; requires linear time

not problematic; termination guaranteed

Sound: if inconsistency detected input unsatisfiable

Complete: under additional assumptions
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Implementation

φ conjunction of literals

Step 1. Purification: T1 ∪ T2 ∪ φ 7→ (T1 ∪ φ1) ∪ (T2 ∪ φ2),

where φi is a pure Σi -formula and φ1 ∧ φ2 is equisatisfiable with φ.

Step 2. Propagation: The decision procedure for ground satisfiability

for T1 and T2 fairly exchange information concerning entailed

unsatisfiability of constraints in the shared signature

i.e. clauses over the shared variables.

until an inconsistency is detected or a saturation state is reached.

How to implement Propagation?

Guessing: guess a maximal set of literals containing the shared

variables; check it for Ti ∪ φi consistency.

Backtracking: identify disjunction of equalities between shared variables

entailed by Ti ∪ φi ; make case split by adding some of these

equalities to φ1,φ2. Repeat as long as possible.
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Implementation of propagation

Guessing variant

Guess a maximal set of literals containing the shared variables V

(arrangement: α(V ,E ) = (
∧

(u,v)∈E u ≈ v ∧
∧

(u,v)6∈E u 6≈ v), where

E equivalence relation); check it for Ti ∪ φi consistency.

On the blackboard: Example 10.5 and 10.7 pages 272, 273

Example 10.6 and 10.9 pages 272, 275

from the book “The Calculus of Computation” by A. Bradley and Z. Manna

Advantage: Whenever constraints are represented as Boolean

combinations of atoms, one may combine heuristics of SMT solvers

with specific features of the theories to be combined to produce the

right arrangement efficiently.
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Implementation of propagation

Backtracking variant

Identify disjunction of equalities between shared variables entailed by

Ti ∪ φi ; make case split by adding some of these equalities to φ1,φ2.

Repeat as long as possible.

On the blackboard: Example 10.14, page 280-281, and Example 10.13, page 279,

from the book “The Calculus of Computation” by A. Bradley and Z. Manna

Advantages:

- it works on the non-disjoint case as well

- can be made deterministic for combinations of convex theories

T convex iff whenever T |=
∧n

i=1 Ai →
∨m

j=1 Bj

there exists j s.t. T |=
∧n

i=1 Ai → Bj
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