Decision Procedures in Verification

Decision Procedures (2)

17.12.2012

Viorica Sofronie-Stokkermans

e-mail: sofronie@uni-koblenz.de

Until now:

Logical Theories; Decision procedures
Generalities
The theory of uninterpreted function symbols (UIF): Motivation

3.3. Theory of Uninterpreted Function Symbols

Application: Compiler Verification

Example: prove equivalence of source and target program
1: y := 1
1: y := 1
2: if $\mathrm{z}=\mathrm{x} * \mathrm{x} * \mathrm{x}$
2: R1 := $x * x$
3: then $y:=x * x+y$
3: R2 := R1*x
4: endif
4: $\operatorname{jmpNE}(z, R 2,6)$
5: y := R1+1

To prove: (indexes refer to values at line numbers)

$$
\begin{aligned}
& y_{1} \approx 1 \wedge\left[\left(z_{0} \approx x_{0} * x_{0} * x_{0} \wedge y_{3} \approx x_{0} * x_{0}+y_{1}\right) \vee\left(z_{0} \not \approx x_{0} * x_{0} * x_{0} \wedge y_{3} \approx y_{1}\right)\right] \wedge \\
& y_{1}^{\prime} \approx 1 \wedge R 1_{2} \approx x_{0}^{\prime} * x_{0}^{\prime} \wedge R 2_{3} \approx R 1_{2} * x_{0}^{\prime} \wedge \\
& \wedge\left[\left(z_{0}^{\prime} \approx R 2_{3} \wedge y_{5}^{\prime} \approx R 1_{2}+1\right) \vee\left(z_{0}^{\prime} \neq R 2_{3} \wedge y_{5}^{\prime} \approx y_{1}^{\prime}\right)\right] \wedge \\
& x_{0} \approx x_{0}^{\prime} \wedge y_{0} \approx y_{0}^{\prime} \wedge z_{0} \approx z_{0}^{\prime} \Longrightarrow x_{0} \approx x_{0}^{\prime} \wedge y_{3} \approx y_{5}^{\prime} \wedge z_{0} \approx z_{0}^{\prime}
\end{aligned}
$$

Uninterpreted function symbols

Let $\Sigma=(\Omega, \Pi)$ be arbitrary
Let $\mathcal{M}=\Sigma$-alg be the class of all Σ-structures
The theory of uninterpreted function symbols is $\operatorname{Th}(\Sigma-a l g)$ the family of all first-order formulae which are true in all Σ-algebras.
in general undecidable

Decidable fragment:

e.g. the class $\mathrm{Th}_{\forall}(\Sigma$-alg $)$ of all universal formulae which are true in all Σ-algebras.

Theorem 3.3.1
The following are equivalent:
(1) testing validity of universal formulae w.r.t. UIF is decidable
(2) testing validity of (universally quantified) clauses w.r.t. UIF is decidable

Solution 1

Task:
Check if UIF $\models \forall \bar{x}\left(s_{1}(\bar{x}) \approx t_{1}(\bar{x}) \wedge \cdots \wedge s_{k}(\bar{x}) \approx t_{k}(\bar{x}) \rightarrow \bigvee_{j=1}^{m} s_{j}^{\prime}(\bar{x}) \approx t_{j}^{\prime} t(\bar{x})\right)$

Solution 1:

The following are equivalent:
(1) $\left(\bigwedge_{i} s_{i} \approx t_{i}\right) \rightarrow \bigvee_{j} s_{j}^{\prime} \approx t_{j}^{\prime}$ is valid
(2) $E q(\sim) \wedge \operatorname{Con}(f) \wedge\left(\bigwedge_{i} s_{i} \sim t_{i}\right) \wedge\left(\bigwedge_{j} s_{j}^{\prime} \nsim t_{j}^{\prime}\right)$ is unsatisfiable. where $E q(\sim): \operatorname{Refl}(\sim) \wedge \operatorname{Sim}(\sim) \wedge \operatorname{Trans}(\sim)$

$$
\operatorname{Con}(f): \forall x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\left(\bigwedge x_{i} \sim y_{i} \rightarrow f\left(x_{1}, \ldots, x_{n}\right) \sim f\left(y_{1}, \ldots, y_{n}\right)\right)
$$

Resolution: inferences between transitivity axioms - nontermination

Solution 2

Task:
Check if UIF $\models \forall \bar{x}\left(s_{1}(\bar{x}) \approx t_{1}(\bar{x}) \wedge \cdots \wedge s_{k}(\bar{x}) \approx t_{k}(\bar{x}) \rightarrow \bigvee_{j=1}^{m} s_{j}^{\prime}(\bar{x}) \approx t_{j}^{\prime}(\bar{x})\right)$
Solution 2: Ackermann's reduction.
Flatten the formula (replace, bottom-up, $f(c)$ with a new constant c_{f} $\phi \mapsto F L A T(\phi)$

Theorem 3.3.2: The following are equivalent:
(1) $\left(\bigwedge_{i} s_{i}(\bar{c}) \approx t_{i}(\bar{c})\right) \wedge \bigwedge_{j} s_{j}^{\prime}(\bar{c}) \not \approx t_{j}^{\prime}(\bar{c}) \quad$ is satisfiable
(2) $F C \wedge F L A T\left[\left(\bigwedge_{i} s_{i}(\bar{c}) \approx t_{i}(\bar{c})\right) \wedge \bigwedge_{j} s_{j}^{\prime}(\bar{c}) \not \approx t_{j}^{\prime}(\bar{c})\right]$ is satisfiable where $F C=\left\{c_{1}=d_{1}, \ldots c_{n}=d_{n} \rightarrow c_{f}=d_{f} \mid\right.$ whenever $f\left(c_{1}, \ldots, c_{n}\right)$ was renamed to c_{f} $f\left(d_{1}, \ldots, d_{n}\right)$ was renamed to $\left.d_{f}\right\}$

Note: The problem is decidable in PTIME (see next pages)
Problem: Naive handling of transitivity/congruence axiom $\mapsto O\left(n^{3}\right)$
Goal: Give a faster algorithm

Example

The following are equivalent:
(1) $C:=f(a, b) \approx a \wedge f(f(a, b), b) \not \approx a$
(2) $F C \wedge F L A T[C]$, where:
$F L A T[f(a, b) \approx a \wedge f(f(a, b), b) \not \approx a]$ is computed by introducing new constants renaming terms starting with f and then replacing in C the terms with the constants:

- $\operatorname{FLAT}[\underbrace{f(a, b)}_{a_{1}} \approx a \wedge f(\underbrace{f(a, b)}_{a_{1}}, b) \not \approx a]:=a_{1} \approx a \wedge a_{2} \not \approx a$
- $F C:=\left(a \approx a_{1} \rightarrow a_{1} \approx a_{2}\right)^{a_{2}}$

$$
\begin{aligned}
f(a, b) & =a_{1} \\
f\left(a_{1}, b\right) & =a_{2}
\end{aligned}
$$

Thus, the following are equivalent:
(1) $C:=f(a, b) \approx a \wedge f(f(a, b), b) \not \approx a$
(2) $\underbrace{\left(a \approx a_{1} \rightarrow a_{1} \approx a_{2}\right)}_{F C} \wedge \underbrace{a_{1} \approx a \wedge a_{2} \not \approx a}_{F L A T[C]}$

Solution 3

Task:
Check if UIF $\models \forall \bar{x}\left(s_{1}(\bar{x}) \approx t_{1}(\bar{x}) \wedge \cdots \wedge s_{k}(\bar{x}) \approx t_{k}(\bar{x}) \rightarrow \bigvee_{j=1}^{m} s_{j}^{\prime}(\bar{x}) \approx t_{j}^{\prime}(\bar{x})\right)$
i.e. if $\left(s_{1}(\bar{c}) \approx t_{1}(\bar{c}) \wedge \cdots \wedge s_{k}(\bar{c}) \approx t_{k}(\bar{c}) \wedge \bigwedge_{j} s_{j}^{\prime}(\bar{c}) \not \approx t_{j}^{\prime}(\bar{c})\right)$ unsatisfiable.

Solution 3

Task:
Check if $\left(s_{1}(\bar{c}) \approx t_{1}(\bar{c}) \wedge \cdots \wedge s_{k}(\bar{c}) \approx t_{k}(\bar{c}) \wedge \wedge_{k} s_{k}^{\prime}(\bar{c}) \not \not \approx t_{k}^{\prime}(\bar{c})\right)$ unsatisfiable.

Solution 3 [Downey-Sethi, Tarjan'76; Nelson-Oppen'80]
represent the terms occurring in the problem as DAG's

Example: Check whether $f(f(a, b), b) \approx a$ is a consequence of $f(a, b) \approx a$.

$$
\begin{array}{ll}
v_{1}: & f(f(a, b), b) \\
v_{2}: & f(a, b) \\
v_{3}: & a \\
v_{4}: & b
\end{array}
$$

Solution 3

Task: Check if $\left(s_{1}(\bar{c}) \approx t_{1}(\bar{c}) \wedge \cdots \wedge s_{k}(\bar{c}) \approx t_{k}(\bar{c}) \wedge s(\bar{c}) \not \approx t(\bar{c})\right)$ unsatisfiable.

Solution 3 [Downey-Sethi, Tarjan'76; Nelson-Oppen'80]

- represent the terms occurring in the problem as DAG's
- represent premise equalities by a relation on the vertices of the DAG Example: Check whether $f(f(a, b), b) \approx a$ is a consequence of $f(a, b) \approx a$.

$$
\begin{array}{ll}
v_{1}: & f(f(a, b), b) \\
v_{2}: & f(a, b) \\
v_{3}: & a \\
v_{4}: & b \\
R: & \left\{\left(v_{2}, v_{3}\right)\right\}
\end{array}
$$

- compute the "congruence closure" R^{c} of R
- check whether $\left(v_{1}, v_{3}\right) \in R^{c}$

Computing the congruence closure of a DAG

Example

- DAG structures:
- $G=(V, E)$ directed graph
- Labelling on vertices

$$
\begin{aligned}
& \lambda(v) \text { : label of vertex } v \\
& \delta(v) \text { : outdegree of vertex } v
\end{aligned}
$$

- Edges leaving the vertex v are ordered ($v[i]$: denotes i-th successor of v)

$$
\begin{aligned}
& \lambda\left(v_{1}\right)=\lambda\left(v_{2}\right)=f \\
& \lambda\left(v_{3}\right)=a, \lambda\left(v_{4}\right)=b \\
& \delta\left(v_{1}\right)=\delta\left(v_{2}\right)=2 \\
& \delta\left(v_{3}\right)=\delta\left(v_{4}\right)=0 \\
& v_{1}[1]=v_{2}, v_{2}[2]=v_{4}
\end{aligned}
$$

Congruence closure of a DAG/Relation

Given: $G=(V, E)$ DAG + labelling

$$
R \subseteq V \times V
$$

The congruence closure of R is the smallest relation R^{c} on V which is:

- reflexive
- symmetric
- transitive
- congruence:

If $\lambda(u)=\lambda(v)$ and $\delta(u)=\delta(v)$ and for all $1 \leq i \leq \delta(u):(u[i], v[i]) \in R^{c}$ then $(u, v) \in R^{c}$.

Congruence closure of a relation

Recursive definition

$$
\begin{aligned}
& \frac{(u, v) \in R}{}(u, v) \in R^{c} \\
& \frac{(u, v) \in R^{c}}{(v, v) \in R^{c}} \quad \frac{(u, v) \in R^{c} \quad(v, w) \in R^{c}}{(v, u) \in R^{c}} \\
& \frac{(u, w) \in R^{c}}{\lambda(u)=\lambda(v) \quad u, v \text { have } n \text { successors and }(u[i], v[i]) \in R^{c} \text { for all } 1 \leq i \leq n} \\
& (u, v) \in R^{c}
\end{aligned}
$$

- The congruence closure of R is the smallest set closed under these rules

Congruence closure and UIF

Assume that we have an algorithm \mathbb{A} for computing the congruence closure of a graph G and a set R of pairs of vertices

- Use \mathbb{A} for checking whether $\bigwedge_{i=1}^{n} s_{i} \approx t_{i} \wedge \bigwedge_{j=1}^{m} s_{j}^{\prime} \not \approx t_{j}^{\prime}$ is satisfiable.
(1) Construct graph corresponding to the terms occurring in $s_{i}, t_{i}, s_{j}^{\prime}, t_{j}^{\prime}$

Let v_{t} be the vertex corresponding to term t
(2) Let $R=\left\{\left(v_{s_{i}}, v_{t_{i}}\right) \mid i \in\{1, \ldots, n\}\right\}$
(3) Compute R^{c}.
(4) Output "Sat" if $\left(v_{s_{j}^{\prime}}, v_{t_{j}^{\prime}}\right) \notin R^{c}$ for all $1 \leq j \leq m$, otherwise "Unsat"

Theorem 3.3.3 (Correctness)
$\bigwedge_{i=1}^{n} s_{i} \approx t_{i} \wedge \bigwedge_{j=1}^{m} s_{j}^{\prime} \not \approx t_{j}^{\prime}$ is satisfiable iff $\left[v_{s_{j}^{\prime}}\right]_{R^{c}} \neq\left[v_{t_{j}^{\prime}}\right]_{R^{c}}$ for all $1 \leq j \leq m$.

Congruence closure and UIF

Theorem 3.3.3 (Correctness)
$\bigwedge_{i=1}^{n} s_{i} \approx t_{i} \wedge \bigwedge_{j=1}^{m} s_{j}^{\prime} \not \approx t_{j}^{\prime}$ is satisfiable iff $\left[v_{s_{j}^{\prime}}\right]_{R^{c}} \neq\left[v_{t_{j}^{\prime}}\right]_{R^{c}}$ for all $1 \leq j \leq m$.

Proof (\Rightarrow)
Assume \mathcal{A} is a Σ-structure such that $\mathcal{A} \models \bigwedge_{i=1}^{n} s_{i} \approx t_{i} \wedge \bigwedge_{j=1}^{m} s_{j}^{\prime} \not \approx t_{j}^{\prime}$.

We can show that $\left[v_{s}\right]_{R^{c}}=\left[v_{t}\right]_{R^{c}}$ implies that $\mathcal{A} \models s=t$ (Exercise).
(We use the fact that if $\left[v_{s}\right]_{R^{c}}=\left[v_{t}\right]_{R^{c}}$ then there is a derivation for $\left(v_{s}, v_{t}\right) \in R^{c}$ in the calculus defined before; use induction on length of derivation to show that $\mathcal{A} \models s=t$.)

As $\mathcal{A} \models s_{j}^{\prime} \not \approx t_{j}^{\prime}$, it follows that $\left[v_{s_{j}^{\prime}}\right]_{R^{c}} \neq\left[v_{t_{j}^{\prime}}\right]_{R^{c}}$ for all $1 \leq j \leq m$.

Congruence closure and UIF

Theorem 3.3.3 (Correctness)
$\bigwedge_{i=1}^{n} s_{i} \approx t_{i} \wedge \bigwedge_{j=1}^{m} s_{j}^{\prime} \not \approx t_{j}^{\prime}$ is satisfiable iff $\left[v_{s_{j}^{\prime}}\right]_{R^{c}} \neq\left[v_{t_{j}^{\prime}}\right]_{R^{c}}$ for all $1 \leq j \leq m$.
$\operatorname{Proof}(\Leftarrow)$ Assume that $\left[v_{s_{j}^{\prime}}\right]_{R^{c}} \neq\left[v_{t_{j}^{\prime}}\right]_{R^{c}}$ for all $1 \leq j \leq m$. We construct a structure that satisfies $\bigwedge_{i=1}^{n} s_{i} \approx t_{i} \wedge \bigwedge_{j=1}^{m} s_{j}^{\prime} \not \approx t_{j}^{\prime}$

- Universe is quotient of V w.r.t. R^{c} plus new element 0 .
- c constant $\mapsto c_{\mathcal{A}}=\left[v_{c}\right]_{R^{c}}$.
- $f / n \mapsto f_{\mathcal{A}}\left(\left[v_{1}\right]_{R^{c}}, \ldots,\left[v_{n}\right]_{R^{c}}\right)= \begin{cases}{\left[v_{f\left(t_{1}, \ldots, t_{n}\right)}\right]_{R^{c}}} & \text { if } v_{f\left(t_{1}, \ldots, t_{n}\right)} \in V, \\ & {\left[v_{t_{i}}\right]_{R^{c}}=\left[v_{i}\right]_{R^{c}} \text { for } 1 \leq i \leq n} \\ 0 & \text { otherwise }\end{cases}$
well-defined because R^{c} is a congruence.
- It holds that $\mathcal{A} \models s_{j}^{\prime} \not \approx t_{j}^{\prime}$ and $\mathcal{A} \models s_{i} \approx t_{i}$

Computing the congruence closure of a DAG

$$
\text { Given: } \begin{aligned}
& G=(V, E) \text { DAG }+ \text { labelling } \\
& R \subseteq V \times V
\end{aligned}
$$

Task: Compute R^{c} (the congruence closure of R)
Example:

$$
f(a, b) \approx a \rightarrow f(f(a, b), b) \approx a
$$

Idea:

- Start with the identity relation $R^{c}=I d$
- Successively add new pairs of nodes to R^{c}; close relation under congruence.

Task: Compute R^{c}

Computing the congruence closure of a DAG

$$
\text { Given: } \begin{aligned}
& G=(V, E) \text { DAG }+ \text { labelling } \\
& R \subseteq V \times V ;\left(v, v^{\prime}\right) \in V^{2}
\end{aligned}
$$

Task: Check whether $\left(v, v^{\prime}\right) \in R^{c}$

Example:
$f(a, b) \approx a \rightarrow f(f(a, b), b) \approx a$

Idea:

- Start with the identity relation $R^{c}=I d$
- Successively add new pairs of nodes to R^{c}; close relation under congruence.

Task: Decide whether $\left(v_{1}, v_{3}\right) \in R^{c}$

Computing the congruence closure of a DAG

Given: $G=(V, E)$ DAG + labelling
$R \subseteq V \times V$
Task: Compute R^{c} (the congruence closure of R)

Idea: Recursively construct relations closed under congruence R_{i} (approximating R^{c}) by identifying congruent vertices u, v and computing $R_{i+1}:=$ congruence closure of $R_{i} \cup\{(u, v)\}$.

Representation:

- Congruence relation \mapsto corresponding partition

Computing the congruence closure of a DAG

$$
\text { Given: } \begin{aligned}
& G \\
& =(V, E) \text { DAG }+ \text { labelling } \\
& R \subseteq V \times V
\end{aligned}
$$

Task: Compute R^{c} (the congruence closure of R)

Idea: Recursively construct relations closed under congruence R_{i} (approximating R^{c}) by identifying congruent vertices u, v and computing $R_{i+1}:=$ congruence closure of $R_{i} \cup\{(u, v)\}$.

Representation:

- Congruence relation \mapsto corresponding partition
- Use procedures which operate on the partition:

FIND (u): unique name of equivalence class of u UNION (u, v) combines equivalence classes of u, v finds repr. t_{u}, t_{v} of equiv.cl. of u, v; sets $\operatorname{FIND}(u)$ to t_{v}

Computing the congruence closure of a DAG

$\operatorname{MERGE}(u, v) \quad$ Input: $\quad G=(V, E) \operatorname{DAG}+$ labelling
g R relation on V closed under congruence $u, v \in V$

Output: the congruence closure of $R \cup\{(u, v)\}$

If $\operatorname{FIND}(u)=\operatorname{FIND}(v)$ [same canonical representative] then Return If $\operatorname{FIND}(u) \neq \operatorname{FIND}(v)$ then [merge u, v; recursively-predecessors]
$P_{u}:=$ set of all predecessors of vertices w with $\operatorname{FIND}(w)=\operatorname{FIND}(u)$
$P_{v}:=$ set of all predecessors of vertices w with $\operatorname{FIND}(w)=\operatorname{FIND}(v)$
Call UNION (u, v) [merge congruence classes]
For all $(x, y) \in P_{u} \times P_{v}$ do: [merge congruent predecessors]
if $\operatorname{FIND}(x) \neq \operatorname{FIND}(y)$ and $\operatorname{CONGRUENT}(x, y)$ then $\operatorname{MERGE}(x, y)$

CONGRUENT (x, y)
if $\lambda(x) \neq \lambda(y)$ then Return FALSE
For $1 \leq i \leq \delta(x)$ if $\operatorname{FIND}(x[i]) \neq \operatorname{FIND}(y[i])$ then Return FALSE
Return TRUE.

Correctness

Proof:

(1) Returned equivalence relation is not too coarse

If x, y merged then $(x, y) \in(R \cup\{(u, v)\})^{c}$
(UNION only on initial pair and on congruent pairs)
(2) Returned equivalence relation is not too fine

If x, y vertices s.t. $(x, y) \in(R \cup\{(u, v)\})^{c}$ then they are merged by the algorithm. Induction of length of derivation of (x, y) from $(R \cup\{(u, v)\})^{c}$
(1) $(x, y) \in R$ OK (they are merged)
(2) $(x, y) \notin R$. The only non-trivial case is the following:
$\lambda(x)=\lambda(y), x, y$ have n successors x_{i}, y_{i} where
$\left(x_{i}, y_{i}\right) \in(R \cup\{(u, v)\})^{c}$ for all $1 \leq i \leq b$.
Induction hypothesis: $\left(x_{i}, y_{i}\right)$ are merged at some point
(become equal during some call of $\operatorname{UNION}(a, b)$, made in some $\operatorname{MERGE}(a, b)$) Successor of x equivalent to a (or b) before this call of UNION; same for y.
\Rightarrow MERGE must merge x and y

Computing the Congruence Closure

Let $G=(V, E)$ graph and $R \subseteq V \times V$
$C C(G, R)$ computes the R^{c} :
(1) $R_{0}:=\emptyset ; i:=1$
(2) while R contains "fresh" elements do:

$$
\begin{aligned}
& \text { pick "fresh" element }(u, v) \in R \\
& R_{i}:=\operatorname{MERGE}(\mathrm{u}, \mathrm{v}) \text { for } G \text { and } R_{i-1} ; i:=i+1
\end{aligned}
$$

Complexity: $O\left(n^{2}\right)$
Downey-Sethi-Tarjan congruence closure algorithm:
more sophisticated version of MERGE (complexity $O(n \cdot \log n)$)
Reference: G. Nelson and D.C. Oppen. Fast decision procedures based on congruence closure. Journal of the ACM, 27(2):356-364, 1980.

Decision procedure for the QF theory of equality

Signature: Σ (function symbols)
Problem: Test satisfiability of the formula

$$
F=s_{1} \approx t_{1} \wedge \cdots \wedge s_{n} \approx t_{n} \wedge s_{1}^{\prime} \not \approx t_{1}^{\prime} \wedge \cdots \wedge s_{m}^{\prime} \not \approx t_{m}^{\prime}
$$

Solution: Let S_{F} be the set of all subterms occurring in F

1. Construct the DAG for $S_{F} ; R_{0}=I d$
2. [Build R_{n} the congruence closure of $\left.\left\{\left(v\left(s_{1}\right), v\left(t_{1}\right)\right), \ldots,\left(v\left(s_{n}\right), v\left(t_{n}\right)\right)\right\}\right]$

For $i \in\{1, \ldots, n\}$ do $R_{i}:=\operatorname{MERGE}\left(v_{s_{i}}, v_{t_{i}}\right)$ w.r.t. R_{i-1}
3. If $\operatorname{FIND}\left(v_{s_{j}^{\prime}}\right)=\operatorname{FIND}\left(v_{t_{j}^{\prime}}\right)$ for some $j \in\{1, \ldots, m\}$ then return unsatisfiable
4. else $\left[\right.$ if $\operatorname{FIND}\left(v_{s_{j}^{\prime}}\right) \neq \operatorname{FIND}\left(v_{t_{j}^{\prime}}\right)$ for all $\left.j \in\{1, \ldots, m\}\right]$ then return satisfiable

Example

$$
f(a, b) \approx a \rightarrow f(f(a, b), b) \approx a
$$

Test: unsatisfiability of

$$
f(a, b) \approx a \wedge f(f(a, b), b) \not \approx a
$$

Task:

- Compute R^{c}
- Decide whether $\left(v_{1}, v_{3}\right) \in R^{c}$

Solution:

1. Construct DAG in the figure; $R_{0}=l d$.
2. Compute $R_{1}:=\operatorname{MERGE}\left(\left(v_{2}, v_{3}\right)\right.$
[Test representatives]
$\operatorname{FIND}\left(v_{2}\right)=v_{2} \neq v_{3}=\operatorname{FIND}\left(v_{3}\right)$
$P_{v_{2}}:=\left\{v_{1}\right\} ; P_{v_{3}}:=\left\{v_{2}\right\}$
[Merge congruence classes]
$\operatorname{UNION}\left(v_{2}, v_{3}\right)$: sets $\operatorname{FIND}\left(v_{2}\right)$ to v_{3}.
[Compute and recursively merge predecessors]
Test: $\operatorname{FIND}\left(v_{1}\right)=v_{1} \neq v_{3}=\operatorname{FIND}\left(v_{2}\right)$ $\operatorname{CONGR}\left(v_{1}, v_{2}\right)$
$\operatorname{MERGE}\left(v_{1}, v_{2}\right)$: (different representatives) calls UNION $\left(v_{1}, v_{2}\right)$ which sets $\operatorname{FIND}\left(v_{1}\right)$ to v_{3}.
3. Test whether $\operatorname{FIND}\left(v_{1}\right)=\operatorname{FIND}\left(v_{3}\right)$. Yes.

Return unsatisfiable.

3.4. Decision procedures for numeric domains

- Peano arithmetic
- Theory of real numbers
- Linear arithmetic
- over \mathbb{N} / \mathbb{Z}
- over \mathbb{R} / \mathbb{Q}

Decision procedures

- Light-weight fragments of linear arithmetic: Difference logic
- Full fragment $(L I(\mathbb{R})$ or $L I(\mathbb{Q})$

Peano arithmetic

$$
\begin{array}{ll}
\text { Peano axioms: } & \forall x \neg(x+1 \approx 0) \\
& \forall x \forall y(x+1 \approx y+1 \rightarrow x \approx y \\
& F[0] \wedge(\forall x(F[x] \rightarrow F[x+1]) \rightarrow \forall x F[x]) \\
& \forall x(x+0 \approx x) \\
& \forall x, y(x+(y+1) \approx(x+y)+1) \\
& \forall x, y(x * 0 \approx 0) \\
& \forall x, y(x *(y+1) \approx x * y+x) \\
\text { (successor) } \\
\text { (induction) } \\
3 * y+5>2 * y \text { (plus zero) } \\
\text { (plus successor) } \\
\text { (times } 0)
\end{array}
$$

Intended interpretation: $(\mathbb{N},\{0,1,+, *\},\{<\})$ (also with \approx)
(does not capture true arithmetic by Goedel's incompleteness theorem)
Undecidable

Theory of integers

- $\operatorname{Th}((\mathbb{Z},\{0,1,+, *\},\{<\}))$

Undecidable

Theory of real numbers

Theory of real closed fields (real closed fields: fields with same properties as real numbers)

Axioms:

- the ordered field axioms;
- axiom asserting that every positive number has a square root; and
- an axiom scheme asserting that all polynomials of odd order have at least one real root.

Tarski (1951) proved that the theory of real closed fields, including the binary predicate symbols " $=", " \neq "$, and $"<"$, and the operations of addition and multiplication, admits elimination of quantifiers, which implies that it is a complete and decidable theory.

Linear arithmetic

Syntax

- Signature $\Sigma=(\{0 / 0, s / 1,+/ 2\},\{</ 2\})$
- Terms, atomic formulae - as usual

Example: $3 * x_{1}+2 * x_{2} \leq 5 * x_{3}$ abbreviation for

$$
\left(x_{1}+x_{1}+x_{1}\right)+\left(x_{2}+x_{2}\right) \leq\left(x_{3}+x_{3}+x_{3}+x_{3}+x_{3}\right)
$$

Linear arithmetic

There are several ways to define linear arithmetic.
We need at least the following signature: $\Sigma=(\{0 / 0,1 / 0,+/ 2\},\{</ 2\})$ and the predefined binary predicate \approx.

Linear arithmetic

There are several ways to define linear arithmetic.
We need at least the following signature: $\Sigma=(\{0 / 0,1 / 0,+/ 2\},\{</ 2\})$ and the predefined binary predicate \approx.

Linear arithmetic over \mathbb{N} / \mathbb{Z}

$\operatorname{Th}\left(\mathbb{Z}_{+}\right) \quad \mathbb{Z}_{+}=(\mathbb{Z}, 0, s,+,<)$ the standard interpretation of integers.
Axiomatization

Linear arithmetic over \mathbb{Q} / \mathbb{R}
$\operatorname{Th}(\mathbb{R}) \quad \mathbb{R}=(\mathbb{R},\{0,1,+\},\{<\})$ the standard interpretation of reals;
$\operatorname{Th}(\mathbb{Q}) \mathbb{Q}=(\mathbb{Q},\{0,1,+\},\{<\})$ the standard interpretation of rationals.
Axiomatization

Outline

We first present an efficient method for checking the satisfiability of formulae in a very simple fragment of linear arithmetic.

We will then give more details about possibilities of checking the satisfiability of arbitrary formulae in linear arithmetic.

Simple fragments of linear arithmetic

- Difference logic
check satisfiability of conjunctions of constraints of the form

$$
x-y \leq c
$$

- UTVPI (unit, two variables per identity)
check satisfiability of conjunctions of constraints of the form

$$
a x+b y \leq c, \text { where } a, b \in\{-1,0,1\}
$$

Application: Program Verification

```
i := 1, n < m
while i < n
do
    i := i + 1
        [** part of a program in which i is used as an index in an array
            which was declared to be of size s > m (and i is not changed)
        **]
od
```

Task: $i \leq s$ always during the execution of this program.

Application: Program Verification

```
i := 1, n < m
while i < n
do
    i := i + 1
        [** part of a program in which i is used as an index in an array
            which was declared to be of size s > m (and i is not changed)
        **]
od
```

Task: $i \leq s$ always during the execution of this program.
Solution: Show that this is true at the beginning and remains true after every update of i.

Application: Program Verification

```
i := 1, n < m
while i < n
do
    i := i + 1
    [** part of a program in which i is used as an index in an array
            which was declared to be of size s > m (and i is not changed)
        **]
od
```

Task: $i \leq s$ always during the execution of this program.
Solution: Show that $i \leq s$ is an invariant of the program:

1) It holds at the first line: $i=1 \rightarrow i \leq s$
2) It is preserved under the updates in the while loop:
$\forall n, m, s, i, i^{\prime} \quad\left(n<m \wedge 1<m<s \wedge i \leq n \wedge i \leq s \wedge i^{\prime} \approx i+1 \rightarrow i^{\prime} \leq s\right)$

Positive difference logic

Syntax

The syntax of formulae in positive difference logic is defined as follows:

- Atomic formulae (also called difference constraints) are of the form:

$$
x-y \leq c
$$

where x, y are variables and c is a numerical constant.

- The set of formulae is:

Semantics:
Versions of difference logic exist, where the standard interpretation is \mathbb{Q} or resp. \mathbb{Z}.

Positive difference logic

A decision procedure for positive difference logic (\leq only)
Let S be a set (i.e. conjunction) of atoms in (positive) difference logic. $G(S)=(V, E, w)$, the inequality graph of S, is a weighted graph with:

- $V=X(S)$, the set of variables occurring in S
- $e=(x, y) \in E$ with $w(e)=c$ iff $x-y \leq c \in S$

Theorem 3.4.1.
Let S be a conjunction of difference constraints, and $G(S)$ the inequality graph of S. Then S is satisfiable iff there is no negative cycle in $G(S)$.

Searching for negative cycles in a graph can be done with the Bellman-Ford algorithm for finding the single-source shortest paths in a directed weighted graph in time $O(|V| \cdot|E|)$. (Side-effect of the algorithm exploited - if there exists a negative cycle in the graph then the algorithm finds it and aborts.)

Positive difference logic

Theorem 3.4.1.
Let S be a conjunction of difference constraints, and $G(S)$ the inequality graph of S. Then S is satisfiable iff there is no negative cycle in $G(S)$.

Proof: (\Rightarrow) Assume S satisfiable. Let $\beta: X \rightarrow \mathbb{Z}$ satisfying assignment.
Let $v_{1} \xrightarrow{c_{12}} v_{2} \xrightarrow{c_{23}} \ldots \xrightarrow{c_{n-1, n}} v_{n} \xrightarrow{c_{n 1}} v_{1}$ be a cycle in $G(S)$.
Then: $\beta\left(v_{1}\right)-\beta\left(v_{2}\right) \leq c_{12}$

$$
\beta\left(v_{2}\right)-\beta\left(v_{3}\right) \leq c_{23}
$$

$$
\begin{gathered}
g \\
0= \\
\hline \beta\left(v_{n}\right)-\beta\left(v_{1}\right) \leq c_{n 1} \\
\beta\left(v_{1}\right)-\beta\left(v_{1}\right) \leq \sum_{i=1}^{n-1} c_{i, i+1}+c_{n 1}
\end{gathered}
$$

Thus, for satisfiability it is necessary that all cycles are positive.

Positive difference logic

Theorem 3.4.1.
Let S be a conjunction of difference constraints, and $G(S)$ the inequality graph of S. Then S is satisfiable iff there is no negative cycle in $G(S)$.

Proof: (\Leftarrow) Assume that there is no negative cycle.
Add a new vertex s and an 0-weighted edge from every vertex in V to s. (This does not introduce negative cycles.)

Let $\delta_{u v}$ denote the minimal weight of the paths from u to v.

- $\delta_{u v}=\infty$ if there is no path from u to v.
- well-defined since there are no negative cycles

Define $\beta: V \rightarrow \mathbb{Z}$ by $\beta(v)=\delta_{v s}$. Claim: β satisfying assignment for S.
Let $x-y \leq c \in S$. Consider the shortest paths from x to s and from y to s. By the triangle inequality, $\delta_{x s} \leq c+\delta_{y s}$, i.e. $\beta(x)-\beta(y) \leq c$.

