Decision Procedures in Verification

Decision Procedures (2)

17.12.2012

Viorica Sofronie-Stokkermans

e-mail: sofronie@uni-koblenz.de

Until now:

Logical Theories; Decision procedures
Generalities

The theory of uninterpreted function symbols (UIF): Motivation

3.3. Theory of Uninterpreted Function Symbols

Application: Compiler Verification

Example: prove equivalence of source and target program

1: y =1 1: vy =1

2: 1if z = x*x*x 2: Rl := x*x

3: then y := x*x + y 3: R2 := Rlx*x

4: endif 4: jmpNE(z,R2,6)
5: y := Rl+1

To prove: (indexes refer to values at line numbers)

NNRIA[(o~xo*xXx0*Xo ANy3s R Xxo*Xo+ Y1)V (20 % X0 * X0 * X0 A\ y3 = y1)|A
yl,%1/\R12%X6*X6/\R23%R12*X6/\
Al(zg = R23 A ys = Rl + 1)V (25 # R23 A ys =~ y])]A

/ 4 4 4 4 4
X0 RXgNYW R Yy N2aRzy — XRXgNY3RYys N2 R z

Uninterpreted function symbols

Let ¥ = (€2,) be arbitrary
Let M = X -alg be the class of all X-structures

The theory of uninterpreted function symbols is Th(X-alg) the family of all first-order
formulae which are true in all 2-algebras.

in general undecidable

Decidable fragment:
e.g. the class Thy(X-alg) of all universal formulae which are true in all X-algebras.
Theorem 3.3.1
The following are equivalent:
(1) testing validity of universal formulae w.r.t. UIF is decidable

(2) testing validity of (universally quantified) clauses w.r.t. UIF is decidable

Solution 1

Task:
Check if UIF = Vx(s1(X)=ti(X) A - A sp(X)=te(X) — Vil] (X)=t]t(X))
Solution 1:

The following are equivalent:

(1) (A;simt)—V;s =t is valid
(2) Eq(~) A Con(f) A(A;si~ti) AN(/\;s; # t7) is unsatisfiable.

where Eq(~) : Refl(~) A Sim(~) A Trans(~)

Con(f) : Vx1,...,Xn, ¥1,-- -, Yn(A\ xi~yi—f(x1,...,xn) ~ f(y1,...

Resolution: inferences between transitivity axioms — nontermination

, ¥n))

Solution 2

Task:
Check if UIF = Vx(s1(X)~t1(X) A -+ A sk (X)=te(X) — VL s; (X)=t; (X))

Solution 2: Ackermann’s reduction.

Flatten the formula (replace, bottom-up, f(c) with a new constant ¢y
O — FLAT((b)

Theorem 3.3.2: The following are equivalent:
(1) (A;si(©) = ti(€)) A\, si(€) #Z t{(c) s satisfiable
(2) FCAFLAT[(A,; si(€) = ti(€)) AN\ s;(€) # £/ ()] is satisfiable
where FC = {c=d, ... cy=d, — cr=df | whenever f(cy, .. ., cn) was renamed to cr

f(di,..., d,) was renamed to dr}

Note: The problem is decidable in PTIME (see next pages)
Problem: Naive handling of transitivity /congruence axiom — O(n?)
Goal: Give a faster algorithm

Example

The following are equivalent:

(1) C:=f(a,b)=aAnf(f(a b),b)#a

(2) FC A FLAT[C], where:

FLATI(f(a, b) = a A f(f(a, b), b) # a] is computed by introducing new constants
renaming terms starting with f and then replacing in C the terms with the constants:

o FLAT[f(a,b) = aAf(f(a,b),b) % al :=a1~aNa #%a

N —r’ N —r
a a f(a, b)=a;
b ~ 4 f(al, b):az
a2

o FC:=(am~a; — a1 ~ ap)

Thus, the following are equivalent:
(1) C:=f(a,b)~aAnf(f(a b),b)#a
(2) (amag —ai~ra)hairalNa Za

FC FLAT[C]

Solution 3

Task:

Check if UIF |= Vx(s1(X)~t1(%) A -+ A sk(R)mti (%) — VT s (X)=t! (X))

e if (s1(S)=t1(T) A -+ Asi(T)=tk(C) AN\ 57 (€)%t (C)) unsatisfiable.

Solution 3

Task:
Check if (s1(C)~t1(C) A -+ A s(T)=te(€) A A\ 5,.(S)%t (€)) unsatisfiable.

Solution 3 [Downey-Sethi, Tarjan'76; Nelson-Oppen’80]

represent the terms occurring in the problem as DAG's

Example: Check whether f(f(a, b), b) =~ a is a consequence of f(a, b) = a.

;’1 vi : f(f(a, b), b)
vo : f(a, b)
v v3 . a
0 va . b

Solution 3

Task: Check if (si(c)=t1(c) A--- Ask(c)=te(c) A s(c)#t(c)) unsatisfiable.

Solution 3 [Downey-Sethi, Tarjan'76; Nelson-Oppen’80]

- represent the terms occurring in the problem as DAG's
- represent premise equalities by a relation on the vertices of the DAG

Example: Check whether f(f(a, b), b) =~ a is a consequence of f(a, b) = a.

vi - f(f(a, b), b)

vo : f(a, b)
V3 . a
va . b

A R: {(v2,v3)}

- compute the “congruence closure” R€ of R
- check whether (v1, v3) € R€

10

Computing the congruence closure of a DAG

e DAG structures:
- G = (V, E) directed graph
- Labelling on vertices

A(v): label of vertex v
6(v): outdegree of vertex v

- Edges leaving the vertex v are ordered
(v[i]: denotes i-th successor of v)

Example

V.

Vge b) v,

)\(Vl) —)\(Vz) = f
AMvz)=a, A(va) =b

(S(Vl) = 5(V2) = 2
0(v3) =d0(va) =0

vi[l] = vo, »[2] = vy

11

Congruence closure of a DAG/Relation

Given: G = (V/, E) DAG + labelling
RCVxYV

The congruence closure of R is the smallest relation R on V which is:

e reflexive
® symmetric
e transitive
® congruence:
If A(v) = A(v) and §(u) = §(v)
and for all 1 < i < é(u): (uli], v[i]) € R¢
then (u, v) € R€.

12

Congruence closure of a relation

Recursive definition

(u,v) €R
(u,v) € R

(u,v) € R (u,v) € R° (v,w) € R¢
(v,v) € R (v,u) € R (u, w) € R¢

A(u) = A(v) u,v have n successors and (u[i], v[i]) € R forall 1 <i<n
(u,v) € R

e The congruence closure of R is the smallest set closed under these rules

13

Congruence closure and UIF

Assume that we have an algorithm A for computing the congruence
closure of a graph G and a set R of pairs of vertices

e Use A for checking whether \/_;s; = tj A /\Jm:1 sj % tf is satisfiable.
(1) Construct graph corresponding to the terms occurring in s;, t;, sj, tJf
Let v¢ be the vertex corresponding to term t
(2) Let R={(vs;,vt;) | i €{1,...,n}}
(3) Compute R°€.
(4) Output “Sat” if (vsj_/, th’) ¢Z R€ for all 1 < j < m, otherwise “Unsat”

Theorem 3.3.3 (Correctness)

NiZq simti A N\[Ly s;#t] is satisfiable iff [vsjz]Rc;é[vtj/]Rc for all 1< <m.

14

Congruence closure and UIF

Theorem 3.3.3 (Correctness)

Nizq simti A NJLy sjt] is satisfiable iff [vyr]ge #[vyr|re for all 1<j<m.
J J

Proof (=)

Assume A is a X-structure such that A |= AL si = t; A N\/L; s7 % t].

We can show that [vs|ge = [vt]ge implies that A |= s = t (Exercise).

(We use the fact that if [vs]ge = [vt]grc then there is a derivation for
(vs, vt) € R in the calculus defined before; use induction on length of
derivation to show that A =s =t.)

As A |=s] # t], it follows that [vy]ge #[vyr]ge for all 1<<m.
J J

15

Congruence closure and UIF

Theorem 3.3.3 (Correctness)

Nizq simti A NJLy sjt] is satisfiable iff [vyr]ge #[vyr|ge for all 1<j<m.
J J

Proof(<=) Assume that [v]grec # [vyr]ge for all 1 < j < m. We construct a
J J
structure that satisfies ALy s; = t; ANy 5] %]
e Universe is quotient of V w.r.t. R plus new element 0.
e c constant — c 4 = [vc]Re.
[Vf(t1 t,,)]RC if VF(ty,....tn) € Vv,
o f/n — f.A([Vl]RC; ce ey [Vn]RC) = < [Vt,']RC = [Vi]RC for 1§I§n

0 otherwise

well-defined because R¢ is a congruence.
e It holds that A |=s7 % t/ and A |= s; & ¢

16

Computing the congruence closure of a DAG

Given: G = (V, E) DAG + labelling
RCVxV

Task: Compute R€ (the congruence closure of R)

\ J

Example:
f(a,b) ~a— f(f(a,b),b) ~ a

1

LT Idea:
, R={(v2, v3)} _ | _ |
J v - Start with the identity relation R = Id

y - Successively add new pairs of nodes to R¢;

y
close relation under congruence.
V, e b) v,

Task: Compute R¢

17

Computing the congruence closure of a DAG

Given: G = (V, E) DAG + labelling
RCVxV;(vVv)eV?
Task: Check whether (v, v’) € R€

\ J

Example:
f(a,b) ~a— f(f(a,b),b) ~ a

1

- Idea:
. P R={(v2, v3)}
Y - Start with the identity relation R = Id

y - Successively add new pairs of nodes to R¢;

V
v, e b) v, close relation under congruence.

Task: Decide whether (vq, v3) € R

18

Computing the congruence closure of a DAG

Ta

.

sk:

Given: G = (V, E) DAG + labelling
RCVxYV

Compute R€ (the congruence closure of R)

y

Idea: Recursively construct relations closed under congruence R;

(approximating R€) by identifying congruent vertices u, v and

computing Rj;1 := congruence closure of R; U {(u, v)}.

Representation:

//

p—

\

N

[

\

\

/

/

- Congruence relation — corresponding partition

19

Computing the congruence closure of a DAG

.

Given: G = (V, E) DAG + labelling
RCVxYV

Compute R€ (the congruence closure of R)

Ta

sk:

.

Idea: Recursively construct relations closed under congruence R;

(approximating R¢) by identifying congruent vertices u, v and

computing Rj;1 := congruence closure of R; U {(u, v)}.

Representation:

p—

\

N

\

/

/

- Congruence relation +— corresponding partition

- Use procedures which operate on the partition:
FIND(u): unique name of equivalence class of u
UNION(u, v) combines equivalence classes of u, v

finds repr. t,, t, of equiv.cl. of u, v; sets FIND(u) to t,

20

Computing the congruence closure of a DAG

MERGE(u, v) | Input: G = (V, E) DAG + labelling
R relation on V closed under congruence

g uvevV

Output: the congruence closure of R U {(u, v)}

If FIND(u) = FIND(v) [same canonical representative] then Return

If FIND(u) # FIND(v) then [merge u, v; recursively-predecessors] // \\

P, := set of all predecessors of vertices w with FIND(w) = FIND(u) L \

P, := set of all predecessors of vertices w with FIND(w) = FIND(v)

Call UNION(u, v) [merge congruence classes| \ _|v /

For all (x,y) € P, X P, do: [merge congruent predecessors]| AN V4
if FIND(x) # FIND(y) and CONGRUENT (x, y) then MERGE(x, y) N I g

CONGRUENT (x, y)

if A(x) # A(y) then Return FALSE
For 1 < i < &(x) if FIND(x[i]) # FIND(y[i]) then Return FALSE

Return TRUE.

21

Correctness

Proof:
(1) Returned equivalence relation is not too coarse

If x, y merged then (x,y) € (RU {(u, v)})°
(UNION only on initial pair and on congruent pairs)

(2) Returned equivalence relation is not too fine

If x, y vertices s.t. (x,y) € (RU {(u, v)})° then they are merged by the algorithm.

Induction of length of derivation of (x, y) from (R U {(u, v)})*

(1) (x,y) € R OK (they are merged)
(2) (x,y) € R. The only non-trivial case is the following:
A(x) = A(y), x, y have n successors x;, y; where
(xi,vi) € (RU{(u,v)}) forall1 < i <b.
Induction hypothesis: (x;, y;) are merged at some point
(become equal during some call of UNION(a, b), made in some MERGE(a, b))
Successor of x equivalent to a (or b) before this call of UNION; same for y.

= MERGE must merge x and y

22

Computing the Congruence Closure

Let G =(V,E) graphand RCV x V

CC(G, R) computes the R€:
(1) Ro :=0;i:=1
(2) while R contains "fresh” elements do:

pick "fresh” element (u,v) € R
R; := MERGE(u, v) for G and R;_1; i := i+ 1.
Complexity: O(n?)

Downey-Sethi-Tarjan congruence closure algorithm:
more sophisticated version of MERGE (complexity O(n - logn))

Reference: G. Nelson and D.C. Oppen. Fast decision procedures based on
congruence closure. Journal of the ACM, 27(2):356-364, 1980.

23

Decision procedure for the QF theory of equality

Signature: X (function symbols)
Problem: Test satisfiability of the formula

F = ssRtA--Aspxty A slgtt! A Ash &t

Solution: Let Sg be the set of all subterms occurring in F

1. Construct the DAG for Sg; Ry = Id

2. [Build R, the congruence closure of {(v(s1), v(t1)), ..., (v(sn), v(tn))}]
Forie {1,..., n} do R; := I\/IERGE(VSI., vt,.) w.r.t. Ri_1

3. If F|ND(VSJ/) = FIND(th_/) for some j € {1,..., m} then return unsatisfiable

4. else [if FIND(v.,) # FIND(v,,) for all j € {1,..., m}] then return satisfiable
J J

24

Example

f(a,b) ~a— f(f(a,b),b)~ a

Test: unsatisfiability of
f(a,b) ~aANf(f(a, b),b)a

1

//"}D R={(v2, v3)}

V
V3 b) v,

Task:

e Compute R¢
e Decide whether (v1, v3) € R€

Solution:
1. Construct DAG in the figure; Ry = Id.
2. Compute R; := MERGE((v2, v3)
[Test representatives]
FIND(v2) = v» # v3 = FIND(v3)
P, == {v1}; P, := {v2}
[Merge congruence classes]
UNION(vz, v3): sets FIND(v2) to vs.
[Compute and recursively merge predecessors]
Test: FIND(v1) = v; # v3 = FIND(w)
CONGR(v1, vo)
MERGE(v1, v»): (different representatives)

calls UNION(vy, v2) which
sets FIND(vy) to vs.

3. Test whether FIND(v;) = FIND(v3). Yes.
Return unsatisfiable.

25

3.4. Decision procedures for numeric domains

e Peano arithmetic

e Theory of real numbers

e Linear arithmetic
e over N/Z
e over R/Q

Decision procedures

e Light-weight fragments of linear arithmetic: Difference logic

e Full fragment (LI(R) or LI(Q)

26

Peano arithmetic

Peano axioms: Vx-—(x+ 1~ 0) (zero)
VxVy(x+1lxy+1—-x~y (successor)
F[O] A (Vx (F[x] — F[x + 1]) — VxF|[x]) (induction)
Vx(x + 0 = x) (plus zero)
Vx,y(x+(y+1)~(x+y)+1) (plus successor)
Vx,y (x %0 = 0) (times 0)
Vx,y (xx(y+1) = x*xy + x) (times successor)

3xy+5>2xyexpressed as 3z(z ZOAN3*xy +5x 2%y + z)

Intended interpretation: (N, {0, 1, +, *},{<}) (also with =)
(does not capture true arithmetic by Goedel's incompleteness theorem)

Undecidable

27

Theory of integers

oTh((Z, {0,1,+,},{<}))

Undecidable

28

Theory of real numbers

Theory of real closed fields (real closed fields: fields with same
properties as real numbers)

Axioms:

e the ordered field axioms;

e axiom asserting that every positive number has a square root; and

e an axiom scheme asserting that all polynomials of odd order have at
least one real root.

Tarski (1951) proved that the theory of real closed fields, including
the binary predicate symbols "=", "£", and " <", and the operations
of addition and multiplication, admits elimination of quantifiers,

which implies that it is a complete and decidable theory.

29

Linear arithmetic

Syntax
e Signature ¥ = ({0/0,s/1,+/2},{< /2})

e [erms, atomic formulae — as usual

Example: 3% x3 + 2 % xo < 5 % x3 abbreviation for

(x1 +x1+x1) + (2 +x2) < (x3 + x3 + X3 + X3 + X3)

30

Linear arithmetic

There are several ways to define linear arithmetic.

We need at least the following signature: ¥ = ({0/0,1/0,+/2}, {< /2})

and the predefined binary predicate ~.

31

Linear arithmetic

There are several ways to define linear arithmetic.

We need at least the following signature: ¥ = ({0/0,1/0,+/2}, {< /2})
and the predefined binary predicate ~.

Linear arithmetic over N/Z
Th(Z+) Z+ = (Z,0,s,+, <) the standard interpretation of integers.

Axiomatization

Linear arithmetic over Q/R
Th(R) R =(R,{0,1,+},{<}) the standard interpretation of reals;
Th(Q) Q=(Q,{0,1,+}, {<}) the standard interpretation of rationals.

Axiomatization

32

Outline

We first present an efficient method for checking the satisfiability
of formulae in a very simple fragment of linear arithmetic.

We will then give more details about possibilities of checking
the satisfiability of arbitrary formulae in linear arithmetic.

33

Simple fragments of linear arithmetic

e Difference logic

check satisfiability of conjunctions of constraints of the form

x—y<c

e UTVPI (unit, two variables per identity)

check satisfiability of conjunctions of constraints of the form

ax + by < c, where a,b e {—1,0,1}

34

Application: Program Verification

while 1 < n

do
i =1 +1
[** part of a program in which i is used as an index in an array
which was declared to be of size s > m (and i is not changed)
* %]
od

Task: i < s always during the execution of this program.

35

Application: Program Verification

while 1 < n

do
i =1 +1
[** part of a program in which i is used as an index in an array
which was declared to be of size s > m (and i is not changed)
* %]
od

Task: i < s always during the execution of this program.

Solution: Show that this is true at the beginning and remains true after
every update of /.

36

Application: Program Verification

i1 :=1, n<nmnm

while 1 < n

do
i =1 +1
[**x part of a program in which i is used as an index in an array
which was declared to be of size s > m (and i is not changed)
%k |
od

Task: i < s always during the execution of this program.
Solution: Show that / < s is an invariant of the program:
1) It holds at the first line: i=1—i<s

2) It is preserved under the updates in the while loop:
Vn,m,s,i,i’” (n<mAl<m<sANi<nAi<sAI"=i+1—i <5s)

37

Positive difference logic

Syntax
The syntax of formulae in positive difference logic is defined as follows:

e Atomic formulae (also called difference constraints) are of the form:
x—y<c

where X, y are variables and c is a numerical constant.

e The set of formulae is:
F,.GGH == A (atomic formula)
| (FAG) (conjunction)

Semantics:
Versions of difference logic exist, where the standard interpretation is Q or

resp. Z.

38

Positive difference logic

A decision procedure for positive difference logic (< only)

Let S be a set (i.e. conjunction) of atoms in (positive) difference logic.
G(S) = (V, E, w), the inequality graph of S, is a weighted graph with:

o V = X(S5), the set of variables occurring in S
e e=(x,y) € Ewithw(e)=ciffx—y<ceS

Theorem 3.4.1.
Let S be a conjunction of difference constraints, and G(S) the inequality
graph of S. Then S is satisfiable iff there is no negative cycle in G(S).

Searching for negative cycles in a graph can be done with the Bellman-Ford
algorithm for finding the single-source shortest paths in a directed weighted
graph in time O(|V/| - |E|). (Side-effect of the algorithm exploited - if there
exists a negative cycle in the graph then the algorithm finds it and aborts.)

39

Positive difference logic

Theorem 3.4.1.
Let S be a conjunction of difference constraints, and G(S) the inequality
graph of S. Then S is satisfiable iff there is no negative cycle in G(S).

Proof: (=) Assume S satisfiable. Let 3 : X — 7Z satisfying assignment.

Let vq 12 Vo 2 vy vi be a cycle in G(S).
Then: B(v1) —B(v2) < c2
B(vw)—pB(wvv) < o3
g B(wa)—08(v1) < cm
0= Bv)-Bw) < X't ciivi+em

Thus, for satisfiability it is necessary that all cycles are positive.

Positive difference logic

Theorem 3.4.1.
Let S be a conjunction of difference constraints, and G(S) the inequality
graph of S. Then S is satisfiable iff there is no negative cycle in G(S).

Proof: (<=) Assume that there is no negative cycle.

Add a new vertex s and an O-weighted edge from every vertex in V to s.
(This does not introduce negative cycles.)

Let §,, denote the minimal weight of the paths from u to v.

® §,, = oo if there is no path from u to v.
e well-defined since there are no negative cycles

Define 8 : V — Z by B(v) = dvs. Claim: (3 satisfying assignment for S.

Let x — y < c € 5. Consider the shortest paths from x to s and from y to
s. By the triangle inequality, dxs < ¢ + dys, i.e. B(x) — B(y) < c.

41

