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Until now:

First-Order Logic

Syntax, semantics

Algorithmic Problems; Decidability, Undecidability

Methods for checking satisfiability: resolution
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Herbrand Interpretations

Assume Ω contains at least one constant symbol.

A Herbrand interpretation (over Σ) is a Σ-algebra A such that:

• UA = TΣ (= the set of ground terms over Σ)

• fA : (s1, . . . , sn) 7→ f (s1, . . . , sn), f /n ∈ Ω

A Herbrand interpretation I is called a Herbrand model of F if I |= F .

Theorem 2.13

Let N be a set of Σ-clauses.

N satisfiable ⇔ N has a Herbrand model (over Σ)

⇔ GΣ(N) has a Herbrand model (over Σ)

where GΣ(N) = {Cσ ground clause | C ∈ N, σ : X → TΣ} is the set of ground

instances of N.
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The Bernays-Schönfinkel Class

Σ = (Ω,Π), Ω is a finite set of constants

The Bernays-Schönfinkel class consists only of sentences of the form

∃x1 . . . ∃xn∀y1 . . . ∀ymF (x1, . . . , xn, y1, . . . , yn)

Idea: CNF translation:

∃x1∀y1F1 ∧ . . . ∃xn∀ynFn

⇒P ∃x1 . . . ∃xn∀y1 . . . ∀ynF (x1, . . . , xn, y1, . . . , yn)

⇒S ∀y1 . . . ∀ymF (c1, . . . , cn, y1, . . . , yn)

⇒K ∀y1 . . . ∀ym

V W

Li ((c1, . . . , cn, y1, . . . , yn)

c1, . . . , cn are tuples of Skolem constants
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The Bernays-Schönfinkel Class

Σ = (Ω,Π), Ω is a finite set of constants

The Bernays-Schönfinkel class consists only of sentences of the form

∃x1 . . . ∃xn∀y1 . . . ∀ymF (x1, . . . , xn, y1, . . . , yn)

Idea: CNF translation:

∃x1∀y1F1 ∧ . . . ∃xn∀ynFn

⇒∗

K
∀y1 . . . ∀ym

V W

Li ((c1, . . . , cn, y1, . . . , yn)

c1, . . . , cn are tuples of Skolem constants

The Herbrand Universe is finite 7→ decidability
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Tractable fragments of FOL

In the exercise we saw that satisfiability of any finite set of ground

Horn clauses can be checked in PTIME (linear time)
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Variable-free Horn clauses
Data structures

Atoms P1, . . . , Pn 7→ {1, . . . , n}

neg-occ-list(A): list of all clauses in which A occurs negatively

pos-occ-list(A): list of all clauses in which A occurs positively

Clause: P1 P2 . . . Pn counter

neg neg pos ↑

↑ number of literals

first-active-literal: first literal not marked as deleted.

atom status: pos (deduced as positive unit clause)

neg (deduced as negative unit clause)

nounit (otherwise)
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Variable-free Horn clauses

Input: Set N of Horn formulae

Step 1. Collect unit clauses; check if complementary pairs exist

forall C ∈ N do

if is-unit(C) then begin const. time

L := first-active-literal(C) const. time

if state(atom(L)) = nounit then state(atom(L)) = sign(L) const. time

push(atom(L), stack)

else if state(atom(L)) 6= sign(L) then return false
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Variable-free Horn clauses
2. Process the unit clauses in the stack

while stack 6= ∅ do

begin A := top(stack); pop(stack)

if state(A) = pos then delete-literal-list := neg-oc-list(A) O(# neg-oc-list)

else delete-literal-list := pos-oc-list(A) O(# pos-oc-list)

endif

for all C in delete-literal-list do

if state(A) = pos then delete-literal(A,C) const. time + nfal - ofal

if state(A) = neg then delete-literal(¬ A,C) const. time + nfal - ofal

if unit(C) then L1 := first-active-literal(C) const. time

if state(atom(L1)) = nounit then state(atom(L1)) = sign(L1),

L1 → stack

elseif state(atom(L1)) 6= sign(L1) then return false

endif

end
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Tractable fragments of FOL

We showed that satisfiability of any finite set of ground Horn clauses

can be checked in PTIME (linear time)

• Similar fragment of the Bernays-Schönfinkel class?

10



Motivation: Deductive Databases

Deductive database

Inference rules:

Facts:

Query:
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Motivation: Deductive Databases

Deductive database Example: reachability in graphs

Inference rules:
S(x)

R(x)

R(x) E(x , y)

R(y)

Facts: S(a), E(a, c), E(c, d), E(d , c), E(b, c)

Query: R(d)

c
a

b

d

S(a), E(a, c), E(c, d), E(d , c), E(b, c)

Note: S , E stored relations (Extensional DB)

R defined relation (Intensional DB)
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Motivation: Deductive Databases

Deductive database Example: reachability in graphs

Inference rules:
S(x)

R(x)

R(x) E(x , y)

R(y)

Facts: S(a), E(a, c), E(c, d), E(d , c), E(b, c)

Query: R(d)

c
a

b

d

S(a), E(a, c), E(a, d), E(c, d), E(b, c),

R(a)

Note: S , E stored relations (Extensional DB)

R defined relation (Intensional DB)
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Motivation: Deductive Databases

Deductive database Example: reachability in graphs

Inference rules:
S(x)

R(x)

R(x) E(x , y)

R(y)

Facts: S(a), E(a, c), E(c, d), E(d , c), E(b, c)

Query: R(d)

c
a

b

d

S(a), E(a, c), E(a, d), E(c, d), E(b, c),

R(a), R(c)

Note: S , E stored relations (Extensional DB)

R defined relation (Intensional DB)
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Motivation: Deductive Databases

Deductive database Example: reachability in graphs

Inference rules:
S(x)

R(x)

R(x) E(x , y)

R(y)

Facts: S(a), E(a, c), E(c, d), E(d , c), E(b, c)

Query: R(d)

c
a

b

d

S(a), E(a, c), E(a, d), E(c, d), E(b, c),

R(a), R(c), R(d)

Note: S , E stored relations (Extensional DB)

R defined relation (Intensional DB)
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Motivation: Deductive Databases

Deductive database 7→ Datalog (Horn clauses, no function symbols)

Inference rules: S(x) → R(x) R(x) ∧ E(x , y) → R(y)
| {z }

set K of Horn clauses

Facts: S(a), E(a, c), E(c, d), E(d , c), E(b, c)
| {z }

set F of ground atoms

Query: R(d)
| {z }

ground atom G

F |=K G iff K ∪ F |= G iff K ∪ F ∪ ¬G |=⊥

Note: S , E stored relations (Extensional DB)

R defined relation (Intensional DB)
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Motivation: Deductive Databases

Deductive database 7→ Datalog (Horn clauses, no function symbols)

Inference rules: S(x) → R(x) R(x) ∧ E(x , y) → R(y)
| {z }

set K of Horn clauses

Facts: S(a), E(a, c), E(c, d), E(d , c), E(b, c)
| {z }

set F of ground atoms

Query: R(d)
| {z }

ground atom G

Ex:

S(a) S(x) → R(x)

R(a) E(a, c) R(x) ∧ E(x , y) → R(y)

R(c) E(c, d) R(x) ∧ E(x , y) → R(y)

R(d)
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Ground entailment for function-free Horn clauses

Assumption:

The signature does not contain function symbols of arity ≥ 1.

Given:

• Set H of (function-free) Horn clauses

• Ground Horn clause G =
V

Ai → A.

The following are equivalent:

(1) H |=
V

Ai → A

(2) H ∧
V

Ai |= A

(3) H ∧
V

Ai ∧ ¬A |=⊥

Decidable in PTIME in the size of G for a fixed H.
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Generalization: Superficial Horn clauses

Assumption:

The signature may contain function symbols of arity ≥ 1.

Definition: A Horn clause is called superficial if it is of the form

A1 ∧ A2 · · · ∧ An → A

and every term which occurs in the atom A occurs also in one of the atoms

A1, A2, . . . ,An.
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Generalization: Superficial Horn clauses

Theorem. Let H be a set of superficial Horn clauses and let C be a ground

Horn clause. Then the following are equivalent:

(1) H |= C

(2) H[C ] |= C

where H[C ] is the family of all instances of H in which all terms are ground

terms occurrring in C or in H.

For every ground clause C , H |= C can be checked in PTIME

(if we assume H is fixed)

Proof: Use ordered resolution with selection.
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Generalization: Local theories

[McAllester,Givan’92], [Basin,Ganzinger’96,01], [Ganzinger’01]

Assumption: the signature is allowed to contain function symbols

Definition. H set of Horn clauses is called local iff for every ground clause

C the following are equivalent:

(1) H |= C

(2) H[C ] |= C ,

where H[C ] is the family of all instances of H in which the variables are

replaced by ground subterms occurring in H or C .

Theorem. For a fixed local theory H, testing ground entailment w.r.t. H is

in PTIME.

Will be discussed in more detail later
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Applications

Use ordered resolution with selection to give a decision procedure

for the Ackermann class.
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The Ackermann class

Σ = (Ω,Π), Ω is a finite set of constants

The Ackermann class consists of all sentences of the form

∃x1 . . . ∃xn∀x∃y1 . . . ∃ymF (x1, . . . , xn, y1, . . . , ym)

Idea: CNF translation:

∃x1 . . . ∃xn∀x∃y1 . . . ∃ymF (x1, . . . , xn, x , y1, . . . , ym)

⇒S ∀xF (c1, . . . , cn, x , f1(x), . . . , fm(x))

⇒K ∀x
V W

Li (c1, . . . , cn, x , f1(x), . . . , fm(x))

c1, . . . , cn are Skolem constants

f1, . . . , fm are unary Skolem functions
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The Ackermann class

Σ = (Ω,Π), Ω is a finite set of constants

The Ackermann class consists of all sentences of the form

∃x1 . . . ∃xn∀x∃y1 . . . ∃ymF (x1, . . . , xn, y1, . . . , ym)

Idea: CNF translation:

∃x1 . . . ∃xn∀x∃y1 . . . ∃ymF (x1, . . . , xn, x , y1, . . . , ym)

⇒∗ ∀x
V W

Li (c1, . . . , cn, x , f1(x), . . . , fm(x))

The clauses are in the following classes:

G = G(c1, . . . , cn) ground clauses without function symbols

V = V (x , c1, . . . , cn) clauses with one variable and without function symbols

Gf = G(c1, . . . , cn, f1, . . . , fn) ground clauses with function symbols

Vf = V (x , c1, . . . , cn, f1(x), . . . , fn(x)) clauses with a variable & function symbols
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The Ackermann class

G = G(c1, . . . , cn) ground clauses without function symbols

V = V (x , c1, . . . , cn) clauses with one variable and without function symbols

Gf = G(c1, . . . , cn, f1, . . . , fn) ground clauses with function symbols

Vf = V (x , c1, . . . , cn, f1(x), . . . , fn(x)) clauses with a variable & function symbols

Term ordering

f (t) ≻ t; terms containing function symbols larger than those who do not.

B ≻ A iff exists argument u of B such that every argument t of A: u ≻ t

Ordered resolution: G ∪ V ∪ Gf ∪ Vf is closed under ordered resolution.

G ,G 7→ G ; G ,V 7→ G ; G ,Gf 7→ nothing; G ,Vf 7→ nothing

V ,V 7→ V ∪ G ; V ,Gf 7→ G ∪ Gf ; V ,Vf 7→ G ∪ V ∪ Gf ∪ Vf

Gf ,Gf 7→ Gf ; Gf ,Vf 7→ Gf ∪ G ; Vf ,Vf 7→ G ∪ V ∪ Vf ∪ Gf

Observation 1: G ∪ V ∪ Gf ∪ Vf finite set of clauses (up to remaming of

variables).
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The Ackermann class

G = G(c1, . . . , cn) ground clauses without function symbols

V = V (x , c1, . . . , cn) clauses with one variable and without function symbols

Gf = G(c1, . . . , cn, fi ) ground clauses with function symbols

Vf = V (x , c1, . . . , cn, f1(x), . . . , fn(x)) clauses with a variable & function symbols

Term ordering

f (t) ≻ t; terms containing function symbols larger than those who do not.

B ≻ A iff exists argument u of B such that every argument t of A: u ≻ t

Ordered resolution: G ∪ V ∪ Gf ∪ Vf is closed under ordered resolution.

G ,G 7→ G ; G ,V 7→ G ; G ,Gf 7→ nothing; G ,Vf 7→ nothing

V ,V 7→ V ∪ G ; V ,Gf 7→ G ∪ Gf ; V ,Vf 7→ G ∪ V ∪ Gf ∪ Vf

Gf ,Gf 7→ Gf ; Gf ,Vf 7→ Gf ∪ G ; Vf ,Vf 7→ G ∪ V ∪ Vf ∪ Gf

Observation 2: No clauses with nested function symbols can be generated.
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3.2 Deduction problems

Satisfiability w.r.t. a theory
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Satisfiability w.r.t. a theory

Example

Let Σ = ({e/0, ∗/2, i/1}, ∅)

Let F consist of all (universally quantified) group axioms:

∀x , y , z x ∗ (y ∗ z) ≈ (x ∗ y) ∗ z

∀x x ∗ i(x) ≈ e ∧ i(x) ∗ x ≈ e

∀x x ∗ e ≈ x ∧ e ∗ x ≈ x

Question: Is ∀x , y(x ∗ y = y ∗ x) entailed by F?
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Satisfiability w.r.t. a theory

Example

Let Σ = ({e/0, ∗/2, i/1}, ∅)

Let F consist of all (universally quantified) group axioms:

∀x , y , z x ∗ (y ∗ z) ≈ (x ∗ y) ∗ z

∀x x ∗ i(x) ≈ e ∧ i(x) ∗ x ≈ e

∀x x ∗ e ≈ x ∧ e ∗ x ≈ x

Question: Is ∀x , y(x ∗ y = y ∗ x) entailed by F?

Alternative question:

Is ∀x , y(x ∗ y = y ∗ x) true in the class of all groups?
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Logical theories

Syntactic view

first-order theory: given by a set F of (closed) first-order Σ-formulae.

the models of F : Mod(F) = {A ∈ Σ-alg | A |= G , for all G in F}

Semantic view

given a class M of Σ-algebras

the first-order theory of M: Th(M) = {G ∈ FΣ(X ) closed | M |= G}
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Decidable theories

Let Σ = (Ω, Π) be a signature.

M: class of Σ-algebras. T = Th(M) is decidable

iff

there is an algorithm which, for every closed first-order formula φ, can

decide (after a finite number of steps) whether φ is in T or not.

F : class of (closed) first-order formulae.

The theory T = Th(Mod(F)) is decidable

iff

there is an algorithm which, for every closed first-order formula φ, can

decide (in finite time) whether F |= φ or not.
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Examples

Undecidable theories

•Th((Z, {0, 1,+, ∗}, {≤}))

•Th(Σ-alg)
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Peano arithmetic

Peano axioms: ∀x ¬(x + 1 ≈ 0) (zero)

∀x∀y (x + 1 ≈ y + 1 → x ≈ y (successor)

F [0] ∧ (∀x (F [x] → F [x + 1]) → ∀xF [x]) (induction)

∀x (x + 0 ≈ x) (plus zero)

∀x , y (x + (y + 1) ≈ (x + y) + 1) (plus successor)

∀x , y (x ∗ 0 ≈ 0) (times 0)

∀x , y (x ∗ (y + 1) ≈ x ∗ y + x) (times successor)

3 ∗ y + 5 > 2 ∗ y expressed as ∃z(z 6= 0 ∧ 3 ∗ y + 5 ≈ 2 ∗ y + z)

Intended interpretation: (N, {0, 1,+, ∗}, {≈,≤})

(does not capture true arithmetic by Goedel’s incompleteness theorem)
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Examples

In order to obtain decidability results:

• Restrict the signature

• Enrich axioms

• Look at certain fragments
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Examples

In order to obtain decidability results:

• Restrict the signature

• Enrich axioms

• Look at certain fragments

Decidable theories

• Presburger arithmetic decidable in 3EXPTIME [Presburger’29]

Signature: ({0, 1,+}, {≈,≤}) (no ∗)

Axioms { (zero), (successor), (induction), (plus zero), (plus successor) }

• Th(Z+) Z+ = (Z, 0, s, +,≤) the standard interpretation of integers.
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Examples

In order to obtain decidability results:

• Restrict the signature

• Enrich axioms

• Look at certain fragments

Decidable theories

• The theory of real numbers (with addition and multiplication)

is decidable in 2EXPTIME [Tarski’30]
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Examples

In order to obtain decidability results:

• Restrict the signature

• Enrich axioms

• Look at certain fragments
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Problems

T : first-order theory in signature Σ; L class of (closed) Σ-formulae

Given φ in L, is it the case that T |= φ?

Common restrictions on L

Pred = ∅ {φ ∈ L | T |= φ}

L={∀xA(x) | A atomic} word problem

L={∀x(A1∧ . . .∧An→B) | Ai ,B atomic} uniform word problem Th∀Horn

L={∀xC(x) | C(x) clause} clausal validity problem Th∀,cl

L={∀xφ(x) | φ(x) unquantified} universal validity problem Th∀

L={∃xA1∧ . . .∧An | Ai atomic} unification problem Th∃

L={∀x∃xA1∧ . . .∧An | Ai atomic} unification with constants Th∀∃
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T -validity vs. T -satisfiability

T -validity: Let T be a first-order theory in signature Σ

Let L be a class of (closed) Σ-formulae

Given φ in L, is it the case that T |= φ?

Remark: T |= φ iff T ∪ ¬φ unsatisfiable

Every T -validity problem has a dual T -satisfiability problem:

T -satisfiability: Let T be a first-order theory in signature Σ

Let L be a class of (closed) Σ-formulae

¬L = {¬φ | φ ∈ L}

Given ψ in ¬L, is it the case that T ∪ ψ is satisfiable?
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T -validity vs. T -satisfiability

Common restrictions on L / ¬L

L ¬L

{∀xA(x) | A atomic} {∃x¬A(x) | A atomic}

{∀x(A1∧ . . .∧An→B) | Ai ,B atomic} {∃x(A1∧ . . .∧An∧¬B) | Ai ,B atomic}

{∀x
W

Li | Li literals} {∃x
V

L′

i
| L′

i
literals}

{∀xφ(x) | φ(x) unquantified} {∃xφ′(x) | φ′(x) unquantified}

validity problem for universal formulae ground satisfiability problem
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T -validity vs. T -satisfiability

Common restrictions on L / ¬L

L ¬L

{∀xA(x) | A atomic} {∃x¬A(x) | A atomic}

{∀x(A1∧ . . .∧An→B) | Ai ,B atomic} {∃x(A1∧ . . .∧An∧¬B) | Ai ,B atomic}

{∀x
W

Li | Li literals} {∃x
V

L′

i
| L′

i
literals}

{∀xφ(x) | φ(x) unquantified} {∃xφ′(x) | φ′(x) unquantified}

validity problem for universal formulae ground satisfiability problem

In what follows we will focus on the problem of checking the satisfiability

of conjunctions of ground literals
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T -validity vs. T -satisfiability

T |= ∀xA(x) iff T ∪ ∃x¬A(x) unsatisfiable

T |= ∀x(A1 ∧ · · · ∧ An → B) iff T ∪ ∃x(A1 ∧ · · · ∧ An ∧ ¬B) unsatisfiable

T |= ∀x(
Wn

i=1 Ai ∨
Wm

j=1 ¬Bj ) iff T ∪ ∃x(¬A1 ∧ · · · ∧ ¬An ∧ B1 ∧ · · · ∧ Bm)

unsatisfiable

T -satisfiability vs. Constraint Solving

The field of Constraint Solving also deals with satisfiability problems

But be careful:

• in Constraint Solving one is interested if a formula is

satisfiable in a given, fixed model of T .

• in T -satisfiability one is interested if a formula is

satisfiable in any model of T at all.
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3.3. Theory of Uninterpreted Function Symbols

Why?

- Reasoning about equalities is important in automated reasoning

- Applications to program verification

(approximation: abstract from additional properties)
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Application: Compiler Validation

Example: prove equivalence of source and target program

1: y := 1

2: if z = x*x*x

3: then y := x*x + y

4: endif

1: y := 1

2: R1 := x*x

3: R2 := R1*x

4: jmpNE(z,R2,6)

5: y := R1+1

To prove: (indexes refer to values at line numbers)

y1 ≈ 1 ∧ [(z0 ≈ x0 ∗ x0 ∗ x0 ∧ y3 ≈ x0 ∗ x0 + y1) ∨ (z0 6≈ x0 ∗ x0 ∗ x0 ∧ y3 ≈ y1)]∧

y ′

1 ≈ 1 ∧ R12 ≈ x ′

0 ∗ x ′

0 ∧ R23 ≈ R12 ∗ x ′

0∧

∧ [(z′

0 ≈ R23 ∧ y ′

5 ≈ R12 + 1) ∨ (z′

0 6= R23 ∧ y ′

5 ≈ y ′

1)]∧

x0 ≈ x ′

0 ∧ y0 ≈ y ′

0 ∧ z0 ≈ z′

0 =⇒ x0 ≈ x ′

0 ∧ y3 ≈ y ′

5 ∧ z0 ≈ z′

0
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Possibilities for checking it

(1) Abstraction.

Consider ∗ to be a “free” function symbol (forget its properties).

Test it property can be proved in this approximation. If so,

then we know that implication holds also under the normal

interpretation of ∗.

(2) Reasoning about formulae in fragments of arithmetic.

45



Uninterpreted function symbols

Let Σ = (Ω, Π) be arbitrary

Let M = Σ-alg be the class of all Σ-structures

The theory of uninterpreted function symbols is Th(Σ-alg) the family

of all first-order formulae which are true in all Σ-algebras.

in general undecidable

Decidable fragment:

e.g. the class Th∀(Σ-alg) of all universal formulae which are true in

all Σ-algebras.
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Uninterpreted function symbols

Assume Π = ∅ (and ≈ is the only predicate)

In this case we denote the theory of uninterpreted function symbols

by UIF (Σ) (or UIF when the signature is clear from the context).

This theory is sometimes called the theory of free functions and

denoted Free(Σ)
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Uninterpreted function symbols

Theorem 3.3.1

The following are equivalent:

(1) testing validity of universal formulae w.r.t. UIF is decidable

(2) testing validity of (universally quantified) clauses w.r.t. UIF is

decidable

Proof: Follows from the fact that any universal formula is equivalent to a

conjunction of (universally quantified) clauses.
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