Decision Procedures in Verification

Decision Procedures (1)
10.12.2012

Viorica Sofronie-Stokkermans
e-mail: sofronie@uni-koblenz.de

Until now:

First-Order Logic
Syntax, semantics
Algorithmic Problems; Decidability, Undecidability
Methods for checking satisfiability: resolution

Herbrand Interpretations

Assume Ω contains at least one constant symbol.
A Herbrand interpretation (over Σ) is a Σ-algebra \mathcal{A} such that:

- $U_{\mathcal{A}}=\mathrm{T}_{\Sigma}(=$ the set of ground terms over $\Sigma)$
- $f_{\mathcal{A}}:\left(s_{1}, \ldots, s_{n}\right) \mapsto f\left(s_{1}, \ldots, s_{n}\right), f / n \in \Omega$

A Herbrand interpretation I is called a Herbrand model of F if $I \models F$.

Theorem 2.13
Let N be a set of Σ-clauses.

$$
\begin{aligned}
N \text { satisfiable } & \Leftrightarrow \quad N \text { has a Herbrand model (over } \Sigma) \\
& \left.\Leftrightarrow \quad G_{\Sigma}(N) \text { has a Herbrand model (over } \Sigma\right)
\end{aligned}
$$

where $G_{\Sigma}(N)=\left\{C \sigma\right.$ ground clause $\left.\mid C \in N, \sigma: X \rightarrow \mathrm{~T}_{\Sigma}\right\}$ is the set of ground instances of N.

The Bernays-Schönfinkel Class

$\Sigma=(\Omega, \Pi), \Omega$ is a finite set of constants
The Bernays-Schönfinkel class consists only of sentences of the form

$$
\exists x_{1} \ldots \exists x_{n} \forall y_{1} \ldots \forall y_{m} F\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right)
$$

Idea: CNF translation:

$$
\begin{aligned}
& \exists \bar{x}_{1} \forall \bar{y}_{1} F_{1} \wedge \ldots \exists \bar{x}_{n} \forall \bar{y}_{n} F_{n} \\
& \Rightarrow_{P} \exists \bar{x}_{1} \ldots \exists \bar{x}_{n} \forall \bar{y}_{1} \ldots \forall \bar{y}_{n} F\left(\bar{x}_{1}, \ldots, \bar{x}_{n}, \bar{y}_{1}, \ldots, \bar{y}_{n}\right) \\
& \Rightarrow_{S} \forall \bar{y}_{1} \ldots \forall \bar{y}_{m} F\left(\bar{c}_{1}, \ldots, \bar{c}_{n}, \bar{y}_{1}, \ldots, \bar{y}_{n}\right) \\
& \Rightarrow_{k} \forall \bar{y}_{1} \ldots \forall \bar{y}_{m} \wedge \bigvee L_{i}\left(\left(\bar{c}_{1}, \ldots, \bar{c}_{n}, \bar{y}_{1}, \ldots, \bar{y}_{n}\right)\right. \\
& \bar{c}_{1}, \ldots, \bar{c}_{n} \text { are tuples of Skolem constants }
\end{aligned}
$$

The Bernays-Schönfinkel Class

$\Sigma=(\Omega, \Pi), \Omega$ is a finite set of constants
The Bernays-Schönfinkel class consists only of sentences of the form

$$
\exists x_{1} \ldots \exists x_{n} \forall y_{1} \ldots \forall y_{m} F\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right)
$$

Idea: CNF translation:

$$
\begin{aligned}
& \exists \bar{x}_{1} \forall \bar{y}_{1} F_{1} \wedge \ldots \exists \bar{x}_{n} \forall \bar{y}_{n} F_{n} \\
& \Rightarrow_{K}^{*} \forall \bar{y}_{1} \ldots \forall \bar{y}_{m} \wedge \bigvee L_{i}\left(\left(\bar{c}_{1}, \ldots, \bar{c}_{n}, \bar{y}_{1}, \ldots, \bar{y}_{n}\right)\right. \\
& \bar{c}_{1}, \ldots, \bar{c}_{n} \text { are tuples of Skolem constants }
\end{aligned}
$$

The Herbrand Universe is finite \mapsto decidability

Tractable fragments of FOL

In the exercise we saw that satisfiability of any finite set of ground Horn clauses can be checked in PTIME (linear time)

Variable-free Horn clauses

Data structures

$$
\text { Atoms } \quad P_{1}, \ldots, P_{n} \quad \mapsto \quad\{1, \ldots, n\}
$$

neg-occ-list(A): list of all clauses in which A occurs negatively pos-occ-list(A): list of all clauses in which A occurs positively
Clause:

P_{1}	P_{2}	\ldots	P_{n}	counter
neg	neg		pos	\uparrow

number of literals
first-active-literal: first literal not marked as deleted.

atom status:	pos	(deduced as positive unit clause)
	neg	(deduced as negative unit clause)
	nounit	(otherwise)

Variable-free Horn clauses

Input: Set N of Horn formulae

Step 1. Collect unit clauses; check if complementary pairs exist forall $C \in N$ do
if is-unit(C) then begin
const. time
$\mathrm{L}:=$ first-active-literal(C)
const. time
if state $(\operatorname{atom}(\mathrm{L}))=$ nounit then state $(\operatorname{atom}(\mathrm{L}))=\operatorname{sign}(\mathrm{L})$ const. time push(atom (L), stack) else if state $(\operatorname{atom}(\mathrm{L})) \neq \operatorname{sign}(\mathrm{L})$ then return false

Variable-free Horn clauses

```
2. Process the unit clauses in the stack
while stack \(\neq \emptyset\) do
    begin \(A:=\) top(stack); pop(stack)
    if state \((A)=\) pos then delete-literal-list \(:=\) neg-oc-list \((A) \quad O\) (\# neg-oc-list)
    else delete-literal-list \(:=\) pos-oc-list \((A) \quad O\) (\# pos-oc-list)
    endif
    for all \(C\) in delete-literal-list do
    if state \((A)=\) pos then delete-literal \((A, C) \quad\) const. time + nfal - ofal
    if state \((A)=\) neg then delete-literal \((\neg A, C) \quad\) const. time + nfal - ofal
    if unit(C) then \(\mathrm{L} 1:=\) first-active-literal(C)
                                    const. time
                        if state \((\operatorname{atom}(\mathrm{L} 1))=\) nounit then state \((\operatorname{atom}(\mathrm{L} 1))=\operatorname{sign}(\mathrm{L} 1)\),
                        L1 \(\rightarrow\) stack
                        elseif state \((\operatorname{atom}(L 1)) \neq \operatorname{sign}(L 1)\) then return false
    endif
end
```


Tractable fragments of FOL

We showed that satisfiability of any finite set of ground Horn clauses can be checked in PTIME (linear time)

- Similar fragment of the Bernays-Schönfinkel class?

Motivation: Deductive Databases

Deductive database

Inference rules:
Facts:
Query:

Motivation: Deductive Databases

Deductive database Example: reachability in graphs

Inference rules:	$\frac{S(x)}{R(x)} \quad \frac{R(x) E(x, y)}{R(y)}$
Facts:	$S(a), E(a, c), E(c, d), E(d, c), E(b, c)$
Query:	$R(d)$

$$
S(a), E(a, c), E(c, d), E(d, c), E(b, c)
$$

Note: S, E stored relations (Extensional DB) R defined relation (Intensional DB)

Motivation: Deductive Databases

Deductive database Example: reachability in graphs

Inference rules:	$\frac{S(x)}{R(x)} \quad \frac{R(x) E(x, y)}{R(y)}$
Facts:	$S(a), E(a, c), E(c, d), E(d, c), E(b, c)$
Query:	$R(d)$

$S(a), E(a, c), E(a, d), E(c, d), E(b, c)$,
$R(a)$
Note: S, E stored relations (Extensional DB) R defined relation (Intensional DB)

Motivation: Deductive Databases

Deductive database Example: reachability in graphs

Inference rules:	$\frac{S(x)}{R(x)} \quad \frac{R(x) E(x, y)}{R(y)}$
Facts:	$S(a), E(a, c), E(c, d), E(d, c), E(b, c)$
Query:	$R(d)$

$$
\begin{aligned}
& S(a), E(a, c), E(a, d), E(c, d), E(b, c), \\
& R(a), R(c)
\end{aligned}
$$

Note: S, E stored relations (Extensional DB) R defined relation (Intensional DB)

Motivation: Deductive Databases

Deductive database Example: reachability in graphs

Inference rules:	$\frac{S(x)}{R(x)} \quad \frac{R(x) E(x, y)}{R(y)}$
Facts:	$S(a), E(a, c), E(c, d), E(d, c), E(b, c)$
Query:	$R(d)$

$$
\begin{aligned}
& S(a), E(a, c), E(a, d), E(c, d), E(b, c), \\
& R(a), R(c), R(d)
\end{aligned}
$$

Note: S, E stored relations (Extensional DB) R defined relation (Intensional DB)

Motivation: Deductive Databases

Deductive database \mapsto Datalog (Horn clauses, no function symbols)

Inference rules:	$\underbrace{S(x) \rightarrow R(x) \quad R(x) \wedge E(x, y) \rightarrow R(y)}_{\text {set } \mathcal{K} \text { of Horn clauses }}$
Facts:	$\underbrace{S(a), E(a, c), E(c, d), E(d, c), E(b, c)}_{\text {set } \mathcal{F} \text { of ground atoms }}$
Query:	$\underbrace{R(d)}_{\text {ground atom } G}$

$$
\mathcal{F} \models \mathcal{K} G \quad \text { iff } \quad \mathcal{K} \cup \mathcal{F} \models G \quad \text { iff } \quad \mathcal{K} \cup \mathcal{F} \cup \neg G \models \perp
$$

Note: S, E stored relations (Extensional DB)
R defined relation (Intensional DB)

Motivation: Deductive Databases

Deductive database \mapsto Datalog (Horn clauses, no function symbols)

Inference rules:	$\underbrace{S(x) \rightarrow R(x) \quad R(x) \wedge E(x, y) \rightarrow R(y)}_{\text {set } \mathcal{K} \text { of Horn clauses }}$
Facts:	$\underbrace{S(a), E(a, c), E(c, d), E(d, c), E(b, c)}_{\text {set } \mathcal{F} \text { of ground atoms }}$
Query:	$\underbrace{R(d)}_{\text {ground atom } G}$

Ex:

$$
\frac{S(a) \quad S(x) \rightarrow R(x)}{R(a)} \frac{E(a, c) \quad R(x) \wedge E(x, y) \rightarrow R(y)}{R(c)}
$$

$$
\begin{array}{ll}
E(c, d) & R(x) \wedge E(x, y) \rightarrow R(y) \\
\hline R(d)
\end{array}
$$

Ground entailment for function-free Horn clauses

Assumption:

The signature does not contain function symbols of arity ≥ 1.
Given:

- Set H of (function-free) Horn clauses
- Ground Horn clause $G=\bigwedge A_{i} \rightarrow A$.

The following are equivalent:
(1) $H \models \wedge A_{i} \rightarrow A$
(2) $H \wedge \wedge A_{i} \models A$
(3) $H \wedge \wedge A_{i} \wedge \neg A \models \perp$

Decidable in PTIME in the size of G for a fixed H.

Generalization: Superficial Horn clauses

Assumption:
The signature may contain function symbols of arity ≥ 1.

Definition: A Horn clause is called superficial if it is of the form

$$
A_{1} \wedge A_{2} \cdots \wedge A_{n} \rightarrow A
$$

and every term which occurs in the atom A occurs also in one of the atoms $A_{1}, A_{2}, \ldots, A_{n}$.

Generalization: Superficial Horn clauses

Theorem. Let H be a set of superficial Horn clauses and let C be a ground Horn clause. Then the following are equivalent:
(1) $H \models C$
(2) $H[C] \models C$
where $H[C]$ is the family of all instances of H in which all terms are ground terms occurrring in C or in H .

For every ground clause $C, H \models C$ can be checked in PTIME (if we assume H is fixed)

Proof: Use ordered resolution with selection.

Generalization: Local theories

[McAllester,Givan'92], [Basin,Ganzinger'96,01], [Ganzinger'01]

Assumption: the signature is allowed to contain function symbols

Definition. H set of Horn clauses is called local iff for every ground clause C the following are equivalent:
(1) $H \models C$
(2) $H[C] \vDash C$,
where $H[C]$ is the family of all instances of H in which the variables are replaced by ground subterms occurring in H or C.

Theorem. For a fixed local theory H, testing ground entailment w.r.t. H is in PTIME.

Will be discussed in more detail later

Applications

Use ordered resolution with selection to give a decision procedure for the Ackermann class.

The Ackermann class

$\Sigma=(\Omega, \Pi), \Omega$ is a finite set of constants
The Ackermann class consists of all sentences of the form

$$
\exists x_{1} \ldots \exists x_{n} \forall x \exists y_{1} \ldots \exists y_{m} F\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}\right)
$$

Idea: CNF translation:

$$
\begin{aligned}
& \exists x_{1} \ldots \exists x_{n} \forall x \exists y_{1} \ldots \exists y_{m} F\left(x_{1}, \ldots, x_{n}, x, y_{1}, \ldots, y_{m}\right) \\
& \quad \Rightarrow_{s} \forall x F\left(\bar{c}_{1}, \ldots, \bar{c}_{n}, x, f_{1}(x), \ldots, f_{m}(x)\right) \\
& \quad \Rightarrow_{K} \forall x \wedge \bigvee L_{i}\left(c_{1}, \ldots, c_{n}, x, f_{1}(x), \ldots, f_{m}(x)\right) \\
& c_{1}, \ldots, c_{n} \text { are Skolem constants } \\
& f_{1}, \ldots, f_{m} \text { are unary Skolem functions }
\end{aligned}
$$

The Ackermann class

$\Sigma=(\Omega, \Pi), \Omega$ is a finite set of constants
The Ackermann class consists of all sentences of the form

$$
\exists x_{1} \ldots \exists x_{n} \forall x \exists y_{1} \ldots \exists y_{m} F\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}\right)
$$

Idea: CNF translation:

$$
\left.\begin{array}{l}
\exists x_{1} \ldots \exists x_{n} \forall x \exists y_{1} \ldots \exists y_{m} F\left(x_{1}, \ldots, x_{n}, x, y_{1}, \ldots, y_{m}\right) \\
\quad \Rightarrow^{*} \forall x
\end{array}\right) \bigvee L_{i}\left(c_{1}, \ldots, c_{n}, x, f_{1}(x), \ldots, f_{m}(x)\right) \text {. }
$$

The clauses are in the following classes:
$G=G\left(c_{1}, \ldots, c_{n}\right)$ ground clauses without function symbols
$V=V\left(x, c_{1}, \ldots, c_{n}\right)$ clauses with one variable and without function symbols
$G_{f}=G\left(c_{1}, \ldots, c_{n}, f_{1}, \ldots, f_{n}\right)$ ground clauses with function symbols
$V_{f}=V\left(x, c_{1}, \ldots, c_{n}, f_{1}(x), \ldots, f_{n}(x)\right)$ clauses with a variable \& function symbols

The Ackermann class

$G=G\left(c_{1}, \ldots, c_{n}\right)$ ground clauses without function symbols
$V=V\left(x, c_{1}, \ldots, c_{n}\right)$ clauses with one variable and without function symbols $G_{f}=G\left(c_{1}, \ldots, c_{n}, f_{1}, \ldots, f_{n}\right)$ ground clauses with function symbols
$V_{f}=V\left(x, c_{1}, \ldots, c_{n}, f_{1}(x), \ldots, f_{n}(x)\right)$ clauses with a variable \& function symbols
Term ordering
$f(t) \succ t$; terms containing function symbols larger than those who do not.
$B \succ A$ iff exists argument u of B such that every argument t of $A: u \succ t$
Ordered resolution: $G \cup V \cup G_{f} \cup V_{f}$ is closed under ordered resolution.
$G, G \mapsto G ; \quad G, V \mapsto G ; \quad G, G f \mapsto$ nothing; $G, V_{f} \mapsto$ nothing
$V, V \mapsto V \cup G ; \quad V, G_{f} \mapsto G \cup G_{f} ; \quad V, V_{f} \mapsto G \cup V \cup G_{f} \cup V_{f}$
$G_{f}, G_{f} \mapsto G_{f} ; \quad G_{f}, V_{f} \mapsto G_{f} \cup G ; \quad V_{f}, V_{f} \mapsto G \cup V \cup V_{f} \cup G_{f}$
Observation 1: $G \cup V \cup G_{f} \cup V_{f}$ finite set of clauses (up to remaming of variables).

The Ackermann class

$G=G\left(c_{1}, \ldots, c_{n}\right)$ ground clauses without function symbols
$V=V\left(x, c_{1}, \ldots, c_{n}\right)$ clauses with one variable and without function symbols
$G_{f}=G\left(c_{1}, \ldots, c_{n}, f_{i}\right)$ ground clauses with function symbols
$V_{f}=V\left(x, c_{1}, \ldots, c_{n}, f_{1}(x), \ldots, f_{n}(x)\right)$ clauses with a variable \& function symbols

Term ordering

$f(t) \succ t$; terms containing function symbols larger than those who do not.
$B \succ A$ iff exists argument u of B such that every argument t of $A: u \succ t$
Ordered resolution: $G \cup V \cup G_{f} \cup V_{f}$ is closed under ordered resolution.
$G, G \mapsto G ; \quad G, V \mapsto G ; \quad G, G_{f} \mapsto$ nothing; $G, V_{f} \mapsto$ nothing
$V, V \mapsto V \cup G ; \quad V, G_{f} \mapsto G \cup G_{f} ; \quad V, V_{f} \mapsto G \cup V \cup G_{f} \cup V_{f}$
$G_{f}, G_{f} \mapsto G_{f} ; \quad G_{f}, V_{f} \mapsto G_{f} \cup G ; \quad V_{f}, V_{f} \mapsto G \cup V \cup V_{f} \cup G_{f}$
Observation 2: No clauses with nested function symbols can be generated.

3.2 Deduction problems

Satisfiability w.r.t. a theory

Satisfiability w.r.t. a theory

Example

Let $\Sigma=(\{e / 0, * / 2, i / 1\}, \emptyset)$
Let \mathcal{F} consist of all (universally quantified) group axioms:

$$
\begin{array}{rl}
\forall x, y, z & x *(y * z) \\
\forall x & x * i(x) \\
\forall x \wedge y) * z \\
\forall x & x * e
\end{array}
$$

Question: Is $\forall x, y(x * y=y * x)$ entailed by \mathcal{F} ?

Satisfiability w.r.t. a theory

Example

Let $\Sigma=(\{e / 0, * / 2, i / 1\}, \emptyset)$
Let \mathcal{F} consist of all (universally quantified) group axioms:

$$
\begin{array}{rl}
\forall x, y, z & x *(y * z) \\
\forall x & x * i(x) \\
\forall x \wedge y) * z \\
\forall x & x * e
\end{array}
$$

Question: Is $\forall x, y(x * y=y * x)$ entailed by \mathcal{F} ?
Alternative question:
Is $\forall x, y(x * y=y * x)$ true in the class of all groups?

Logical theories

Syntactic view

first-order theory: given by a set \mathcal{F} of (closed) first-order \sum-formulae. the models of $\mathcal{F}: \quad \operatorname{Mod}(\mathcal{F})=\{\mathcal{A} \in \Sigma$-alg $\mid \mathcal{A} \models G$, for all G in $\mathcal{F}\}$

Semantic view
given a class \mathcal{M} of Σ-algebras
the first-order theory of $\mathcal{M}: \operatorname{Th}(\mathcal{M})=\left\{G \in F_{\Sigma}(X)\right.$ closed $\left.\mid \mathcal{M} \models G\right\}$

Decidable theories

Let $\Sigma=(\Omega, \Pi)$ be a signature.
\mathcal{M} : class of \sum-algebras. $\quad \mathcal{T}=\operatorname{Th}(\mathcal{M})$ is decidable iff
there is an algorithm which, for every closed first-order formula ϕ, can decide (after a finite number of steps) whether ϕ is in \mathcal{T} or not.
\mathcal{F} : class of (closed) first-order formulae.
The theory $\mathcal{T}=\operatorname{Th}(\operatorname{Mod}(\mathcal{F}))$ is decidable iff
there is an algorithm which, for every closed first-order formula ϕ, can decide (in finite time) whether $\mathcal{F} \models \phi$ or not.

Examples

Undecidable theories

- $\operatorname{Th}((\mathbb{Z},\{0,1,+, *\},\{\leq\}))$
-Th (Σ-alg)

Peano arithmetic

$$
\begin{array}{ll}
\text { Peano axioms: } & \forall x \neg(x+1 \approx 0) \\
& \forall x \forall y(x+1 \approx y+1 \rightarrow x \approx y \\
& F[0] \wedge(\forall x(F[x] \rightarrow F[x+1]) \rightarrow \forall x F[x]) \\
& \forall x(x+0 \approx x) \\
& \forall x, y(x+(y+1) \approx(x+y)+1) \\
& \forall x, y(x * 0 \approx 0) \\
& \forall x, y(x *(y+1) \approx x * y+x) \\
\text { (successor) } \\
\text { (induction) } \\
3 * y+5>2 * y \text { (plus zero) } \\
\text { (plus successor) } \\
\text { (times } 0)
\end{array}
$$

Intended interpretation: $(\mathbb{N},\{0,1,+, *\},\{\approx, \leq\})$
(does not capture true arithmetic by Goedel's incompleteness theorem)

Examples

In order to obtain decidability results:

- Restrict the signature
- Enrich axioms
- Look at certain fragments

Examples

In order to obtain decidability results:

- Restrict the signature
- Enrich axioms
- Look at certain fragments

Decidable theories

- Presburger arithmetic decidable in 3EXPTIME [Presburger'29]

Signature: $(\{0,1,+\},\{\approx, \leq\})($ no $*)$
Axioms \{ (zero), (successor), (induction), (plus zero), (plus successor) \}

- $\operatorname{Th}\left(\mathbb{Z}_{+}\right) \quad \mathbb{Z}_{+}=(\mathbb{Z}, 0, s,+, \leq)$ the standard interpretation of integers.

Examples

In order to obtain decidability results:

- Restrict the signature
- Enrich axioms
- Look at certain fragments

Decidable theories

- The theory of real numbers (with addition and multiplication) is decidable in 2EXPTIME [Tarski'30]

Examples

In order to obtain decidability results:

- Restrict the signature
- Enrich axioms
- Look at certain fragments

Problems

\mathcal{T} : first-order theory in signature Σ; \mathcal{L} class of (closed) Σ-formulae
Given ϕ in \mathcal{L}, is it the case that $\mathcal{T} \models \phi$?

Common restrictions on \mathcal{L}

$$
\text { Pred }=\emptyset \quad\{\phi \in \mathcal{L} \mid \mathcal{T} \models \phi\}
$$

$\mathcal{L}=\{\forall x A(x) \mid A$ atomic $\}$
word problem
$\mathcal{L}=\left\{\forall x\left(A_{1} \wedge \ldots \wedge A_{n} \rightarrow B\right) \mid A_{i}, B\right.$ atomic $\}$ uniform word problem Th ${ }_{\forall H \text { Horn }}$
$\mathcal{L}=\{\forall x C(x) \mid C(x)$ clause $\}$
clausal validity problem $\mathrm{Th}_{\forall, \mathrm{cl}}$
$\mathcal{L}=\{\forall x \phi(x) \mid \phi(x)$ unquantified $\}$
universal validity problem Th_{\forall}
$\mathcal{L}=\left\{\exists x A_{1} \wedge \ldots \wedge A_{n} \mid A_{i}\right.$ atomic $\} \quad$ unification problem $\quad \mathrm{Th}_{\exists}$
$\mathcal{L}=\left\{\forall x \exists x A_{1} \wedge \ldots \wedge A_{n} \mid A_{i}\right.$ atomic $\} \quad$ unification with constants $T_{\forall \exists}$

\mathcal{T}-validity vs. \mathcal{T}-satisfiability

\mathcal{T}-validity: Let \mathcal{T} be a first-order theory in signature Σ
Let \mathcal{L} be a class of (closed) Σ-formulae
Given ϕ in \mathcal{L}, is it the case that $\mathcal{T} \models \phi$?

Remark: $\mathcal{T} \models \phi$ iff $\mathcal{T} \cup \neg \phi$ unsatisfiable
Every \mathcal{T}-validity problem has a dual \mathcal{T}-satisfiability problem:
\mathcal{T}-satisfiability: Let \mathcal{T} be a first-order theory in signature Σ
Let \mathcal{L} be a class of (closed) Σ-formulae
$\neg \mathcal{L}=\{\neg \phi \mid \phi \in \mathcal{L}\}$
Given ψ in $\neg \mathcal{L}$, is it the case that $\mathcal{T} \cup \psi$ is satisfiable?

\mathcal{T}-validity vs. \mathcal{T}-satisfiability

Common restrictions on $\mathcal{L} / \neg \mathcal{L}$

\mathcal{L}	$\neg \mathcal{L}$
$\{\forall x A(x) \mid A$ atomic $\}$	$\{\exists x \neg A(x) \mid A$ atomic $\}$
$\left\{\forall x\left(A_{1} \wedge \ldots \wedge A_{n} \rightarrow B\right) \mid A_{i}, B\right.$ atomic $\}$	$\left\{\exists x\left(A_{1} \wedge \ldots \wedge A_{n} \wedge \neg B\right) \mid A_{i}, B\right.$ atomic $\}$
$\left\{\forall x \bigvee L_{i} \mid L_{i}\right.$ literals $\}$	$\left\{\exists x \wedge L_{i}^{\prime} \mid L_{i}^{\prime}\right.$ literals $\}$
$\{\forall x \phi(x) \mid \phi(x)$ unquantified $\}$	$\left\{\exists x \phi^{\prime}(x) \mid \phi^{\prime}(x)\right.$ unquantified $\}$
validity problem for universal formulae	ground satisfiability problem

\mathcal{T}-validity vs. \mathcal{T}-satisfiability

Common restrictions on $\mathcal{L} / \neg \mathcal{L}$

\mathcal{L}	$\neg \mathcal{L}$	
$\{\forall x A(x) \mid A$ atomic $\}$	$\{\exists x \neg A(x) \mid A$ atomic $\}$	
$\left\{\forall x\left(A_{1} \wedge \ldots \wedge A_{n} \rightarrow B\right) \mid A_{i}, B\right.$ atomic $\}$	$\left\{\exists x\left(A_{1} \wedge \ldots \wedge A_{n} \wedge \neg B\right) \mid A_{i}, B\right.$ atomic $\}$	
$\left\{\forall x \bigvee L_{i} \mid L_{i}\right.$ literals $\}$	$\left\{\exists x \wedge L_{i}^{\prime} \mid L_{i}^{\prime}\right.$ literals $\}$	
$\{\forall x \phi(x) \mid \phi(x)$ unquantified $\}$	$\left\{\exists x \phi^{\prime}(x) \mid \phi^{\prime}(x)\right.$ unquantified $\}$	
	ground satisfiability problem	

In what follows we will focus on the problem of checking the satisfiability of conjunctions of ground literals

\mathcal{T}-validity vs. \mathcal{T}-satisfiability

$$
\begin{array}{lll}
\mathcal{T} \models \forall x A(x) & \text { iff } & \mathcal{T} \cup \exists x \neg A(x) \text { unsatisfiable } \\
\mathcal{T} \models \forall x\left(A_{1} \wedge \cdots \wedge A_{n} \rightarrow B\right) & \text { iff } & \mathcal{T} \cup \exists x\left(A_{1} \wedge \cdots \wedge A_{n} \wedge \neg B\right) \text { unsatisfiable } \\
\mathcal{T} \models \forall x\left(\bigvee_{i=1}^{n} A_{i} \vee \bigvee_{j=1}^{m} \neg B_{j}\right) & \text { iff } & \mathcal{T} \cup \exists x\left(\neg A_{1} \wedge \cdots \wedge \neg A_{n} \wedge B_{1} \wedge \cdots \wedge B_{m}\right)
\end{array}
$$

unsatisfiable

\mathcal{T}-satisfiability vs. Constraint Solving

The field of Constraint Solving also deals with satisfiability problems
But be careful:

- in Constraint Solving one is interested if a formula is satisfiable in a given, fixed model of \mathcal{T}.
- in \mathcal{T}-satisfiability one is interested if a formula is satisfiable in any model of \mathcal{T} at all.

3.3. Theory of Uninterpreted Function Symbols

Why?

- Reasoning about equalities is important in automated reasoning
- Applications to program verification (approximation: abstract from additional properties)

Application: Compiler Validation

Example: prove equivalence of source and target program
1: $y:=1$
1: $\mathrm{y}:=1$
2: if $\mathrm{z}=\mathrm{x} * \mathrm{x} * \mathrm{x}$
2: R1 : = $\mathrm{x} * \mathrm{x}$
3: \quad then $y:=x * x+y$
3: R2 := R1*x
4: endif
4: jmpNE (z,R2,6)
5: y := R1+1

To prove: (indexes refer to values at line numbers)

$$
\begin{aligned}
& y_{1} \approx 1 \wedge\left[\left(z_{0} \approx x_{0} * x_{0} * x_{0} \wedge y_{3} \approx x_{0} * x_{0}+y_{1}\right) \vee\left(z_{0} \not \approx x_{0} * x_{0} * x_{0} \wedge y_{3} \approx y_{1}\right)\right] \wedge \\
& y_{1}^{\prime} \approx 1 \wedge R 1_{2} \approx x_{0}^{\prime} * x_{0}^{\prime} \wedge R 2_{3} \approx R 1_{2} * x_{0}^{\prime} \wedge \\
& \wedge \\
& \wedge\left[\left(z_{0}^{\prime} \approx R 2_{3} \wedge y_{5}^{\prime} \approx R 1_{2}+1\right) \vee\left(z_{0}^{\prime} \neq R 2_{3} \wedge y_{5}^{\prime} \approx y_{1}^{\prime}\right)\right] \wedge \\
& x_{0} \approx x_{0}^{\prime} \wedge y_{0} \approx y_{0}^{\prime} \wedge z_{0} \approx z_{0}^{\prime} \Longrightarrow x_{0} \approx x_{0}^{\prime} \wedge y_{3} \approx y_{5}^{\prime} \wedge z_{0} \approx z_{0}^{\prime}
\end{aligned}
$$

Possibilities for checking it

(1) Abstraction.

Consider * to be a "free" function symbol (forget its properties).
Test it property can be proved in this approximation. If so, then we know that implication holds also under the normal interpretation of $*$.
(2) Reasoning about formulae in fragments of arithmetic.

Uninterpreted function symbols

Let $\Sigma=(\Omega, \Pi)$ be arbitrary
Let $\mathcal{M}=\Sigma$-alg be the class of all Σ-structures
The theory of uninterpreted function symbols is $\mathrm{Th}(\Sigma$-alg) the family of all first-order formulae which are true in all Σ-algebras.
in general undecidable

Decidable fragment:
e.g. the class $\operatorname{Th}_{\forall}(\Sigma$-alg $)$ of all universal formulae which are true in all Σ-algebras.

Uninterpreted function symbols

Assume $\Pi=\emptyset$ (and \approx is the only predicate)

In this case we denote the theory of uninterpreted function symbols by $\operatorname{UIF}(\Sigma)$ (or UIF when the signature is clear from the context).

This theory is sometimes called the theory of free functions and denoted Free (Σ)

Uninterpreted function symbols

Theorem 3.3.1
The following are equivalent:
(1) testing validity of universal formulae w.r.t. UIF is decidable
(2) testing validity of (universally quantified) clauses w.r.t. UIF is decidable

Proof: Follows from the fact that any universal formula is equivalent to a conjunction of (universally quantified) clauses.

