Decision Procedures in Verification

Combinations of decision procedures (4)

4.02.2013

Viorica Sofronie-Stokkermans

e-mail: sofronie@uni-koblenz.de

Until now:

Logical Theories: generalities

e Theory of Uninterpreted Function Symbols

e Decision procedures for numeric domains
Difference logic
Linear arithmetic: Fourier-Motzkin

e Combinations of decision procedures
Definitions
The Nelson/Oppen Procedure
DPLL(T)

A theory of arrays

Satisfiability of formulae with quantifiers

In many applications we are interested in testing the satisfiability of formulae
containing (universally quantified) variables.

Examples
e check satisfiability of formulae in the Bernays-Schonfinkel class

e check whether a set of (universally quantified) Horn clauses
entails a ground clause

e check whether a property is consequence of a set of axioms

Example 1: f : Z — 7Z is monotonely increasing
and g : Z — Z is defined by g(x) = f(x + x)
then g is also monotonely increasing

Example 2: If array a is increasingly sorted, and
x is inserted before the first position i with a[i] > x
then the array remains increasingly sorted.

A theory of arrays

We consider the theory of arrays in a many-sorted setting.
Syntax:
e Sorts: Elem (elements), Array (arrays) and Index (indices, here integers).
e Function symbols: read, write.
a(read) = Array X Index — Element

a(write) = Array X Index x Element — Array

Theories of arrays

We consider the theory of arrays in a many-sorted setting.
Theory of arrays Tarrays:

e 7; (theory of indices): Presburger arithmetic

e 7. (theory of elements): arbitrary

e Axioms for read, write

read(write(a, i, €), 1)

&
®

Jj % iV read(write(a, i, €),J)

read(a, j).

Theories of arrays

We consider the theory of arrays in a many-sorted setting.
Theory of arrays Tarrays:

e 7; (theory of indices): Presburger arithmetic

e 7. (theory of elements): arbitrary

e Axioms for read, write

Q

read(write(a, i, €), 1) e

Jj % iV read(write(a, i, €),J)

read(a, j).

Fact: Undecidable in general.

Goal: Identify a fragment of the theory of arrays which is decidable.

A decidable fragment

e Index guard a positive Boolean combination of atoms of the form
t < uort=uwheret and u are either a variable or a ground term of
sort Index

Example: (x <3V x=y)Ay < zis an index guard
x < ¢ — 1 (where c is a constant) is an index guard

Example: x4+ 1<y, x4+3<y—1, x+x <2 are not index guards.

e Array property formula [Bradley,Manna,Sipma’06]
(Vi)(ei(i) = @v(i)), where:
;. index guard

wy: formula in which any universally quantified / occurs in a direct
array read; no nestings

Example: ¢ < x <y <d — a(x) < a(y) is an array property formula

Example: x <y — a(x) < a(y) is not an array property formula

Decision Procedure

(Rules should be read from top to bottom)

Step 1: Put F in NNF.

Step 2: Apply the following rule exhaustively to remove writes:

Flwrite(a, i, v)]

for fresh a’ (write)
Fla'l Aa'[il = v A (Vjj # i — alj] = a'[J])

Given a formula F containing an occurrence of a write term write(a, i, v),
we can substitute every occurrence of write(a, i, v) with a fresh variable a’
and explain the relationship between a’ and a.

Decision Procedure

Step 3 Apply the following rule exhaustively to remove existential

quantification:
F[3i.G]]]

FIGU]]

Existential quantification can arise during Step 1 if the given formula

for fresh j (exists)

contains a negated array property.

Decision Procedure

Steps 4-6 accomplish the reduction of universal quantification to finite

conjunction.

The main idea is to select a set of symbolic index terms on which to

instantiate all universal quantifiers.

10

Theories of arrays

Step 4 From the output F3 of Step 3, construct the index set Z:

= {\}U
{t | -[t] € F3 such that t is not a universally quantified variable}U

{t | t occurs as a ground term in the parsing of index guards}

This index set is the finite set of indices that need to be examined. It
includes all ground terms t that occur in some read(a, t) anywhere in F and
all ground terms t that are compared to a universally quantified variable in
some index guard.

A is a fresh constant that represents all other index positions that are not
explicitly in Z.

11

Theories of arrays

Step 5 Apply the following rule exhaustively to remove universal
quantification:

H[Vi.F[i] — G[i]]
H | Asezn (I = GID)]

(forall)

where n is the size of the list of quantified variables i.

This is the key step.

It replaces universal quantification with finite conjunction over the index
set. The notation i € Z" means that the variables i range over all n-tuples
of terms in Z.

12

Theories of arrays

Step 6: From the output F5 of Step 5, construct
F6: F5A N X#i

The new conjuncts assert that the variable A introduced in Step 4 is unique:
it does not equal any other index mentioned in F5.

Step 7: Decide the TA-satisfiability of F6 using the decision procedure for
the quantifier free fragment.

13

Example

Consider the array property formula
F : write(a, |, v)[k] = b[k] A b[k] # v A a[k] = v A (Vi.i # | — a[i] = bli])
It contains one array property,

Vi.i # | — a[i] = bJi]

index guard: i £ZI=(i<I—-1Vvi>/1+4+1) value constraint: a[i] = b[i]

Step 1: The formula is already in NNF.

Step 2: We rewrite F as:
F2 a’[k] = b[k] A b[k] # v A a[k] = v A (Vi.i # | — a[i] = b[i])
na'[ll = v A(Vjj# 1T — a[j] =a"[j])

14

Example

Consider the array property formula

F : write(a, I, v)[k] = b[k] A b[k] # v A alk] = v A (Vi.i # | — a[i] = bl[i])

Step 2: We rewrite F as:

F2: a'[k] = bIK] A b[k] # v Aa[k] = v A (Vii # | — ali] = b[i])
na'[ll = v A(Vjj# 1T — a[j] =a"[j])

Step 3: F2 does not contain any existential quantifiers — F3 = F2.

Step 4: The index set is

T={ui{ktu{l, I =1, 1+1}y={N\ k1,1 =1,1+1}

15

Example

Consider the array property formula
F : write(a, |, v)[k] = b[k] A b[k] # v A a[k] = v A (Vi.i # | — a[i] = bli])
Step 3:
F3: a’[k] = b[k] A b[k] # v A a[k] = v A (Vi.i # | — a[i] = bli])
nNa'[ll = v A(Vjj# 1 — alj] =a"[j]).

Step4: T={NYU{KkIU{/,I=1,1+1}y={\ Kk I [—1,1+1}

Step 5: we replace universal quantification as follows:

F5 - a'[k] = blk] A b[K] # v Aalk] = v A N\ (i # | — a[i] = bi])
=y A

na'lll=vna NG #1— alj] = a'[]).

€L

16

Example

Consider the array property formula

F : write(a, I, v)[k] = b[k] A b[k] # v A a[k] = v A (Vi.i # | — a[i] = b[i])

T={ui{ktu{l, I =1, 1+1}y={N\k I, —=1,1+1}

Step 5 (continued) Expanding produces:

F5' : a'[k] = b[k] A b[k] # v Aalk] = v A (X # | — a[A\] = b[A])
Ak # 1 — alk]l = b[K)A (I # 1 — a[l] = b)) A (I #1+£1— a[l £1] = b[l £ 1])
Na'[ll=vAN#T— a\]=a"[A\]) A (k# 1 — a[k] = a’[k])
ANI#T—alll=a"[DA#T+1 = a[l £1] = a'[l £1]).

17

Example

Consider the array property formula

F : write(a, I, v)[k] = b[k] A b[k] # v A a[k] = v A (Vi.i # | — a[i] = b[i])

T={ui{ktu{l, I =1, 1+1}y={N\k I, —=1,1+1}

Step 5 (continued): Simplifying produces

F'5 : a’[k] = b[k] A b[k] # v A alk] = v A (X # | — a[A] = b[A])
Ak # | — a[k] = b[k]) A a[l + 1] = b[I + 1] A a[l — 1] = b[I — 1]
na'[ll=vAN#I1— a\]=a"[\])
ANk #1—alkl=a"[kK)Aa[l —1]=a"[l —1]Aa[l+1] =a"[l +1].

18

Example

Consider the array property formula

F : write(a, I, v)[k] = b[k] A b[k] # v A a[k] = v A (Vi.i # | — a[i] = b[i])

Step 6 distinguishes A\ from other members of |I:

F6 : a'[k] = b[k] A b[k] # v A alk] = v A (X # 1 — a[A\] = b[A])
Ak # | — a[k] = b[k]) A a[l + 1] = b[I + 1] A a[l — 1] = b[I — 1]
na'[ll=vAN#1T— a\] =a"[\])

Ak #1—alkl=a"[K))Aa[l +1] =a[I +1] Aa[l — 1] = a’[l — 1]
MAKANZIANZT—1TAN#T+1.

19

Example

Consider the array property formula

F : write(a, I, v)[k] = b[k] A blk] # v A alk] = v A (Vi.i # | — a[i] = bl[i])

Step 6 Simplifying, we have
F'6 : a’'[k] = b[k] A b[k] # v A a[k] = v A a[A] = b[)]
Ak # 1 — alk] = b[k]) A a[l + 1] = b[I + 1] A a[l — 1] = b[I — 1]
na'[ll = v A a[A] = a’[\]
Ak #1—alkl=a"[K))Aa[l +1] =a'[l +1] Aa[l — 1] = a’[l — 1]
MAKANAIANZT+TIANET— 1.

There are two cases to consider.
(1) If k=1, then a’[/]=v and a’[k]=b[k] imply b[k]=v, yet b[k]#vV.
(2) If k£1, then alk]=v and a[k]=b[k] imply b[k]=v, but again b[k]#v.

Hence, F'6 is TA-unsatisfiable, indicating that F is TA-unsatisfiable.

20

Soundness and Completeness

Theorem (Soundness and Completeness)

Consider a formula F from the array property fragment . The output F6 of
Step 6 is Tarrays-equisatisfiable to F.

Proof
(Soundness) Step 1-6 preserve satisfiability

(Fi is a logical consequence of Fi—1).

21

Soundness and Completeness

Theorem (Soundness and Completeness)

Consider a formula F from the array property fragment . The output F6 of
Step 6 is Tarrays-equisatisfiable to F.

Proof (Completeness)

Step 6: From the output F5 of Step 5, construct

F6: F5An N\ X#i
ieZ\ {1}

Assume that F6 is satisfiabile. Clearly F5 has a model.

22

Soundness and Completeness

Theorem (Soundness and Completeness)

Consider a formula F from the array property fragment . The output F6 of
Step 6 is Tarrays-equisatisfiable to F.

Proof (Completeness)
Step 5 Apply the following rule exhaustively to remove universal quantification:
H[Vi.F[i] — G[i]]
H | Asezn(FII — GIM) |
Assume that F5 is satisfiabile. Let A = (Z, Elem, {aa}acArrays, --.) be a
model for F5. Construct a model B for F4 as follows.

(forall)

For x € Z: I(x) (u(x)) closest left (right) neighbor of x in Z.

ag(x) = { a4 (l(x)) if x —1(x) < u(x)—xoru(x)=o0
aa(u(x)) if x—1(x)> u(x) —xorl(x) =—oc0

23

Soundness and Completeness

Theorem (Soundness and Completeness)
Consider a formula F from the array property fragment . The output F6 of
Step 6 is Tarrays-equisatisfiable to F.

Proof (Completeness)

Step 3 Apply the following rule exhaustively to remove existential quantification:

F[3i.G[i]]
FIG[j]]

for fresh j (exists)

If F3 has model then F2 has model

24

Soundness and Completeness

Theorem (Soundness and Completeness)

Consider a formula F from the array property fragment . The output F6 of
Step 6 is Tarrays-equisatisfiable to F.

Proof (Completeness)
Step 2: Apply the following rule exhaustively to remove writes:

F[write(a, i, v)]
Fla'| Aa'[il = v A (Vi # i — alj] = a’[j])

for fresh a’ (write)

Given a formula F containing an occurrence of a write term write(a, i, v), we can
. /
substitute every occurrence of write(a, i, v) with a fresh variable a’ and explan the

relationship between a’ and a.

If F2 has a model then F1 has a model.
Step 1: Put F in NNF: NNF F1 is equivalent to F.

25

Theories of arrays

Theorem (Complexity) Suppose (Tindex U Telem)-satisfiability is in NP.
For sub-fragments of the array property fragment in which formulae have
bounded-size blocks of quantifiers, Tqays-satisfiability is NP-complete.

Proof NP-hardness is clear.

That the problem is in NP follows easily from the procedure: instantiating
a block of n universal quantifiers quantifying subformula G over index set /
produces |/| - n new subformulae, each of length polynomial in the length
of G. Hence, the output of Step 6 is of length only a polynomial factor
greater than the input to the procedure for fixed n.

26

Program verification

-

\—

Example: Does BUBBLESORT return

a sorted array?

int [| BUBBLESORT(int[] a) {
int 1, /, t;
for (i:=]a|—1;i >0;i:=i—1){
for(j:=0;j<i;j:=j+1){
it (alj] > alj + 1]){t := alj];

alj] := alj + 1

alj + 1] :=t};
}} return a}

27

Program Verification

—1 < i< |a|lA
partitioned(a, 0,7/, i + 1, |a]| — 1)A

sorted(a, i, |a| — 1)

—1<i<|a|ln0<j<IiAN
partitioned(a, 0, /,i + 1, |a]| — 1)A

sorted(a, i, |a| — 1)

partitioned(a, 0, j — 1, j, j) C2

-

\—

Example: Does BUBBLESORT return

a sorted array?

int [| BUBBLESORT(int[] a) {
int 1, J, t;
for (i == |a| —1;,i > 0;i:=i—1)A{
for (j:=0;j <i;j:i=j+1){
if (a[j] > a[j + 1]){t := a[j];

alj] = alj + 1]

al[j + 1] := t};
}} return a}

_J

Predicates:
e sorted(a, /, u):

e partitioned(a, 1, u1, b, up):

Generate verification conditions and prove that they are valid

Vi, j(I<i<j<u—ali]<a[j])
Vi, j(h<i<uy<h<j<w—ali]<alj])

28

Program Verification

—1 < i< |a|lA
partitioned(a, 0, i, i + 1, |a]| — 1)A

sorted(a, i, |a| — 1)

—1<i<|alnANn0<j<in
partitioned(a, 0, i, i + 1, |a| — 1)A

sorted(a, i, |a| — 1)

partitioned(a, 0, j — 1, j, j) G

-

.

Example: Does BUBBLESORT return

a sorted array?

int [| BUBBLESORT(int[] a) {
int 1, /, t;
for (i == |a| —1;,i > 0;i:=i—1)A{
for(J:=0;j<i;,j:=j+1){
it (alj] > alj + 1]){t := alj];

alj] = alj + 1]

alj + 1] := t};
}} return a}

_J

Predicates:
e sorted(a, /, u):

e partitioned(a, h, u1, b, up):

Generate verification conditions and prove that they are valid

Vi, j(I<i<j<u—ali]<a[j])
Vi, j(h<i<u1 <h<j<up—alil<a[j])

To prove: C(a) A Update(a, a’) — G (a")

29

Another Situation

Insertion of an element c in a sorted array a of length n
for (i:=1;i<ni:=i+1){
if a[i] > c{n:=n+1

fcilf](j =n;j > i,j:=j—1){a[i] ;== a[i — 1]}
all| .= c; return a
}} a[n+ 1] := c; return a

Task:
If the array was sorted before insertion it is sorted also after insertion.

Sorted(a, n) A Update(a, n, a’, n’) A —=Sorted(a’, n’) =717

30

Another Situation

Task:
If the array was sorted before insertion it is sorted also after insertion.

Sorted(a, n) A Update(a, n, a’, n’) A —=Sorted(a’, n’) E=7L7

Sorted(a, n) Vi,j(1 <i<j<n—ali] <a[j])

Update(a, n,a’,n") Vi((1 <i<nAali] <c)— a[i] =a[i])
Vi((c < a(1) — a’[1] := ¢)
Vi((a[n] < ¢ = a’'[n+ 1] := ¢)
Vi(l<i—1<i<nAali—1]<cAali] >c)— (a'[i] = ¢)
Vi(l<i—1<i<nAali—1]>cAali] > c— a'[i] :=a[i —1])
n :=n+1

—Sorted(a’, n’) Jk, (1 < k <1< n" Aa[k] > a[l])

31

Beyond the array property fragment

Extension: New arrays defined by case distinction — Def(f”/)

Vx(¢;(X) — f/(X)=s;(X)) i €1, where ¢;(X) N\ ¢;(X) =71, L for i#j(1)
VX(4i(X) = ti(X)<f'(X)<si(X)) i € 1, where ¢;(X) A ¢;(X) F7y L for i#j(2)

where s;, t; are terms over the signature X such that Ty = Vx(¢;(X)—ti(X)<s;(X))
for all i € 1.

To C To A Def(f”) has the property that for every set G of ground
clauses in which there are no nested applications of f”:

To ADef(F/)A G =L iff To A Def(f)[G] A G

(sufficient to use instances of axioms in Def(f’) which are relevant for G)

e Some of the syntactic restrictions of the array property fragment can be
lifted

32

Pointer Structures

[McPeak, Necula 2005]

e pointer sort p, scalar sort s; pointer fields (p — p); scalar fields (p — s);

e axioms: Vp & V C; & contains disjunctions of pointer equalities
C contains scalar constraints

Assumption: If fi(f2(... fa(p))) occurs in axiom, the axiom also contains:
p=null V fo(p)=null vV - - - V o (... fa(p)))=null

Example: doubly-linked lists; ordered elements

ST =TS =)

Vp (p # null A p.next # null — p.next.prev = p)

Vp (p # null A p.prev # null — p.prev.next = p)
Vp (p # null A p.next # null — p.info < p.next.info)

33

Pointer Structures

[McPeak, Necula 2005]

e pointer sort p, scalar sort s; pointer fields (p — p); scalar fields (p — s);

e axioms: Vp & V C; & contains disjunctions of pointer equalities
C contains scalar constraints

Assumption: If fi(f2(... fa(p))) occurs in axiom, the axiom also contains:
p=null V fo(p)=null vV - - - V o (... fa(p)))=null

Theorem. K set of clauses in the fragment above. Then for every set G of
ground clauses, (K U G) U Ts =L iff KICl UTs =1

where KICl is the set of instances of K in which the variables are replaced

by subterms in G.

34

Example: A theory of doubly-linked lists

iy L
KRR

Vp (p # null A p.next # null — p.next.prev = p)

Vp (p # null A p.prev # null — p.prev.next = p)

A c#Znull A c.nextnull A d#null A d.next#null A c.next=d.next Ac #d | L

Example: A theory of doubly-linked lists

(c#null A c.next#null —c.next.prev=c) (c.next=£null A c.next.next#null —c.next.next.prev=c.next)

(d#null A d.next#null—d.next.prev=d) (d.next#null A d.next.next#null—d.next.next.prev=d.next)

A c#Znull A c.next£null A d#null A d.next#null A c.next=d.next Ac #2d |E L

36

Example: List insertion

;3—{3—{3—{3
19

Initially list is sorted: p.next # null — p.prio > p.next.prio

c.prio = x, c.next = null
for all p # c do
if p.prio < x then if First(p) then c.next’” = p, First’(c), —First’(p) endif; p.next’ = p.next
p.prio > x then case p.next = null then p.next’ := ¢, c.next’ = null
p.next # null A p.next.prio > x then p.next’ = p.next

p.next # null A p.next.prio < x then p.next’ = ¢, c.next’ = p.next

Verification task: After insertion list remains sorted

37

Example: List insertion

(13—t (St [)

Initially list is sorted: p.next # null — p.prio > p.next.prio

c.prio = x, c.next = null
for all p # c do
if p.prio < x then if First(p) then c.next’” = p, First’(c), —First’(p) endif; p.next’ = p.next
p.prio > x then case p.next = null then p.next’ := ¢, c.next’ = null
p.next # null A p.next.prio > x then p.next’ = p.next

p.next # null A p.next.prio < x then p.next’ = ¢, c.next’ = p.next

Verification task: After insertion list remains sorted

38

Example: List insertion

(13—t [t [F—=t]

Initially list is sorted: p.next # null — p.prio > p.next.prio

c.prio = x, c.next = null
for all p # c do
if p.prio < x then if First(p) then c.next’” = p, First’(c), —First’(p) endif; p.next’ = p.next
p.prio > x then case p.next = null then p.next’ := ¢, c.next’” = null
p.next # null A p.next.prio > x then p.next’ = p.next

p.next # null A p.next.prio < x then p.next’ = ¢, c.next’ = p.next

Verification task: After insertion list remains sorted

39

Example: List insertion

(13—t [t [F—=t]

Initially list is sorted: Vp(p.next # null — p.prio > p.next.prio)

Vp(p#null A p#£c A prio(p)>x A next(p)=null — next’(p)=c
Vp(p#null A p#£c A prio(p)>x A next(p)=null — next’(c)=null)

We only need to use instances in which variables are

replaced by ground subterms occurring in the problem

To check: Sorted(next, prio) A Update(next, next’) A pg.next’ ZnullApg.prio# po.next”.prio =1

40

Example: List insertion

To show:

T> = 71 U Update(next, next’) T> U =Sorted(next”) =L

G

T1 = To U Sorted(next)

To = (Lists, next)

41

Example: List insertion

T2 = T1U |Update(next, next’)

Instantiate:
Hierarchical reasoning:

71 = To U Sorted(next)

To = (Lists, next)

T1U

To show:

T2 U —=Sorted(next’) =1

~

G

Update(next, next’)[G]

\

UG =1

J

N

G/
71 U G’ (next) =L

42

Example: List insertion

T2 = 71 U Update(next, next”)

T1 = To U Sorted(next)

To = (Lists, next)

To show:
T2 U —=Sorted(next’) =L

~~

G

U
T1 U G’(next) =L

Y

ToU G” =1

43

Example

Simplified version of ETCS Case Study [Jacobs,VS'06, Faber,Jacobs,VS'07]

European Train Control System

uuuuuuuuu o S — —S e S ——
Number of trains: n>0 Z
Minimum and maximum speed of trains: 0 < min < max R
Minimum secure distance: Liarm > 0 R
Time between updates: At >0 R
Train positions before and after update: pos(i), pos’(i) 7 — R

44

Example

Simplified version of ETCS Case Study [Jacobs,VS'06, Faber,Jacobs,VS'07]

European Train Control System

Y
ey
jwffll | ¥
-~
= I‘I| II
-
o “f |I || N
P o %
i
o lf‘J I1 b
- / il 1 N
-+ | |
- ! .
s i X
e
- ty !
o
e = FalF i
T
— — ! T
o el 75 a? [E SQo———DCr

[1
uuu

Update(pos, pos’) : e Vi (i = 0 — pos(i) + Atxmin < pos’ (i) < pos(i) + Atxmax)

eVi(0<i<n A pos(i—1) >0 A pos(i —1) — pos(i) > ljarm
— pos(i) + At * min < pos’(i) < pos(i) + Atxmax)

45

Example

Safety property: No collisions Safe(pos) : Vi, j(i<j—pos(i)>pos(J))

Inductive invariant: ~ Safe(pos)AUpdate(pos, pos’)A—Safe(pos’) =7 L

where Ts is the extension of the (disjoint) combination R U Z
with two functions, pos, pos’ : Z — R

Our idea: Use chains of “instantiation’” -+ reduction.

46

Example

T> = T1 U Update(pos, pos’)

T1 = To U Safe(pos)

To=RUZ

To show:
T> U =Safe(pos’) =L

N

G

47

Example

To show:
T2 = T1 U Update(pos, pos’) T>» U —Safe(pos’) =L

~

G

U
T1 = To U Safe(pos) 71 U G’ (pos) =L

Y
To=RUZ ToUG” =1

d(c, Epos/,apos, N, Lajarm, Min, max, At) =L

Method 1: SAT checking/ Counterexample generation
Method 2: Quantifier elimination

relationships between parameters which guarantee safety

48

More complex ETCS Case studies

[Faber, Jacobs, VS, 2007]
e Take into account also:
— Emergency messages

— Durations

e Specification language: CSP-OZ-DC

— Reduction to satisfiability in theories for which

decision procedures exist

e Tool chain: [Faber, lhlemann, Jacobs, VS]
CSP-OZ-DC — Transition constr. — Decision procedures (H-PILoT)

49

Example 2: Parametric topology

e Complex track topologies [Faber, Ihlemann, Jacobs, VS, ongoing work]

ol

Assumptions:

e No cycles

e in-degree (out-degree) of associated graph at most 2.

50

Parametricity and modaularity

e Complex track topologies [Faber, Ihlemann, Jacobs, VS, ongoing work]

Assumptions:
e No cycles
e in-degree (out-degree) of associated graph at most 2.

Approach:
e Decompose the system in trajectories (linear rail tracks; may overlap)
e Task 1: - Prove safety for trajectories with incoming/outgoing trains
- Conclude that for control rules in which trains have sufficient
freedom (and if trains are assigned unique priorities) safety
of all trajectories implies safety of the whole system
e [ask 2: - General constraints on parameters which guarantee safety

51

Parametricity and modaularity

e Complex track topologies [Faber, Ihlemann, Jacobs, VS, ongoing work]

Assumptions:
e No cycles
e in-degree (out-degree) of associated graph at most 2.

Data structures:

RN

p1: trains = E\«E

| P
e 2-sorted pointers /_L —~ /\\. J,\ /\“/\ /\1

p2: segments | N
~ L/ \-/‘_/ _/\\/ _/ \\/
e scalar fields (f:p;—R, g:pi—7Z)

e updates efficient decision procedures (H-PiLoT)

52

Incoming and outgoing trains

E«E

LI LI

N \\/\/\/ \\/\/ ‘\/\\/

Example 1: Speed Update
pos(t) < length(segm(t)) —d — 0 < spd’(t) < Imax(segm(t))
pos(t) > length(segm(t)) — d A alloc(nexts(segm(t))) = tid(t)
— 0 < spd’(t) < min(Imax(segm(t)), Imax(nexts(segm(t))))
pos(t) > length(segm(t)) — d A alloc(nexts(segm(t))) # tid(t)
— spd’(t) = max(spd(t) — decmax, 0)

53

Incoming and outgoing trains

AL IL

\/‘\/ A

AN

74

A
\/

54

Incoming and outgoing trains

/K\;/\ o

I
/N

Example 2: Enter Update (also updates for segm’, spd’, pos’, train’)

Assume: s; # nullg, t1 # nully, train(s) # t1, alloc(s;) = idt(t1)

t=£t1, ids(segm(t))<ids(si), next:(t)=nulls, alloc(s;)=tid(t;) — next’(t)=t; A next’(t;)=null;
t#ty, ids(segm(t))<ids(s1), alloc(s;)=tid(t1), next:(t)#nulls, ids(segm(next:(t)))<ids(s1)
— next’ (t)=next:(t)

.t-;.étl, ids(segm(t))>ids(s;) — next’(t)=next;(t)

55

Incoming and outgoing trains

56

Safety property

Safety property we want to prove: no two trains ever occupy the same track

segment:
(Safe) := Vt1, to segm(t;) = segm(t2) — t; = to

In order to prove that (Safe) is an invariant of the system, we need to find a
suitable invariant (Inv(i)) for every control location i of the TCS, and prove:

(Inv(i)) = (Safe) for all locations i

and that the invariants are preserved under all transitions of the system,

(Inv(i)) A (Update) = (Inv’(j))

whenever (Update) is a transition from location i to j .

57

Safety property

Need additional invariants.
- generate by hand [Faber, Ihlemann, Jacobs, VS, ongoing]

use the capabilities of H-PILoT of generating counterexamples

- generate automatically [VS, work in progress]

Ground satisfiability problems for pointer data structures

the decision procedures presented before can be used without problems

58

Other interesting topics

e Generate invariants

59

Other interesting topics

e Generate invariants

e Verification by abstraction /refinement

60

Abstraction-based Verification

Concrete program Abstract program

feasible path =—-—epme— feasible path

location unreachable —-=g=s= |ocation unreachable
check feasibility —--g=—m location reachable

4

conjunction of constraints: ¢(1) A Tr(1,2) A --- A Tr(n — 1, n) A —safe(n)
- feasible path
- refine abstract program s.t. the path is not feasible
[McMillan 2003-2006] use ‘local causes of inconsistency’
— compute interpolants

61

Follow-up

e Seminar on Decision Procedures and Applications (SS 2013)

e Lecture “Formal Specification and Verification” (SS 2013)

e Forschungs Praktika in the area of decision procedures and applications

e BSc Theses and MSc Theses in the area of decision procedures for

verification

62

