Decision Procedures in Verification

Decision Procedures (1)

10.12.2012

Viorica Sofronie-Stokkermans

e-mail: sofronie@uni-koblenz.de

First-Order Logic

Syntax, semantics

Algorithmic Problems; Decidability, Undecidability

Methods for checking satisfiability: resolution

Herbrand Interpretations

Assume Ω contains at least one constant symbol.

A Herbrand interpretation (over Σ) is a Σ -algebra \mathcal{A} such that:

- $U_{\mathcal{A}} = \mathsf{T}_{\Sigma}$ (= the set of ground terms over Σ)
- $f_{\mathcal{A}}:(s_1,\ldots,s_n)\mapsto f(s_1,\ldots,s_n), f/n\in\Omega$

A Herbrand interpretation I is called a Herbrand model of F if $I \models F$.

Theorem 2.13

Let *N* be a set of Σ -clauses.

- N satisfiable \Leftrightarrow N has a Herbrand model (over Σ)
 - \Leftrightarrow $G_{\Sigma}(N)$ has a Herbrand model (over Σ)

where $G_{\Sigma}(N) = \{C\sigma \text{ ground clause} \mid C \in N, \sigma : X \to T_{\Sigma}\}$ is the set of ground instances of N.

The Bernays-Schönfinkel Class

 $\Sigma = (\Omega, \Pi), \ \Omega$ is a finite set of constants

The Bernays-Schönfinkel class consists only of sentences of the form

$$\exists x_1 \ldots \exists x_n \forall y_1 \ldots \forall y_m F(x_1, \ldots, x_n, y_1, \ldots, y_n)$$

Idea: CNF translation:

$$\exists \overline{x}_1 \forall \overline{y}_1 F_1 \wedge \ldots \exists \overline{x}_n \forall \overline{y}_n F_n \Rightarrow_P \exists \overline{x}_1 \ldots \exists \overline{x}_n \forall \overline{y}_1 \ldots \forall \overline{y}_n F(\overline{x}_1, \ldots, \overline{x}_n, \overline{y}_1, \ldots, \overline{y}_n) \Rightarrow_S \forall \overline{y}_1 \ldots \forall \overline{y}_m F(\overline{c}_1, \ldots, \overline{c}_n, \overline{y}_1, \ldots, \overline{y}_n) \Rightarrow_K \forall \overline{y}_1 \ldots \forall \overline{y}_m \bigwedge \bigvee L_i((\overline{c}_1, \ldots, \overline{c}_n, \overline{y}_1, \ldots, \overline{y}_n))$$

 $\overline{c}_1, \ldots, \overline{c}_n$ are tuples of Skolem constants

The Bernays-Schönfinkel Class

 $\Sigma = (\Omega, \Pi), \ \Omega$ is a finite set of constants

The Bernays-Schönfinkel class consists only of sentences of the form

$$\exists x_1 \ldots \exists x_n \forall y_1 \ldots \forall y_m F(x_1, \ldots, x_n, y_1, \ldots, y_n)$$

Idea: CNF translation:

$$\exists \overline{x}_1 \forall \overline{y}_1 F_1 \land \ldots \exists \overline{x}_n \forall \overline{y}_n F_n \Rightarrow_K^* \forall \overline{y}_1 \ldots \forall \overline{y}_m \bigwedge \bigvee L_i((\overline{c}_1, \ldots, \overline{c}_n, \overline{y}_1, \ldots, \overline{y}_n))$$

 $\overline{c}_1, \ldots, \overline{c}_n$ are tuples of Skolem constants

The Herbrand Universe is finite \mapsto decidability

In the exercise we saw that satisfiability of any finite set of ground Horn clauses can be checked in PTIME (linear time)

Variable-free Horn clauses

Data structures

Atoms
$$P_1, \ldots, P_n \mapsto \{1, \ldots, n\}$$

neg-occ-list(A): list of all clauses in which A occurs negatively
pos-occ-list(A): list of all clauses in which A occurs positively

Clause:	P_1	P_2	•••	P_n	counter
	neg	neg		pos	\uparrow
		\uparrow			number of literals

first-active-literal: first literal not marked as deleted.

atom status:pos(deduced as positive unit clause)neg(deduced as negative unit clause)nounit(otherwise)

Input: Set *N* of Horn formulae

Step 1. Collect unit clauses; check if complementary pairs exist

forall $C \in N$ do

if is-unit(C) then begin const. time

L := first-active-literal(C) const. time

if state(atom(L)) = nounit then state(atom(L)) = sign(L) const. time

push(atom(L), stack)

else if state(atom(L)) \neq sign(L) then return false

Variable-free Horn clauses

2. Process the unit clauses in the stack

```
while stack \neq \emptyset do
```

```
begin A := top(stack); pop(stack)if state(A) = pos then delete-literal-list := neg-oc-list(A)O(# neg-oc-list)else delete-literal-list := pos-oc-list(A)O(# pos-oc-list)
```

endif

for all C in delete-literal-list do

elseif state(atom(L1)) \neq sign(L1) then return false

endif

end

We showed that satisfiability of any finite set of ground Horn clauses can be checked in PTIME (linear time)

• Similar fragment of the Bernays-Schönfinkel class?

Deductive database

Inference rules: Facts: Query:

Deductive database		Example: reachability in graphs
Inference rules:	S(x)	R(x) E(x, y)
	R(x)	R(y)
Facts:	S(a), E(a, c), E(c, d), E(d, c), E(b, c)
Query:	R(d)	

$$S(a), E(a, c), E(c, d), E(d, c), E(b, c)$$

Note: S, E stored relations (Extensional DB) R defined relation (Intensional DB)

Deductive database		Example: reachability in graphs
Inference rules:	$\frac{S(x)}{R(x)}$	$\frac{R(x) E(x, y)}{R(y)}$
Facts:	S(a), E(a, c), E(c, d), E(d, c), E(b, c)
Query:	R(d)	

$$S(a), E(a, c), E(a, d), E(c, d), E(b, c),$$

 $R(a)$

Note: *S*, *E* stored relations (Extensional DB)

Deductive database		Example: reachability in graphs
Inference rules:	$\frac{S(x)}{R(x)}$	$\frac{R(x) E(x, y)}{R(y)}$
Facts:	S(a), E((a, c), E(c, d), E(d, c), E(b, c)
Query:	R(d)	

S(a), E(a, c), E(a, d), E(c, d), E(b, c),R(a), R(c)

Note: *S*, *E* stored relations (Extensional DB)

Deductive database		Example: reachability in graphs
Inference rules:	$\frac{S(x)}{R(x)}$	$\frac{R(x) E(x, y)}{R(y)}$
Facts:	S(a), E((a, c), E(c, d), E(d, c), E(b, c)
Query:	R(d)	

S(a), E(a, c), E(a, d), E(c, d), E(b, c),R(a), R(c), R(d)

Note: *S*, *E* stored relations (Extensional DB)

Deductive database \mapsto **Datalog** (Horn clauses, no function symbols)

Inference rules:	$S(x) \rightarrow R(x) R(x) \wedge E(x, y) \rightarrow R(y)$
	set \mathcal{K} of Horn clauses
Facts:	S(a), E(a, c), E(c, d), E(d, c), E(b, c)
	set ${\mathcal F}$ of ground atoms
Query:	R(d)
	ground atom G

 $\mathcal{F}\models_{\mathcal{K}} G$ iff $\mathcal{K}\cup\mathcal{F}\models G$ iff $\mathcal{K}\cup\mathcal{F}\cup\neg G\models\perp$

Note: *S*, *E* stored relations (Extensional DB)

Deductive database \mapsto **Datalog** (Horn clauses, no function symbols)

Inference rules:	$S(x) \rightarrow R(x) R(x) \wedge E(x, y) \rightarrow R(y)$
	set \mathcal{K} of Horn clauses
Facts:	S(a), E(a, c), E(c, d), E(d, c), E(b, c)
	set ${\mathcal F}$ of ground atoms
Query:	R(d)
	ground atom <i>G</i>

$$\begin{array}{c|c} \underline{S(a)} & S(x) \to R(x) \\ \hline R(a) & E(a,c) & R(x) \land E(x,y) \to R(y) \\ \hline R(c) & E(c,d) & R(x) \land E(x,y) \to R(y) \\ \hline R(d) & \end{array}$$

Ground entailment for function-free Horn clauses

Assumption:

The signature does not contain function symbols of arity \geq 1.

Given:

- Set H of (function-free) Horn clauses
- Ground Horn clause $G = \bigwedge A_i \rightarrow A$.

The following are equivalent:

(1) $H \models \bigwedge A_i \rightarrow A$ (2) $H \land \bigwedge A_i \models A$ (3) $H \land \bigwedge A_i \land \neg A \models \bot$

Decidable in PTIME in the size of G for a fixed H.

Generalization: Superficial Horn clauses

Assumption:

The signature may contain function symbols of arity \geq 1.

Definition: A Horn clause is called superficial if it is of the form

$$A_1 \wedge A_2 \cdots \wedge A_n \rightarrow A$$

and every term which occurs in the atom A occurs also in one of the atoms A_1, A_2, \ldots, A_n .

Theorem. Let H be a set of superficial Horn clauses and let C be a ground Horn clause. Then the following are equivalent:

(1)
$$H \models C$$

(2)
$$H[C] \models C$$

where H[C] is the family of all instances of H in which all terms are ground terms occurring in C or in H.

For every ground clause C, $H \models C$ can be checked in PTIME (if we assume H is fixed)

Proof: Use ordered resolution with selection.

[McAllester, Givan'92], [Basin, Ganzinger'96,01], [Ganzinger'01]

Assumption: the signature is allowed to contain function symbols

Definition. H set of Horn clauses is called local iff for every ground clause C the following are equivalent:

(1) $H \models C$

(2) $H[C] \models C$,

where H[C] is the family of all instances of H in which the variables are replaced by ground subterms occurring in H or C.

Theorem. For a fixed local theory H, testing ground entailment w.r.t. H is in PTIME.

Will be discussed in more detail later

Applications

Use ordered resolution with selection to give a decision procedure for the Ackermann class.

The Ackermann class

 $\Sigma = (\Omega, \Pi), \ \Omega$ is a finite set of constants

The Ackermann class consists of all sentences of the form

$$\exists x_1 \ldots \exists x_n \forall x \exists y_1 \ldots \exists y_m F(x_1, \ldots, x_n, y_1, \ldots, y_m)$$

Idea: CNF translation:

$$\exists x_1 \dots \exists x_n \forall x \exists y_1 \dots \exists y_m F(x_1, \dots, x_n, x, y_1, \dots, y_m) \Rightarrow_S \forall x F(\overline{c}_1, \dots, \overline{c}_n, x, f_1(x), \dots, f_m(x)) \Rightarrow_K \forall x \bigwedge \bigvee L_i(c_1, \dots, c_n, x, f_1(x), \dots, f_m(x))$$

 c_1, \ldots, c_n are Skolem constants f_1, \ldots, f_m are unary Skolem functions

The Ackermann class

 $\Sigma = (\Omega, \Pi), \ \Omega$ is a finite set of constants

The Ackermann class consists of all sentences of the form

$$\exists x_1 \ldots \exists x_n \forall x \exists y_1 \ldots \exists y_m F(x_1, \ldots, x_n, y_1, \ldots, y_m)$$

Idea: CNF translation:

$$\exists x_1 \dots \exists x_n \forall x \exists y_1 \dots \exists y_m F(x_1, \dots, x_n, x, y_1, \dots, y_m) \Rightarrow^* \forall x \bigwedge \bigvee L_i(c_1, \dots, c_n, x, f_1(x), \dots, f_m(x))$$

The clauses are in the following classes:

 $G = G(c_1, \ldots, c_n)$ ground clauses without function symbols $V = V(x, c_1, \ldots, c_n)$ clauses with one variable and without function symbols $G_f = G(c_1, \ldots, c_n, f_1, \ldots, f_n)$ ground clauses with function symbols $V_f = V(x, c_1, \ldots, c_n, f_1(x), \ldots, f_n(x))$ clauses with a variable & function symbols $G = G(c_1, \ldots, c_n)$ ground clauses without function symbols $V = V(x, c_1, \ldots, c_n)$ clauses with one variable and without function symbols $G_f = G(c_1, \ldots, c_n, f_1, \ldots, f_n)$ ground clauses with function symbols $V_f = V(x, c_1, \ldots, c_n, f_1(x), \ldots, f_n(x))$ clauses with a variable & function symbols Term ordering

 $f(t) \succ t$; terms containing function symbols larger than those who do not. $B \succ A$ iff exists argument u of B such that every argument t of A: $u \succ t$ **Ordered resolution:** $G \cup V \cup G_f \cup V_f$ is closed under ordered resolution. $G, G \mapsto G; \quad G, V \mapsto G; \quad G, G_f \mapsto$ nothing; $G, V_f \mapsto$ nothing $V, V \mapsto V \cup G; \quad V, G_f \mapsto G \cup G_f; \quad V, V_f \mapsto G \cup V \cup G_f \cup V_f$ $G_f, G_f \mapsto G_f; \quad G_f, V_f \mapsto G_f \cup G; \quad V_f, V_f \mapsto G \cup V \cup V_f \cup G_f$

Observation 1: $G \cup V \cup G_f \cup V_f$ finite set of clauses (up to remaming of variables).

 $G = G(c_1, \ldots, c_n)$ ground clauses without function symbols $V = V(x, c_1, \ldots, c_n)$ clauses with one variable and without function symbols $G_f = G(c_1, \ldots, c_n, f_i)$ ground clauses with function symbols $V_f = V(x, c_1, \ldots, c_n, f_1(x), \ldots, f_n(x))$ clauses with a variable & function symbols

Term ordering

 $f(t) \succ t$; terms containing function symbols larger than those who do not. $B \succ A$ iff exists argument u of B such that every argument t of A: $u \succ t$ **Ordered resolution:** $G \cup V \cup G_f \cup V_f$ is closed under ordered resolution. $G, G \mapsto G; \quad G, V \mapsto G; \quad G, G_f \mapsto$ nothing; $G, V_f \mapsto$ nothing $V, V \mapsto V \cup G; \quad V, G_f \mapsto G \cup G_f; \quad V, V_f \mapsto G \cup V \cup G_f \cup V_f$ $G_f, G_f \mapsto G_f; \quad G_f, V_f \mapsto G_f \cup G; \quad V_f, V_f \mapsto G \cup V \cup V_f \cup G_f$

Observation 2: No clauses with nested function symbols can be generated.

3.2 Deduction problems

Satisfiability w.r.t. a theory

Let $\Sigma = (\{e/0, */2, i/1\}, \emptyset)$

Let \mathcal{F} consist of all (universally quantified) group axioms:

$$\begin{array}{lll} \forall x, y, z & x * (y * z) \approx (x * y) * z \\ \forall x & x * i(x) \approx e & \wedge & i(x) * x \approx e \\ \forall x & x * e \approx x & \wedge & e * x \approx x \end{array}$$

Question: Is $\forall x, y(x * y = y * x)$ entailed by \mathcal{F} ?

Let $\Sigma = (\{e/0, */2, i/1\}, \emptyset)$

Let \mathcal{F} consist of all (universally quantified) group axioms:

$$\begin{array}{lll} \forall x, y, z & x * (y * z) \approx (x * y) * z \\ \forall x & x * i(x) \approx e & \wedge & i(x) * x \approx e \\ \forall x & x * e \approx x & \wedge & e * x \approx x \end{array}$$

Question: Is $\forall x, y(x * y = y * x)$ entailed by \mathcal{F} ?

Alternative question:

Is $\forall x, y(x * y = y * x)$ true in the class of all groups?

Syntactic view

first-order theory: given by a set \mathcal{F} of (closed) first-order Σ -formulae. the models of \mathcal{F} : $Mod(\mathcal{F}) = \{\mathcal{A} \in \Sigma\text{-alg} \mid \mathcal{A} \models G, \text{ for all } G \text{ in } \mathcal{F}\}$

Semantic view

given a class $\mathcal M$ of Σ -algebras

the first-order theory of \mathcal{M} : Th $(\mathcal{M}) = \{G \in F_{\Sigma}(X) \text{ closed } | \mathcal{M} \models G\}$

Let $\Sigma = (\Omega, \Pi)$ be a signature.

 \mathcal{M} : class of Σ -algebras. $\mathcal{T} = \text{Th}(\mathcal{M})$ is decidable iff there is an algorithm which, for every closed first-order formula ϕ , can decide (after a finite number of steps) whether ϕ is in \mathcal{T} or not.

 $\mathcal{F}: \text{ class of (closed) first-order formulae.}$ $The theory \ \mathcal{T} = Th(Mod(\mathcal{F})) \text{ is decidable}$ iffthere is an algorithm which, for every closed first-order formula ϕ , can decide (in finite time) whether $\mathcal{F} \models \phi$ or not.

Undecidable theories

- •Th(($\mathbb{Z}, \{0, 1, +, *\}, \{\leq\})$)
- $\bullet \mathsf{Th}(\Sigma\text{-}\mathsf{alg})$

Peano arithmetic

Peano axioms:
$$\forall x \neg (x + 1 \approx 0)$$
(zero) $\forall x \forall y (x + 1 \approx y + 1 \rightarrow x \approx y)$ (successor) $F[0] \land (\forall x (F[x] \rightarrow F[x + 1]) \rightarrow \forall x F[x])$ (induction) $\forall x (x + 0 \approx x)$ (plus zero) $\forall x, y (x + (y + 1) \approx (x + y) + 1)$ (plus successor) $\forall x, y (x * 0 \approx 0)$ (times 0) $\forall x, y (x * (y + 1) \approx x * y + x)$ (times successor)

3 * y + 5 > 2 * y expressed as $\exists z (z \neq 0 \land 3 * y + 5 \approx 2 * y + z)$

Intended interpretation: (\mathbb{N} , {0, 1, +, *}, { \approx , \leq }) (does not capture true arithmetic by Goedel's incompleteness theorem)

In order to obtain decidability results:

- Restrict the signature
- Enrich axioms
- Look at certain fragments

In order to obtain decidability results:

- Restrict the signature
- Enrich axioms
- Look at certain fragments

Decidable theories

Presburger arithmetic decidable in 3EXPTIME [Presburger'29]
 Signature: ({0, 1, +}, {≈, ≤}) (no *)

Axioms { (zero), (successor), (induction), (plus zero), (plus successor) }

• $Th(\mathbb{Z}_+)$ $\mathbb{Z}_+ = (\mathbb{Z}, 0, s, +, \leq)$ the standard interpretation of integers.

In order to obtain decidability results:

- Restrict the signature
- Enrich axioms
- Look at certain fragments

Decidable theories

• The theory of real numbers (with addition and multiplication) is decidable in 2EXPTIME [Tarski'30]

Examples

In order to obtain decidability results:

- Restrict the signature
- Enrich axioms
- Look at certain fragments

 \mathcal{T} : first-order theory in signature Σ ; \mathcal{L} class of (closed) Σ -formulae

Given ϕ in \mathcal{L} , is it the case that $\mathcal{T} \models \phi$?

Common restrictions on $\ensuremath{\mathcal{L}}$

	$Pred = \emptyset \qquad \qquad \{\phi \in \mathcal{L}$	$I \mid \mathcal{T} \models \phi\}$
$\mathcal{L} = \{ \forall x A(x) \mid A \text{ atomic} \}$	word problem	
$\mathcal{L} = \{ \forall x (A_1 \land \ldots \land A_n \rightarrow B) \mid A_i, B \text{ atomic} \}$	uniform word problem	Th_{\forallHorn}
$\mathcal{L} = \{ \forall x C(x) \mid C(x) \text{ clause} \}$	clausal validity problem	$Th_{\forall,cl}$
$\mathcal{L} = \{ \forall x \phi(x) \mid \phi(x) \text{ unquantified} \}$	universal validity problem	$Th_{orall}$
$\mathcal{L} = \{\exists x A_1 \land \ldots \land A_n \mid A_i \text{ atomic}\}$	unification problem	Th∃
$\mathcal{L} = \{ \forall x \exists x A_1 \land \ldots \land A_n \mid A_i \text{ atomic} \}$	unification with constants	Th∀∃

 \mathcal{T} -validity: Let \mathcal{T} be a first-order theory in signature Σ Let \mathcal{L} be a class of (closed) Σ -formulae Given ϕ in \mathcal{L} , is it the case that $\mathcal{T} \models \phi$?

Remark: $\mathcal{T} \models \phi$ iff $\mathcal{T} \cup \neg \phi$ unsatisfiable

Every \mathcal{T} -validity problem has a dual \mathcal{T} -satisfiability problem:

 $\begin{aligned} \mathcal{T}\text{-satisfiability: Let }\mathcal{T} \text{ be a first-order theory in signature } \Sigma \\ \text{Let }\mathcal{L} \text{ be a class of (closed) }\Sigma\text{-formulae} \\ \neg \mathcal{L} = \{\neg \phi \mid \phi \in \mathcal{L}\} \end{aligned}$

Given ψ in $\neg \mathcal{L}$, is it the case that $\mathcal{T} \cup \psi$ is satisfiable?

Common restrictions on $\mathcal L$ / $\neg \mathcal L$

\mathcal{L}	$\neg \mathcal{L}$
$\{\forall x A(x) \mid A \text{ atomic}\}$	$\{\exists x \neg A(x) \mid A \text{ atomic}\}$
$\{\forall x (A_1 \land \ldots \land A_n \rightarrow B) \mid A_i, B \text{ atomic}\}$	$\{\exists x(A_1 \land \ldots \land A_n \land \neg B) \mid A_i, B \text{ atomic}\}$
$\{\forall x \bigvee L_i \mid L_i \text{ literals}\}$	$\{\exists x \bigwedge L'_i \mid L'_i \text{ literals}\}$
$\{ \forall x \phi(x) \mid \phi(x) \text{ unquantified} \}$	$\{\exists x \phi'(x) \mid \phi'(x) \text{ unquantified}\}$

validity problem for universal formulae

ground satisfiability problem

Common restrictions on $\mathcal L$ / $\neg \mathcal L$

\mathcal{L}	$\neg \mathcal{L}$
$\{\forall x A(x) \mid A \text{ atomic}\}$	$\{\exists x \neg A(x) \mid A \text{ atomic}\}$
$\{\forall x(A_1 \land \ldots \land A_n \rightarrow B) \mid A_i, B \text{ atomic}\}$	$\{\exists x(A_1 \land \ldots \land A_n \land \neg B) \mid A_i, B \text{ atomic}\}$
$\{\forall x \bigvee L_i \mid L_i \text{ literals}\}$	$\{\exists x \bigwedge L'_i \mid L'_i \text{ literals}\}$
$\{\forall x \phi(x) \mid \phi(x) \text{ unquantified}\}$	$\{\exists x \phi'(x) \mid \phi'(x) \text{ unquantified}\}$

validity problem for universal formulae

ground satisfiability problem

In what follows we will focus on the problem of checking the satisfiability of conjunctions of ground literals

$\mathcal{T}\text{-}validity$ vs. $\mathcal{T}\text{-}satisfiability$

$$\mathcal{T} \models \forall x A(x)$$

$$\mathcal{T} \models \forall x (A_1 \land \cdots \land A_n \to B)$$

 $\mathcal{T} \models \forall x (\bigvee_{i=1}^n A_i \vee \bigvee_{j=1}^m \neg B_j)$

iff $\mathcal{T} \cup \exists x \neg A(x)$ unsatisfiableiff $\mathcal{T} \cup \exists x(A_1 \land \cdots \land A_n \land \neg B)$ unsatisfiableiff $\mathcal{T} \cup \exists x(\neg A_1 \land \cdots \land \neg A_n \land B_1 \land \cdots \land B_m)$ unsatisfiable

$\mathcal{T}\text{-satisfiability vs.}$ Constraint Solving

The field of Constraint Solving also deals with satisfiability problems But be careful:

- in Constraint Solving one is interested if a formula is satisfiable in a given, fixed model of *T*.
- in \mathcal{T} -satisfiability one is interested if a formula is satisfiable in any model of \mathcal{T} at all.

3.3. Theory of Uninterpreted Function Symbols

Why?

- Reasoning about equalities is important in automated reasoning
- Applications to program verification

 (approximation: abstract from additional properties)

Application: Compiler Validation

Example: prove equivalence of source and target program

1:	y := 1	1: y := 1
2:	if $z = x * x * x$	2: R1 := x*x
3:	then $y := x * x + y$	3: R2 := R1*x
4:	endif	4: jmpNE(z,R2,6)
		5: y := R1+1

To prove: (indexes refer to values at line numbers)

 $y_{1} \approx 1 \land [(z_{0} \approx x_{0} * x_{0} \land x_{0} \land y_{3} \approx x_{0} \ast x_{0} + y_{1}) \lor (z_{0} \not\approx x_{0} \ast x_{0} \land x_{0} \land y_{3} \approx y_{1})] \land$ $y_{1}' \approx 1 \land R1_{2} \approx x_{0}' \ast x_{0}' \land R2_{3} \approx R1_{2} \ast x_{0}' \land$ $\land [(z_{0}' \approx R2_{3} \land y_{5}' \approx R1_{2} + 1) \lor (z_{0}' \neq R2_{3} \land y_{5}' \approx y_{1}')] \land$ $x_{0} \approx x_{0}' \land y_{0} \approx y_{0}' \land z_{0} \approx z_{0}' \implies x_{0} \approx x_{0}' \land y_{3} \approx y_{5}' \land z_{0} \approx z_{0}'$

(1) **Abstraction**.

Consider * to be a "free" function symbol (forget its properties). Test it property can be proved in this approximation. If so, then we know that implication holds also under the normal interpretation of *.

(2) Reasoning about formulae in fragments of arithmetic.

Uninterpreted function symbols

Let $\Sigma = (\Omega, \Pi)$ be arbitrary

Let $\mathcal{M} = \Sigma\text{-}\mathsf{alg}$ be the class of all $\Sigma\text{-}\mathsf{structures}$

The theory of uninterpreted function symbols is $Th(\Sigma-alg)$ the family of all first-order formulae which are true in all Σ -algebras.

in general undecidable

Decidable fragment:

e.g. the class $Th_{\forall}(\Sigma$ -alg) of all universal formulae which are true in all Σ -algebras.

Assume $\Pi = \emptyset$ (and \approx is the only predicate)

In this case we denote the theory of uninterpreted function symbols by $UIF(\Sigma)$ (or UIF when the signature is clear from the context).

This theory is sometimes called the theory of free functions and denoted $Free(\Sigma)$

Uninterpreted function symbols

Theorem 3.3.1

The following are equivalent:

- (1) testing validity of universal formulae w.r.t. UIF is decidable
- (2) testing validity of (universally quantified) clauses w.r.t. UIF is decidable

Proof: Follows from the fact that any universal formula is equivalent to a conjunction of (universally quantified) clauses.