Decision Procedures in Verification

Combinations of decision procedures (4) 4.02.2013

Viorica Sofronie-Stokkermans

e-mail: sofronie@uni-koblenz.de

Until now:

Logical Theories: generalities

- Theory of Uninterpreted Function Symbols
- Decision procedures for numeric domains

Difference logic

Linear arithmetic: Fourier-Motzkin

Combinations of decision procedures

Definitions

The Nelson/Oppen Procedure

DPLL(T)

A theory of arrays

Satisfiability of formulae with quantifiers

In many applications we are interested in testing the satisfiability of formulae containing (universally quantified) variables.

Examples

- check satisfiability of formulae in the Bernays-Schönfinkel class
- check whether a set of (universally quantified) Horn clauses entails a ground clause
- check whether a property is consequence of a set of axioms

Example 1: $f: \mathbb{Z} \to \mathbb{Z}$ is monotonely increasing and $g: \mathbb{Z} \to \mathbb{Z}$ is defined by g(x) = f(x + x) then g is also monotonely increasing

Example 2: If array a is increasingly sorted, and x is inserted before the first position i with a[i] > x then the array remains increasingly sorted.

A theory of arrays

We consider the theory of arrays in a many-sorted setting.

Syntax:

- Sorts: Elem (elements), Array (arrays) and Index (indices, here integers).
- Function symbols: read, write.

$$a(read) = Array \times Index \rightarrow Element$$

 $a(write) = Array \times Index \times Element \rightarrow Array$

We consider the theory of arrays in a many-sorted setting.

Theory of arrays \mathcal{T}_{arrays} :

- \mathcal{T}_i (theory of indices): Presburger arithmetic
- \mathcal{T}_e (theory of elements): arbitrary
- Axioms for read, write

```
read(write(a, i, e), i) \approx e
j \not\approx i \lor read(write(a, i, e), j) = read(a, j).
```

We consider the theory of arrays in a many-sorted setting.

Theory of arrays \mathcal{T}_{arrays} :

- \mathcal{T}_i (theory of indices): Presburger arithmetic
- \mathcal{T}_e (theory of elements): arbitrary
- Axioms for read, write

$$read(write(a, i, e), i) \approx e$$
 $j \not\approx i \lor read(write(a, i, e), j) = read(a, j).$

Fact: Undecidable in general.

Goal: Identify a fragment of the theory of arrays which is decidable.

A decidable fragment

• Index guard a positive Boolean combination of atoms of the form $t \le u$ or t = u where t and u are either a variable or a ground term of sort Index

Example: $(x \le 3 \lor x \approx y) \land y \le z$ is an index guard $x \le c - 1$ (where c is a constant) is an index guard Example: $x + 1 \le y$, $x + 3 \le y - 1$, $x + x \le 2$ are not index guards.

Array property formula [Bradley, Manna, Sipma'06]

$$(\forall i)(\varphi_I(i) \rightarrow \varphi_V(i))$$
, where:

 φ_I : index guard

 φ_V : formula in which any universally quantified i occurs in a direct array read; no nestings

Example: $c \le x \le y \le d \to a(x) \le a(y)$ is an array property formula Example: $x < y \to a(x) < a(y)$ is not an array property formula

Decision Procedure

(Rules should be read from top to bottom)

Step 1: Put F in NNF.

Step 2: Apply the following rule exhaustively to remove writes:

$$\frac{F[\textit{write}(a,i,v)]}{F[a'] \land a'[i] = v \land (\forall j.j \neq i \rightarrow a[j] = a'[j])} \quad \text{for fresh } a' \text{ (write)}$$

Given a formula F containing an occurrence of a write term write(a, i, v), we can substitute every occurrence of write(a, i, v) with a fresh variable a' and explain the relationship between a' and a.

Decision Procedure

Step 3 Apply the following rule exhaustively to remove existential quantification:

$$\frac{F[\exists i.G[i]]}{F[G[j]]} \text{ for fresh } j \text{ (exists)}$$

Existential quantification can arise during Step 1 if the given formula contains a negated array property.

Decision Procedure

Steps 4-6 accomplish the reduction of universal quantification to finite conjunction.

The main idea is to select a set of symbolic index terms on which to instantiate all universal quantifiers.

Step 4 From the output F3 of Step 3, construct the index set \mathcal{I} :

```
 \mathcal{I} = \{\lambda\} \cup \\ \{t \mid \cdot [t] \in F3 \text{ such that } t \text{ is not a universally quantified variable} \} \cup \\ \{t \mid t \text{ occurs as a ground term in the parsing of index guards} \}
```

This index set is the finite set of indices that need to be examined. It includes all ground terms t that occur in some read(a, t) anywhere in F and all ground terms t that are compared to a universally quantified variable in some index guard.

 λ is a fresh constant that represents all other index positions that are not explicitly in \mathcal{I} .

Step 5 Apply the following rule exhaustively to remove universal quantification:

$$\frac{H[\forall \overline{i}.F[i] \to G[i]]}{H\left[\bigwedge_{\overline{i} \in \mathcal{I}^n} (F[\overline{i}] \to G[\overline{i}])\right]} \quad \text{(for all)}$$

where n is the size of the list of quantified variables \bar{i} .

This is the key step.

It replaces universal quantification with finite conjunction over the index set. The notation $\bar{i} \in \mathcal{I}^n$ means that the variables \bar{i} range over all n-tuples of terms in \mathcal{I} .

Step 6: From the output F5 of Step 5, construct

F6:
$$F5 \land \bigwedge_{i \in \mathcal{I} \setminus \{\lambda\}} \lambda \neq i$$

The new conjuncts assert that the variable λ introduced in Step 4 is unique: it does not equal any other index mentioned in F5.

Step 7: Decide the TA-satisfiability of F6 using the decision procedure for the quantifier free fragment.

Consider the array property formula

$$F: write(a, l, v)[k] = b[k] \land b[k] \neq v \land a[k] = v \land (\forall i.i \neq l \rightarrow a[i] = b[i])$$

It contains one array property,

$$\forall i.i \neq I \rightarrow a[i] = b[i]$$

index guard: $i \neq l \equiv (i \leq l - 1 \lor i \geq l + 1)$ value constraint: a[i] = b[i]

Step 1: The formula is already in NNF.

Step 2: We rewrite F as:

F2:
$$a'[k] = b[k] \land b[k] \neq v \land a[k] = v \land (\forall i.i \neq l \rightarrow a[i] = b[i])$$

 $\land a'[l] = v \land (\forall j.j \neq l \rightarrow a[j] = a'[j]).$

Consider the array property formula

$$F: write(a, l, v)[k] = b[k] \land b[k] \neq v \land a[k] = v \land (\forall i.i \neq l \rightarrow a[i] = b[i])$$

Step 2: We rewrite F as:

F2:
$$a'[k] = b[k] \land b[k] \neq v \land a[k] = v \land (\forall i.i \neq l \rightarrow a[i] = b[i])$$

 $\land a'[l] = v \land (\forall j.j \neq l \rightarrow a[j] = a'[j]).$

Step 3: F2 does not contain any existential quantifiers \mapsto F3 = F2.

Step 4: The index set is

$$\mathcal{I} = \{\lambda\} \cup \{k\} \cup \{l, l-1, l+1\} = \{\lambda, k, l, l-1, l+1\}$$

Consider the array property formula

F: write(a, I, v)[k] = b[k]
$$\land$$
 b[k] \neq v \land a[k] = v \land ($\forall i.i \neq I \rightarrow a[i] = b[i]$)
Step 3:

F3:
$$a'[k] = b[k] \land b[k] \neq v \land a[k] = v \land (\forall i.i \neq l \rightarrow a[i] = b[i])$$

 $\land a'[l] = v \land (\forall j.j \neq l \rightarrow a[j] = a'[j]).$

Step 4:
$$\mathcal{I} = \{\lambda\} \cup \{k\} \cup \{l, l-1, l+1\} = \{\lambda, k, l, l-1, l+1\}$$

Step 5: we replace universal quantification as follows:

F5:
$$a'[k] = b[k] \land b[k] \neq v \land a[k] = v \land \bigwedge_{i \in \mathcal{I}} (i \neq l \rightarrow a[i] = b[i])$$

 $\land a'[l] = v \land \bigwedge_{i \in \mathcal{I}} (j \neq l \rightarrow a[j] = a'[j]).$

Consider the array property formula

$$F: write(a, l, v)[k] = b[k] \land b[k] \neq v \land a[k] = v \land (\forall i.i \neq l \rightarrow a[i] = b[i])$$

$$\mathcal{I} = \{\lambda\} \cup \{k\} \cup \{l, l-1, l+1\} = \{\lambda, k, l, l-1, l+1\}$$

Step 5 (continued) Expanding produces:

F5':
$$a'[k] = b[k] \land b[k] \neq v \land a[k] = v \land (\lambda \neq l \rightarrow a[\lambda] = b[\lambda])$$

$$\land (k \neq l \rightarrow a[k] = b[k]) \land (l \neq l \rightarrow a[l] = b[l]) \land (l \neq l \pm 1 \rightarrow a[l \pm 1] = b[l \pm 1])$$

$$\land a'[l] = v \land (\lambda \neq l \rightarrow a[\lambda] = a'[\lambda]) \land (k \neq l \rightarrow a[k] = a'[k])$$

$$\land (l \neq l \rightarrow a[l] = a'[l]) \land (l \neq l \pm 1 \rightarrow a[l \pm 1] = a'[l \pm 1]).$$

Consider the array property formula

$$F: write(a, l, v)[k] = b[k] \land b[k] \neq v \land a[k] = v \land (\forall i.i \neq l \rightarrow a[i] = b[i])$$

$$\mathcal{I} = \{\lambda\} \cup \{k\} \cup \{l, l-1, l+1\} = \{\lambda, k, l, l-1, l+1\}$$

Step 5 (continued): Simplifying produces

F''5:
$$a'[k] = b[k] \land b[k] \neq v \land a[k] = v \land (\lambda \neq l \to a[\lambda] = b[\lambda])$$

 $\land (k \neq l \to a[k] = b[k]) \land a[l+1] = b[l+1] \land a[l-1] = b[l-1]$
 $\land a'[l] = v \land (\lambda \neq l \to a[\lambda] = a'[\lambda])$
 $\land (k \neq l \to a[k] = a'[k]) \land a[l-1] = a'[l-1] \land a[l+1] = a'[l+1].$

Consider the array property formula

$$F: write(a, l, v)[k] = b[k] \land b[k] \neq v \land a[k] = v \land (\forall i.i \neq l \rightarrow a[i] = b[i])$$

Step 6 distinguishes λ from other members of I:

F6:
$$a'[k] = b[k] \wedge b[k] \neq v \wedge a[k] = v \wedge (\lambda \neq l \rightarrow a[\lambda] = b[\lambda])$$
$$\wedge (k \neq l \rightarrow a[k] = b[k]) \wedge a[l+1] = b[l+1] \wedge a[l-1] = b[l-1]$$
$$\wedge a'[l] = v \wedge (\lambda \neq l \rightarrow a[\lambda] = a'[\lambda])$$
$$\wedge (k \neq l \rightarrow a[k] = a'[k]) \wedge a[l+1] = a'[l+1] \wedge a[l-1] = a'[l-1]$$
$$\wedge \lambda \neq k \wedge \lambda \neq l \wedge \lambda \neq l-1 \wedge \lambda \neq l+1.$$

Consider the array property formula

$$F: write(a, l, v)[k] = b[k] \land b[k] \neq v \land a[k] = v \land (\forall i.i \neq l \rightarrow a[i] = b[i])$$

Step 6 Simplifying, we have

$$F'6: \quad a'[k] = b[k] \land b[k] \neq v \land a[k] = v \land a[\lambda] = b[\lambda]$$

$$\land (k \neq l \rightarrow a[k] = b[k]) \land a[l+1] = b[l+1] \land a[l-1] = b[l-1]$$

$$\land a'[l] = v \land a[\lambda] = a'[\lambda]$$

$$\land (k \neq l \rightarrow a[k] = a'[k]) \land a[l+1] = a'[l+1] \land a[l-1] = a'[l-1]$$

$$\land \lambda \neq k \land \lambda \neq l \land \lambda \neq l+1 \land \lambda \neq l-1.$$

There are two cases to consider.

- (1) If k=I, then a'[I]=v and a'[k]=b[k] imply b[k]=v, yet $b[k]\neq v$.
- (2) If $k \neq l$, then a[k] = v and a[k] = b[k] imply b[k] = v, but again $b[k] \neq v$.

Hence, F'6 is TA-unsatisfiable, indicating that F is TA-unsatisfiable.

Theorem (Soundness and Completeness)

Consider a formula F from the array property fragment. The output F6 of Step 6 is T_{arrays} -equisatisfiable to F.

Proof

(Soundness) Step 1-6 preserve satisfiability

(Fi is a logical consequence of Fi-1).

Theorem (Soundness and Completeness)

Consider a formula F from the array property fragment. The output F6 of Step 6 is T_{arrays} -equisatisfiable to F.

Proof (Completeness)

Step 6: From the output F5 of Step 5, construct

F6:
$$F5 \land \bigwedge_{i \in \mathcal{I} \setminus \{\lambda\}} \lambda \neq i$$

Assume that F6 is satisfiabile. Clearly F5 has a model.

Theorem (Soundness and Completeness)

Consider a formula F from the array property fragment. The output F6 of Step 6 is T_{arrays} -equisatisfiable to F.

Proof (Completeness)

Step 5 Apply the following rule exhaustively to remove universal quantification:

$$\frac{H[\forall \overline{i}.F[i] \to G[i]]}{H\left[\bigwedge_{\overline{i} \in \mathcal{I}^n} (F[\overline{i}] \to G[\overline{i}])\right]}$$
 (forall)

Assume that F5 is satisfiabile. Let $\mathcal{A} = (\mathbb{Z}, \mathsf{Elem}, \{a_A\}_{a \in Arrays}, ...)$ be a model for F5. Construct a model \mathcal{B} for F4 as follows.

For $x \in \mathbb{Z}$: I(x) (u(x)) closest left (right) neighbor of x in \mathcal{I} .

$$a_{\mathcal{B}}(x) = \begin{cases} a_{\mathcal{A}}(I(x)) & \text{if } x - I(x) \le u(x) - x \text{ or } u(x) = \infty \\ a_{\mathcal{A}}(u(x)) & \text{if } x - I(x) > u(x) - x \text{ or } I(x) = -\infty \end{cases}$$

Theorem (Soundness and Completeness)

Consider a formula F from the array property fragment. The output F6 of Step 6 is T_{arrays} -equisatisfiable to F.

Proof (Completeness)

Step 3 Apply the following rule exhaustively to remove existential quantification:

$$\frac{F[\exists i.G[i]]}{F[G[j]]} \text{ for fresh } j \text{ (exists)}$$

If F3 has model then F2 has model

Theorem (Soundness and Completeness)

Consider a formula F from the array property fragment. The output F6 of Step 6 is T_{arrays} -equisatisfiable to F.

Proof (Completeness)

Step 2: Apply the following rule exhaustively to remove writes:

$$\frac{F[\textit{write}(a,i,v)]}{F[a'] \land a'[i] = v \land (\forall j.j \neq i \rightarrow a[j] = a'[j])}$$
for fresh a' (write)

Given a formula F containing an occurrence of a write term write(a, i, v), we can substitute every occurrence of write(a, i, v) with a fresh variable a' and explan the relationship between a' and a.

If F2 has a model then F1 has a model.

Step 1: Put F in NNF: NNF F1 is equivalent to F.

Theorem (Complexity) Suppose $(T_{index} \cup T_{elem})$ -satisfiability is in NP. For sub-fragments of the array property fragment in which formulae have bounded-size blocks of quantifiers, T_{arrays} -satisfiability is NP-complete.

Proof NP-hardness is clear.

That the problem is in NP follows easily from the procedure: instantiating a block of n universal quantifiers quantifying subformula G over index set I produces $|I| \cdot n$ new subformulae, each of length polynomial in the length of G. Hence, the output of Step 6 is of length only a polynomial factor greater than the input to the procedure for fixed n.

Program verification

Program Verification

```
-1 \le i < |a| \land
partitioned(a, 0, i, i + 1, |a| - 1) \land
sorted(a, i, |a| - 1)
```

```
-1 \leq i < |a| \land 0 \leq j \leq i \land
\mathsf{partitioned}(a,0,i,i+1,|a|-1) \land
\mathsf{sorted}(a,i,|a|-1)
\mathsf{partitioned}(a,0,j-1,j,j) \quad C_2
```

```
Example: Does BubbleSort return a sorted array? 

int [] BubbleSort(int[] a) {
    int i, j, t;
    for (i := |a| - 1; i > 0; i := i - 1) {
        for (j := 0; j < i; j := j + 1) {
        if (a[j] > a[j + 1])\{t := a[j];
        a[j] := a[j + 1];
        a[j + 1] := t\};
} return a}
```

Generate verification conditions and prove that they are valid Predicates:

- sorted(a, l, u): $\forall i, j (l \le i \le j \le u \rightarrow a[i] \le a[j])$
- partitioned(a, l_1 , u_1 , l_2 , u_2): $\forall i, j (l_1 \le i \le u_1 \le l_2 \le j \le u_2 \rightarrow a[i] \le a[j])$

Program Verification

```
-1 \le i < |a| \land
partitioned(a, 0, i, i + 1, |a| - 1) \land
sorted(a, i, |a| - 1)
```

```
-1 \leq i < |a| \land 0 \leq j \leq i \land

partitioned(a, 0, i, i+1, |a|-1) \land

sorted(a, i, |a|-1)

partitioned(a, 0, j-1, j, j) C_2
```

```
Example: Does BubbleSort return a sorted array?  \text{int } [] \text{ BubbleSort(int[] } a) \ \{ \\ \text{int } i, j, t; \\ \text{for } (i := |a| - 1; i > 0; i := i - 1) \ \{ \\ \text{for } (j := 0; j < i; j := j + 1) \ \{ \\ \text{if } (a[j] > a[j + 1]) \{ t := a[j]; \\ a[j] := a[j + 1]; \\ a[j + 1] := t \}; \\ \} \} \text{ return } a \}
```

Generate verification conditions and prove that they are valid Predicates:

- sorted(a, I, u): $\forall i, j (1 \le i \le j \le u \rightarrow a[i] \le a[j])$
- partitioned(a, l_1 , u_1 , l_2 , u_2): $\forall i, j (l_1 \le i \le u_1 \le l_2 \le j \le u_2 \rightarrow a[i] \le a[j]$)

To prove: $C_2(a) \wedge \mathsf{Update}(a, a') \rightarrow C_2(a')$

Another Situation

Insertion of an element c in a sorted array a of length n

```
for (i := 1; i \le n; i := i + 1) { if a[i] \ge c \{ n := n + 1 \} for (j := n; j > i; j := j - 1) \{ a[i] := a[i - 1] \} a[i] := c; return a } a[n + 1] := c; return a
```

Task:

If the array was sorted before insertion it is sorted also after insertion.

$$\mathsf{Sorted}(a, n) \land \mathsf{Update}(a, n, a', n') \land \neg \mathsf{Sorted}(a', n') \models_{\mathcal{T}} \bot ?$$

Another Situation

Task:

If the array was sorted before insertion it is sorted also after insertion.

$$\mathsf{Sorted}(a, n) \land \mathsf{Update}(a, n, a', n') \land \neg \mathsf{Sorted}(a', n') \models_{\mathcal{T}} \bot ?$$

Sorted(a, n)
$$\forall i, j (1 \leq i \leq j \leq n \rightarrow a[i] \leq a[j])$$

$$\forall i ((1 \leq i \leq n \land a[i] < c) \rightarrow a'[i] = a[i])$$

$$\forall i ((c \leq a(1) \rightarrow a'[1] := c)$$

$$\forall i ((a[n] < c \rightarrow a'[n+1] := c)$$

$$\forall i ((1 \leq i-1 \leq i \leq n \land a[i-1] < c \land a[i] \geq c) \rightarrow (a'[i] = c)$$

$$\forall i ((1 \leq i-1 \leq i \leq n \land a[i-1] \geq c \land a[i] \geq c \rightarrow a'[i] := a[i-1])$$

$$n' := n+1$$

$$\neg \mathsf{Sorted}(a', n') \qquad \exists k, l (1 \leq k \leq l \leq n' \land a[k] > a[l])$$

Beyond the array property fragment

Extension: New arrays defined by case distinction – Def(f')

$$\forall \overline{x}(\phi_i(\overline{x}) \to f'(\overline{x}) = s_i(\overline{x})) \qquad i \in I, \text{ where } \phi_i(\overline{x}) \land \phi_j(\overline{x}) \models_{\mathcal{T}_0} \bot \text{ for } i \neq j(1)$$

$$\forall \overline{x}(\phi_i(\overline{x}) \to t_i(\overline{x}) \leq f'(\overline{x}) \leq s_i(\overline{x})) \qquad i \in I, \text{ where } \phi_i(\overline{x}) \land \phi_j(\overline{x}) \models_{\mathcal{T}_0} \bot \text{ for } i \neq j(2)$$

where s_i , t_i are terms over the signature Σ such that $\mathcal{T}_0 \models \forall \overline{x} (\phi_i(\overline{x}) \rightarrow t_i(\overline{x}) \leq s_i(\overline{x}))$ for all $i \in I$.

 $\mathcal{T}_0 \subseteq \mathcal{T}_0 \land \mathsf{Def}(f')$ has the property that for every set G of ground clauses in which there are no nested applications of f':

$$\mathcal{T}_0 \wedge \mathsf{Def}(f') \wedge G \models \perp \quad \mathsf{iff} \quad \mathcal{T}_0 \wedge \mathsf{Def}(f')[G] \wedge G$$

(sufficient to use instances of axioms in Def(f') which are relevant for G)

• Some of the syntactic restrictions of the array property fragment can be lifted

Pointer Structures

[McPeak, Necula 2005]

- pointer sort p, scalar sort s; pointer fields $(p \rightarrow p)$; scalar fields $(p \rightarrow s)$;
- axioms: $\forall p \ \mathcal{E} \lor \mathcal{C}$; \mathcal{E} contains disjunctions of pointer equalities \mathcal{C} contains scalar constraints

Assumption: If $f_1(f_2(...f_n(p)))$ occurs in axiom, the axiom also contains: $p=\text{null} \lor f_n(p)=\text{null} \lor \cdots \lor f_2(...f_n(p)))=\text{null}$

 $\forall p \ (p \neq \text{null} \land p.\text{next} \neq \text{null} \rightarrow p.\text{next.prev} = p)$

 $\forall p \ (p \neq \text{null} \land p.\text{prev} \neq \text{null} \rightarrow p.\text{prev.next} = p)$

 $\forall p \ (p \neq \text{null} \land p.\text{next} \neq \text{null} \rightarrow p.\text{info} \leq p.\text{next.info})$

Pointer Structures

[McPeak, Necula 2005]

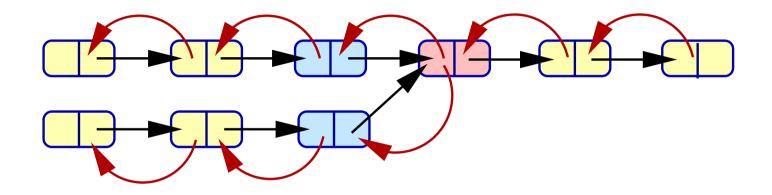
- pointer sort p, scalar sort s; pointer fields $(p \rightarrow p)$; scalar fields $(p \rightarrow s)$;
- axioms: $\forall p \ \mathcal{E} \lor \mathcal{C}$; \mathcal{E} contains disjunctions of pointer equalities \mathcal{C} contains scalar constraints

```
Assumption: If f_1(f_2(...f_n(p))) occurs in axiom, the axiom also contains: p=\text{null} \lor f_n(p)=\text{null} \lor \cdots \lor f_2(...f_n(p)))=\text{null}
```

Theorem. K set of clauses in the fragment above. Then for every set G of ground clauses, $(K \cup G) \cup \mathcal{T}_s \models \bot$ iff $K^{[G]} \cup \mathcal{T}_s \models \bot$

where $K^{[G]}$ is the set of instances of K in which the variables are replaced by subterms in G.

Example: A theory of doubly-linked lists

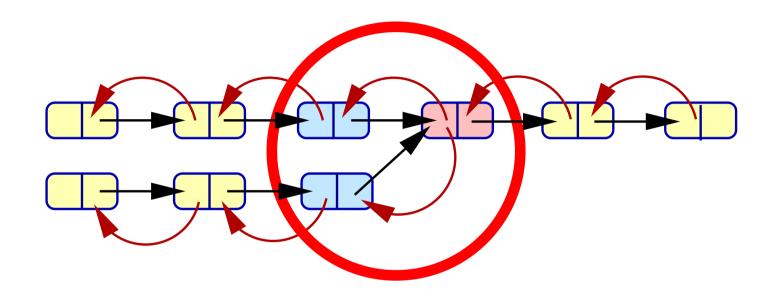


$$\forall p \ (p \neq \text{null} \land p.\text{next} \neq \text{null} \rightarrow p.\text{next.prev} = p)$$

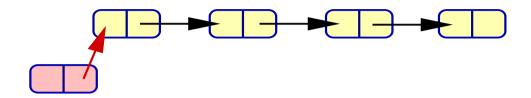
 $\forall p \ (p \neq \text{null} \land p.\text{prev} \neq \text{null} \rightarrow p.\text{prev.next} = p)$

 $\land \ \ c \neq \mathsf{null} \ \land \ c.\mathsf{next} \neq \mathsf{null} \ \land \ d \neq \mathsf{null} \ \land \ d.\mathsf{next} \neq \mathsf{null} \ \land \ c.\mathsf{next} = d.\mathsf{next} \ \land \ c \neq d \quad \models \quad \bot$

Example: A theory of doubly-linked lists



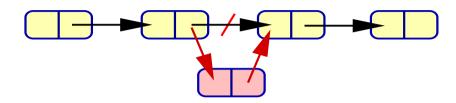
```
(c \neq \text{null} \land c.\text{next} \neq \text{null} \rightarrow c.\text{next.prev} = c) (c.\text{next} \neq \text{null} \land c.\text{next.next} \neq \text{null} \rightarrow c.\text{next.next.prev} = c.\text{next}) (d \neq \text{null} \land d.\text{next} \neq \text{null} \rightarrow d.\text{next.next} \neq \text{null} \rightarrow d.\text{next.next.prev} = d.\text{next}) \land c \neq \text{null} \land c.\text{next} \neq \text{null} \land d.\text{next} \neq \text{null} \land c.\text{next} \neq d.\text{next} \land c \neq d \models \bot
```



Initially list is sorted: $p.\text{next} \neq \text{null} \rightarrow p.\text{prio} \geq p.\text{next.prio}$

```
c.prio = x, c.next = null for all p \neq c do if p.\text{prio} \leq x then if \text{First}(p) then c.\text{next}' = p, \text{First}'(c), \neg \text{First}'(p) endif; p.\text{next}' = p.\text{next} p.\text{prio} > x then case p.\text{next} = \text{null} then p.\text{next}' := c, c.\text{next}' = \text{null} p.\text{next} \neq \text{null} \land p.\text{next.prio} > x then p.\text{next}' = p.\text{next} p.\text{next} \neq \text{null} \land p.\text{next.prio} \leq x then p.\text{next}' = c, c.\text{next}' = p.\text{next}
```

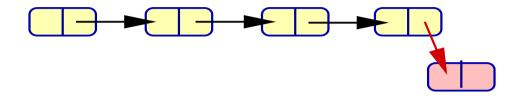
Verification task: After insertion list remains sorted



Initially list is sorted: $p.\mathsf{next} \neq \mathsf{null} \rightarrow p.\mathsf{prio} \geq p.\mathsf{next.prio}$

```
c.prio = x, c.next = null for all p \neq c do if p.prio \leq x then if First(p) then c.next' = p, First'(c), \negFirst'(p) endif; p.next' = p.next p.prio p. then case p.next = null then p.next' := p.next' = null p.next' = p.next p.next
```

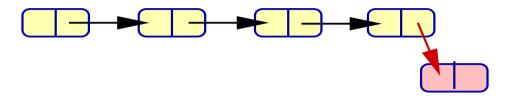
Verification task: After insertion list remains sorted



Initially list is sorted: $p.\text{next} \neq \text{null} \rightarrow p.\text{prio} \geq p.\text{next.prio}$

```
c.prio = x, c.next = null for all p \neq c do if p.prio \leq x then if First(p) then c.next' = p, First'(c), \neg First'(p) endif; p.next' = p.next p.prio > x then case p.next = null then p.next' := c, c.next' = null p.next \neq null \land p.next.prio > x then p.next' = p.next p.next p.next p.next p.next.prio p.next.prio p.next' = p.next
```

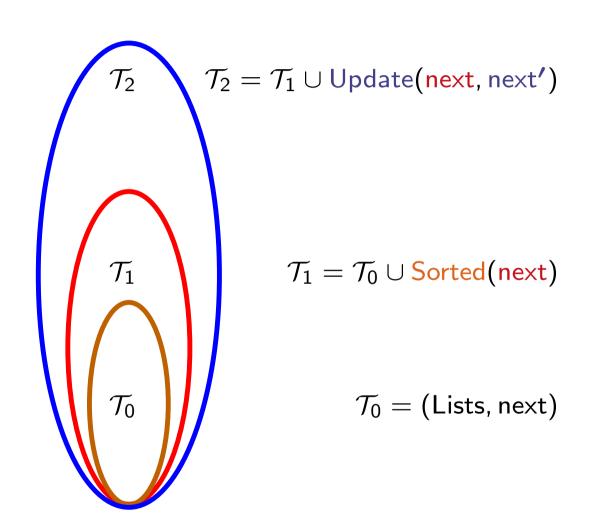
Verification task: After insertion list remains sorted



Initially list is sorted: $\forall p(p.\text{next} \neq \text{null} \rightarrow p.\text{prio} \geq p.\text{next.prio})$

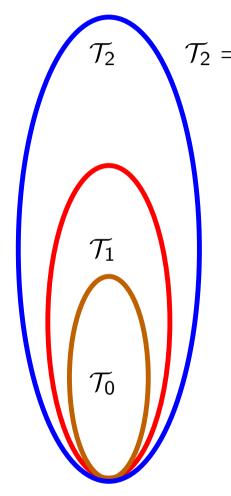
```
\forall p(p \neq \text{null} \land p \neq c \land \text{prio}(p) \leq x \land \text{First}(p) \rightarrow \text{next'}(c) = p \land \text{First'}(c))
\forall p(p \neq \text{null} \land p \neq c \land \text{prio}(p) \leq x \land \text{First}(p) \rightarrow \text{next'}(p) = \text{next}(p) \land \neg \text{First'}(p))
\forall p(p \neq \text{null} \land p \neq c \land \text{prio}(p) \leq x \land \neg \text{First}(p) \rightarrow \text{next'}(p) = \text{next}(p))
\forall p(p \neq \text{null} \land p \neq c \land \text{prio}(p) > x \land \text{next}(p) = \text{null} \rightarrow \text{next'}(p) = c
\forall p(p \neq \text{null} \land p \neq c \land \text{prio}(p) > x \land \text{next}(p) = \text{null} \rightarrow \text{next'}(c) = \text{null})
\forall p(p \neq \text{null} \land p \neq c \land \text{prio}(p) > x \land \text{next}(p) \neq \text{null} \land \text{prio}(\text{next}(p)) > x \rightarrow \text{next'}(p) = \text{next}(p))
\forall p(p \neq \text{null} \land p \neq c \land \text{prio}(p) > x \land \text{next}(p) \neq \text{null} \land \text{prio}(\text{next}(p)) > x \rightarrow \text{next'}(p) = \text{next}(p))
\forall p(p \neq \text{null} \land p \Rightarrow c \land \text{prio}(p) > x \land \text{next}(p) \neq \text{null} \land \text{prio}(\text{next}(p)) > x \rightarrow \text{next'}(p) = \text{next}(p))
\forall p(p \neq \text{null} \land p \Rightarrow c \land \text{prio}(p) > x \land \text{next}(p) \neq \text{null} \land \text{prio}(\text{next}(p)) > x \rightarrow \text{next'}(p) = \text{next}(p))
\forall p(p \neq \text{null} \land p \Rightarrow c \land \text{prio}(p) > x \land \text{next}(p) \neq \text{null} \land \text{prio}(\text{next}(p)) > x \rightarrow \text{next'}(p) = \text{next}(p))
\forall p(p \neq \text{null} \land p \Rightarrow c \land \text{prio}(p) > x \land \text{next}(p) \neq \text{null} \land \text{prio}(\text{next}(p)) > x \rightarrow \text{next'}(p) = \text{next}(p))
\forall p(p \neq \text{null} \land p \Rightarrow c \land \text{prio}(p) > x \land \text{next}(p) \neq \text{null} \land \text{prio}(\text{next}(p)) > x \rightarrow \text{next'}(p) = \text{next}(p)
```

To check: Sorted(next, prio) \land Update(next, next') \land p_0 .next' \neq null \land p_0 .prio $\not\geq p_0$.next'.prio $\models \bot$



To show:

$$\mathcal{T}_2 \cup \underline{\neg \mathsf{Sorted}(\mathsf{next'})} \models \bot$$



$$\mathcal{T}_2 = \mathcal{T}_1 \cup \left[\mathsf{Update}(\mathsf{next}, \mathsf{next'}) \right]$$

Instantiate:

Hierarchical reasoning:

$$\mathcal{T}_1 = \mathcal{T}_0 \cup \operatorname{\mathsf{Sorted}}(\operatorname{\mathsf{next}})$$

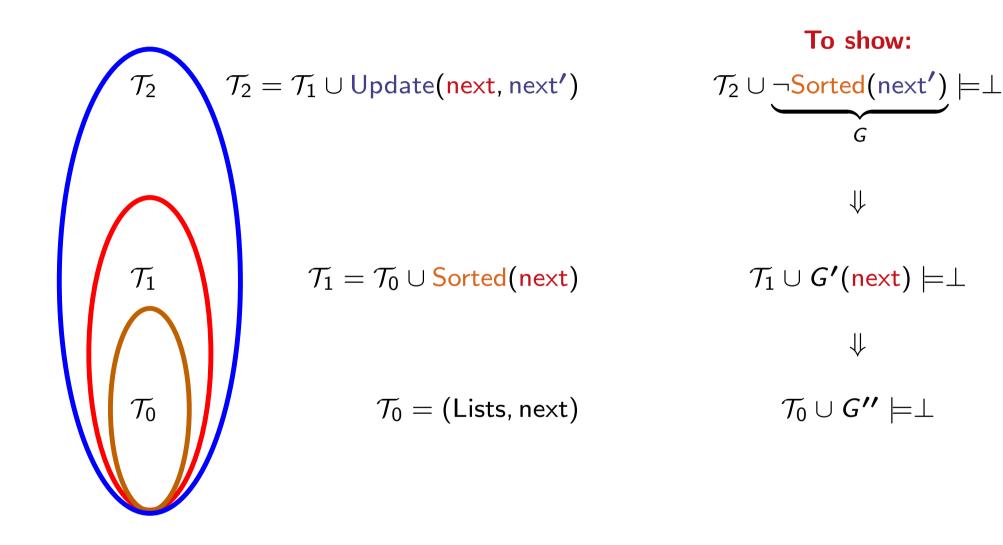
$$\mathcal{T}_0 = (Lists, next)$$

To show:

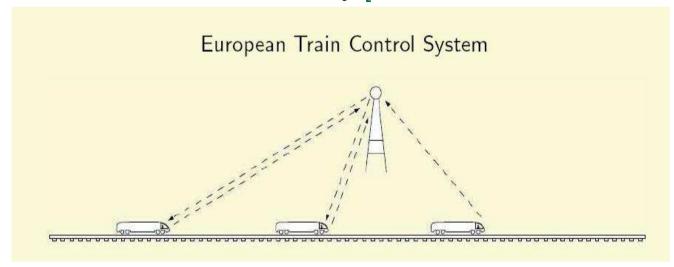
$$\mathcal{T}_2 \cup \neg \mathsf{Sorted}(\mathsf{next'}) \models \bot$$

$$\mathcal{T}_1 \cup \mathsf{Update}(\mathsf{next}, \mathsf{next'})[G] \cup G \models \bot$$

$$\mathcal{T}_1 \cup G'(\mathsf{next}) \models \bot$$



Simplified version of ETCS Case Study [Jacobs, VS'06, Faber, Jacobs, VS'07]



Number of trains:

Minimum and maximum speed of trains:

Minimum secure distance:

Time between updates:

Train positions before and after update:

$$n \ge 0$$

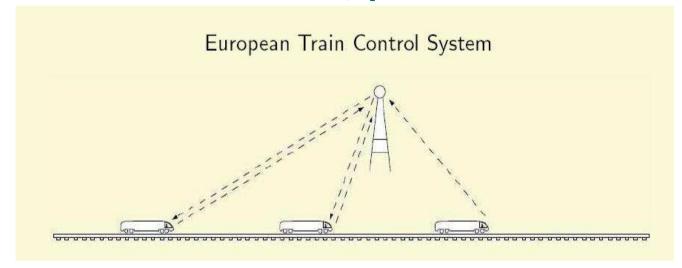
$$0 \leq \min < \max$$

$$I_{\text{alarm}} > 0$$

$$\Delta t > 0$$

$$pos(i), pos'(i)$$
 : $\mathbb{Z} \to \mathbb{R}$

Simplified version of ETCS Case Study [Jacobs, VS'06, Faber, Jacobs, VS'07]



Update(pos, pos'):
$$\forall i \ (i = 0 \rightarrow pos(i) + \Delta t*\min \leq pos'(i) \leq pos(i) + \Delta t*\max)$$

$$\bullet \ \forall i \ (0 < i < n \ \land \ pos(i-1) > 0 \ \land \ pos(i-1) - pos(i) \geq I_{\text{alarm}}$$

$$\to pos(i) + \Delta t*\min \leq pos'(i) \leq pos(i) + \Delta t*\max)$$

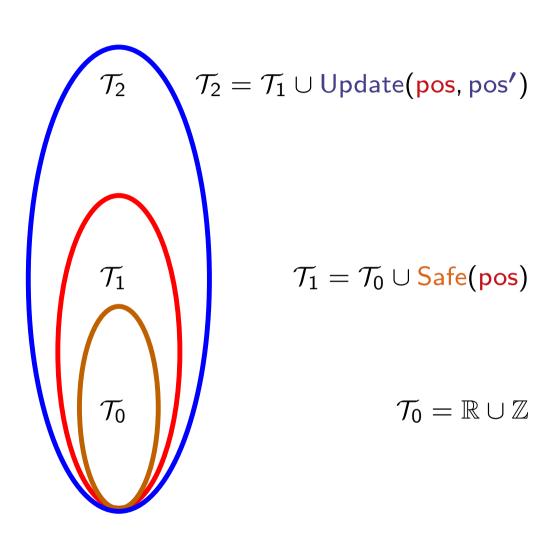
. . .

Safety property: No collisions $Safe(pos): \forall i, j(i < j \rightarrow pos(i) > pos(j))$

Inductive invariant: Safe(pos) \land Update(pos, pos') $\land \neg$ Safe(pos') $\models_{\mathcal{T}_S} \bot$

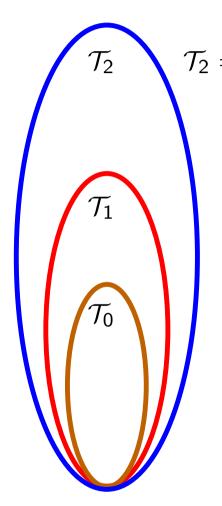
where \mathcal{T}_S is the extension of the (disjoint) combination $\mathbb{R} \cup \mathbb{Z}$ with two functions, pos, pos' : $\mathbb{Z} \to \mathbb{R}$

Our idea: Use chains of "instantiation" + reduction.



To show:

$$\mathcal{T}_2 \cup \underline{\neg \mathsf{Safe}(\mathsf{pos'})} \models \bot$$



$$\mathcal{T}_2 = \mathcal{T}_1 \cup \mathsf{Update}(\mathsf{pos},\mathsf{pos'})$$

$$\mathcal{T}_1 = \mathcal{T}_0 \cup \mathsf{Safe}(\mathsf{pos})$$

$$\mathcal{T}_0 = \mathbb{R} \cup \mathbb{Z}$$

To show:

$$\mathcal{T}_2 \cup \underline{\neg \mathsf{Safe}(\mathsf{pos'})} \models \bot$$
 G

$$\mathcal{T}_1 \cup G'(\mathsf{pos}) \models \perp$$
 $\downarrow \downarrow$

$$\mathcal{T}_0 \cup G'' \models \perp$$

$$\Phi(c, \overline{c}_{pos'}, \overline{d}_{pos}, n, I_{alarm}, min, max, \Delta t) \models \bot$$

Method 1: SAT checking/ Counterexample generation

Method 2: Quantifier elimination

relationships between parameters which guarantee safety

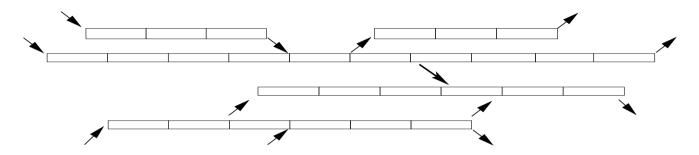
More complex ETCS Case studies

[Faber, Jacobs, VS, 2007]

- Take into account also:
 - Emergency messages
 - Durations
- Specification language: CSP-OZ-DC
 - Reduction to satisfiability in theories for which decision procedures exist
- Tool chain: [Faber, Ihlemann, Jacobs, VS]
 CSP-OZ-DC → Transition constr. → Decision procedures (H-PILoT)

Example 2: Parametric topology

• Complex track topologies [Faber, Ihlemann, Jacobs, VS, ongoing work]

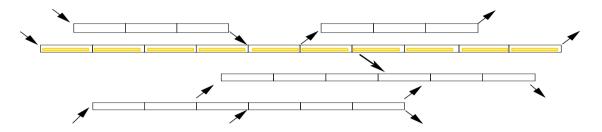


Assumptions:

- No cycles
- in-degree (out-degree) of associated graph at most 2.

Parametricity and modularity

• Complex track topologies [Faber, Ihlemann, Jacobs, VS, ongoing work]



Assumptions:

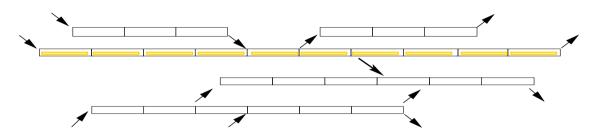
- No cycles
- in-degree (out-degree) of associated graph at most 2.

Approach:

- Decompose the system in trajectories (linear rail tracks; may overlap)
- Task 1: Prove safety for trajectories with incoming/outgoing trains
 - Conclude that for control rules in which trains have sufficient freedom (and if trains are assigned unique priorities) safety of all trajectories implies safety of the whole system
- Task 2: General constraints on parameters which guarantee safety

Parametricity and modularity

• Complex track topologies [Faber, Ihlemann, Jacobs, VS, ongoing work]



Assumptions:

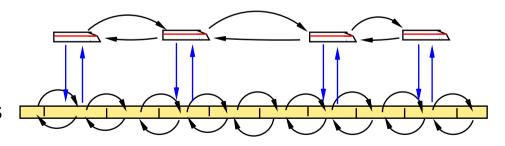
- No cycles
- in-degree (out-degree) of associated graph at most 2.

Data structures:

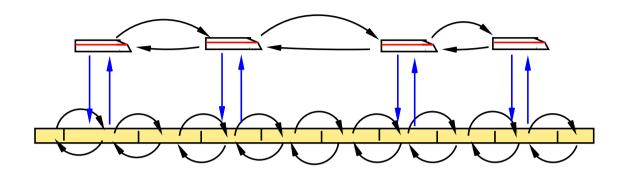
 p_1 : trains

• 2-sorted pointers

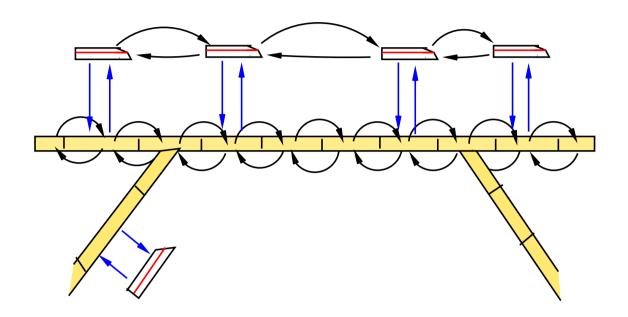
*p*₂: segments

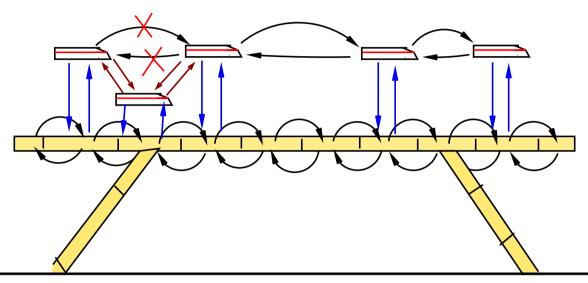


- scalar fields $(f:p_i \rightarrow \mathbb{R}, g:p_i \rightarrow \mathbb{Z})$
- updates efficient decision procedures (H-PiLoT)



```
Example 1: Speed Update pos(t) < length(segm(t)) - d \rightarrow 0 \le spd'(t) \le lmax(segm(t))pos(t) \ge length(segm(t)) - d \wedge alloc(next_s(segm(t))) = tid(t)\rightarrow 0 \le spd'(t) \le min(lmax(segm(t)), lmax(next_s(segm(t))))pos(t) \ge length(segm(t)) - d \wedge alloc(next_s(segm(t))) \ne tid(t)\rightarrow spd'(t) = max(spd(t) - decmax, 0)
```





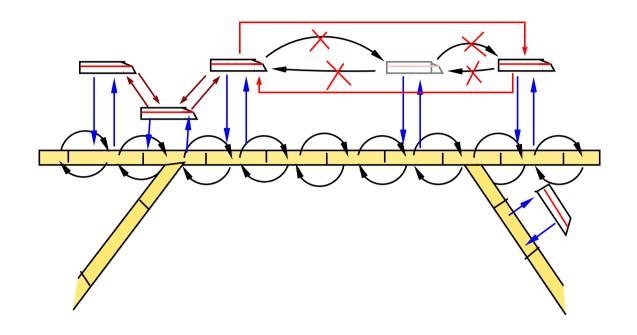
Example 2: Enter Update (also updates for segm', spd', pos', train')

Assume: $s_1 \neq \text{null}_s$, $t_1 \neq \text{null}_t$, $\text{train}(s) \neq t_1$, $\text{alloc}(s_1) = \text{idt}(t_1)$

 $t \neq t_1$, $ids(segm(t)) < ids(s_1)$, $next_t(t) = null_t$, $alloc(s_1) = tid(t_1) \rightarrow next'(t) = t_1 \land next'(t_1) = null_t$ $t \neq t_1$, $ids(segm(t)) < ids(s_1)$, $alloc(s_1) = tid(t_1)$, $next_t(t) \neq null_t$, $ids(segm(next_t(t))) \leq ids(s_1)$ $\rightarrow next'(t) = next_t(t)$

. . .

 $t \neq t_1$, $\mathsf{ids}(\mathsf{segm}(t)) \geq \mathsf{ids}(s_1) \to \mathsf{next}'(t) = \mathsf{next}_t(t)$



Safety property

Safety property we want to prove: no two trains ever occupy the same track segment:

$$(\mathsf{Safe}) := \forall t_1, t_2 \ \mathsf{segm}(t_1) = \mathsf{segm}(t2) \to t_1 = t_2$$

In order to prove that (Safe) is an invariant of the system, we need to find a suitable invariant (Inv(i)) for every control location i of the TCS, and prove:

$$(Inv(i)) \models (Safe)$$
 for all locations i

and that the invariants are preserved under all transitions of the system,

$$(Inv(i)) \land (Update) \models (Inv'(j))$$

whenever (Update) is a transition from location i to j .

Safety property

Need additional invariants.

- generate by hand [Faber, Ihlemann, Jacobs, VS, ongoing]
 use the capabilities of H-PILoT of generating counterexamples
- generate automatically [VS, work in progress]

Ground satisfiability problems for pointer data structures

the decision procedures presented before can be used without problems

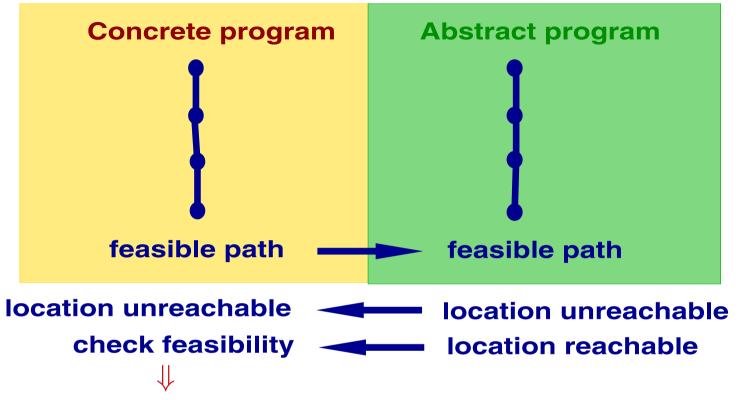
Other interesting topics

• Generate invariants

Other interesting topics

- Generate invariants
- Verification by abstraction/refinement

Abstraction-based Verification



conjunction of constraints: $\phi(1) \wedge Tr(1,2) \wedge \cdots \wedge Tr(n-1,n) \wedge \neg safe(n)$

- satisfiable: feasible path

Follow-up

• Seminar on Decision Procedures and Applications (SS 2013)

• Lecture "Formal Specification and Verification" (SS 2013)

• Forschungs Praktika in the area of decision procedures and applications

• BSc Theses and MSc Theses in the area of decision procedures for verification