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Until now:

Logical Theories: generalities

Theory of Uninterpreted Function Symbols

DAG representation of terms/Congruence closure of DAGs

Decision procedures for numeric domains

brief mention of undecidability results

brief mention of decidability of the theory of real closed fields

Linear arithmetic: definition

- simple fragment of linear arithmetic: Difference logic
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Positive difference logic: Reminder

Syntax

The syntax of formulae in positive difference logic is defined as follows:

• Atomic formulae (also called difference constraints) are of the form:

x − y ≤ c

where x , y are variables and c is a numerical constant.

• The set of formulae is:

F ,G ,H ::= A (atomic formula)

| (F ∧ G) (conjunction)

Semantics:

Versions of difference logic exist, where the standard interpretation is Q or

resp. Z.
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Positive difference logic: Reminder

A decision procedure for positive difference logic (≤ only)

Let S be a set (i.e. conjunction) of atoms in (positive) difference logic.

G(S) = (V ,E ,w), the inequality graph of S , is a weighted graph with:

• V = X (S), the set of variables occurring in S

• e = (x , y) ∈ E with w(e) = c iff x − y ≤ c ∈ S

Theorem 3.4.1.

Let S be a conjunction of difference constraints, and G(S) the inequality

graph of S . Then S is satisfiable iff there is no negative cycle in G(S).

Searching for negative cycles in a graph can be done with the Bellman-Ford

algorithm for finding the single-source shortest paths in a directed weighted

graph in time O(|V | · |E |). (Side-effect of the algorithm exploited - if there

exists a negative cycle in the graph then the algorithm finds it and aborts.)
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Positive difference logic: Reminder

Theorem 3.4.1.

Let S be a conjunction of difference constraints, and G(S) the inequality

graph of S . Then S is satisfiable iff there is no negative cycle in G(S).

Proof: (⇒) Assume S satisfiable. Let β : X → Z satisfying assignment.

Let v1
c12→ v2

c23→ · · ·
cn−1,n
→ vn

cn1→ v1 be a cycle in G(S).

Then: β(v1)− β(v2) ≤ c12

β(v2)− β(v3) ≤ c23

. . .

g β(vn)− β(v1) ≤ cn1

0 = β(v1)− β(v1) ≤
∑n−1

i=1 ci ,i+1 + cn1

Thus, for satisfiability it is necessary that all cycles are positive.
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Positive difference logic

Theorem 3.4.1.

Let S be a conjunction of difference constraints, and G(S) the inequality

graph of S . Then S is satisfiable iff there is no negative cycle in G(S).

Proof: (⇐) Assume that there is no negative cycle.

Add a new vertex s and an 0-weighted edge from every vertex in V to s.

(This does not introduce negative cycles.)

Let δuv denote the minimal weight of the paths from u to v .

• δuv = ∞ if there is no path from u to v .

• well-defined since there are no negative cycles

Define β : V → Z by β(v) = δvs . Claim: β satisfying assignment for S .

Let x − y ≤ c ∈ S . Consider the shortest paths from x to s and from y to

s. By the triangle inequality, δxs ≤ c + δys , i.e. β(x)− β(y) ≤ c.
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Difference logic

Syntax

• Atomic formulae (difference constraints): x − y ≤ c

where x , y are variables and c is a numerical constant.

• Formulae: F ,G ,H ::= A (atomic formula)

| ¬A

| (F ∧ G) (conjunction)

Note: ¬(x − y ≤ c) is equivalent to y − x < c.
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Difference logic

Syntax

• Atomic formulae (difference constraints): x − y ≤ c

where x , y are variables and c is a numerical constant.

• Formulae: F ,G ,H ::= A (atomic formula)

| ¬A

| (F ∧ G) (conjunction)

Note: ¬(x − y ≤ c) is equivalent to y − x < c.

Satisfiability over Z

y − x < c iff y − x ≤ c − 1

Natural reduction to positive difference logic.
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Difference logic

Syntax

• Atomic formulae (difference constraints): x − y ≤ c

where x , y are variables and c is a numerical constant.

• Formulae: F ,G ,H ::= A (atomic formula)

| ¬A

| (F ∧ G) (conjunction)

Note: ¬(x − y ≤ c) is equivalent to y − x < c.

Theorem 3.4.2.

Let S be a conjunction of strict and non-strict difference constraints, and

G(S) the inequality graph of S . Then S is satisfiable iff there is no negative

cycle in G(S).
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Difference logic

Theorem 3.4.2.

Let S be a conjunction of strict and non-strict difference constraints, and

G(S) the inequality graph of S . Then S is satisfiable iff there is no negative

cycle in G(S).

Proof:

Need to extend the graph construction and the unsatisfiability condition:

x1 − x2 ≺1 c1, . . . , xn − x1 ≺n cn unsatisfiable iff

•
∑n

i=1 ci < 0, or •
∑n

i=1 ci = 0 and one ≺i is strict.

Consider pairs (≺, c) instead of numbers c

• (≺, c) <B (≺′, c′) iff c < c′ or (c = c′, ≺1=< and ≺2=≤)

• (≺, c) + (≺′, c′) = (≺′′, c + c′) where ≺′′=< iff ≺ or ≺′ is <.
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Linear arithmetic over N or Z

1. Th(Z+) Z+ = (Z, 0, s, +,<) the standard interpretation of integers.

2. Presburger arithmetic.

Axiomatization:

∀x ¬(x + 1 ≈ 0) (zero)

∀x∀y (x + 1 ≈ y + 1 → x ≈ y (successor)

F [0] ∧ (∀x (F [x] → F [x + 1]) → ∀xF [x]) (induction)

∀x (x + 0 ≈ x) (plus zero)

∀x , y (x + (y + 1) ≈ (x + y) + 1) (plus successor)
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Linear arithmetic over N or Z

Presburger arithmetic decidable in 3EXPTIME [Presburger’29]

• automata theoretic method

Linear arithmetic over Z:

check satisfiability of conjunctions of equalities over Z: NP-hard

• Integer linear programming

use branch-and-bound/cutting planes

• The Omega test – use variable elimination
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Linear arithmetic over R or Q

• Th(R)

R = (R, {0, 1,+}, {<}) the standard interpretation of real numbers;

• Th(Q)

Q = (Q, {0, 1,+}, {<}) the standard interpretation of rational

numbers.
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Linear arithmetic over R or Q

Theorem.

(1) The satisfiability of any conjunction of (strict and non-strict) linear

inequalities can be checked in PTIME [Khakian’79].

(2) The complexity of checking the satisfiability of sets of clauses in linear

arithmetic is in NP [Sonntag’85].

Literature

[Khakian’79] L. Khachian. “A polynomial time algorithm for linear

programming.” Soviet Math. Dokl. 20:191-194, 1979.

[Sonntag’85] E.D. Sontag. “Real addition and the polynomial hierarchy”.

Inf. Proc. Letters 20(3):115-120, 1985.
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Linear arithmetic over R or Q

Methods The algorithms currently used are not PTIME.

• The simplex method

• The Fourier-Motzkin method – use variable elimination

15



Linear arithmetic: Comparison

Problem:

check satisfiability of conjunctions of equalities over a numerical domain D

Complexity: D = R: PTIME; D = Z: NP-hard

Methods

• The simplex method (D = R)

• Integer linear programming (D = Z)

use branch-and-bound/cutting planes

• The Fourier-Motzkin method (D = R)

use variable elimination

• The Omega test (D = Z)

use variable elimination
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Linear arithmetic: Comparison

Problem:

check satisfiability of conjunctions of equalities over a numerical domain D

Complexity: D = R: PTIME; D = Z: NP-hard

Methods

• The simplex method (D = R)

• Integer linear programming (D = Z)

use branch-and-bound/cutting planes

• The Fourier-Motzkin method (D = R) Today

use variable elimination

• The Omega test (D = Z)

use variable elimination
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Linear arithmetic over R or Q

Axiomatization:

The equational part of linear rational arithmetic is described by the theory

of divisible torsion-free abelian groups:

∀x , y , z(x + (y + z) ≈ (x + (y + z))) (associativity)

∀x , y(x + y ≈ y + x) (commutativity)

∀x(x + 0 ≈ x) (identity)

∀x∃y(x + y ≈ 0) (inverse)

For all n ≥ 1: ∀x(x + · · · + x
︸ ︷︷ ︸

n times

≈ 0 → x ≈ 0) (torsion-freeness)

For all n ≥ 1 : ∀x∃y(y + · · · + y
︸ ︷︷ ︸

n times

≈ x) (divisibility)

¬1 ≈ 0 (non-triviality)

Note: Quantification over natural numbers is not part of our language. We

really need infinitely many axioms for torsion-freeness and divisibility.
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Linear arithmetic over R or Q

By adding the axioms of a compatible strict total ordering, we define

ordered divisible abelian groups (ODAG):

∀x (¬x < x) (irreflexivity)

∀x , y , z (x < y ∧ y < z → x < z) (transitivity)

∀x , y (x < y ∨ y < x ∨ x ≈ y) (totality)

∀x , y , z (x < y → x + z < y + z) (compatibility)

0 < 1 (non-triviality)

Note: The second non-triviality axiom renders the first one superfluous.

Moreover, as soon as we add the axioms of compatible strict total orderings,

torsion-freeness can be omitted.

Every ordered divisible abelian group is obviously torsion-free. In fact the

converse holds: Every torsion-free abelian group can be ordered

[F.-W. Levi, 1913].

Examples: Q,R,Qn,Rn, . . .
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Linear arithmetic over R or Q

The signature can be extended by further symbols:

• ≤ /2,> /2,≥ /2, 6≈ /2: defined using < and ≈

• −/1: Skolem function for inverse axiom

• −/2: defined using +/2 and −/1

• divn/1: Skolem functions for divisibility axiom for all n ≥ 1.

• multn/1: defined by ∀x(multn(x) ≈ x + · · · + x
︸ ︷︷ ︸

n times

for all n ≥ 1.

• multq/1: defined using multn, divn, – for all q ∈ Q.

(We usually write q · t or qt instead of multq(t).)

• q/0 (for q ∈ Q): defined by q ≈ q · 1.

Note: Every formula using the additional symbols is ODAG-equivalent to a

formula over the base signature.

When · is considered as a binary operator, (ordered) divisible torsion-free

abelian groups correspond to (ordered) rational vector spaces.
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Fourier-Motzkin Quantifier Elimination

Linear rational arithmetic permits quantifier elimination:

every formula ∃xF or ∀xF in linear rational arithmetic can be converted

into an equivalent formula without the variable x .

The method was discovered in 1826 by J. Fourier and re-discovered by T.

Motzkin in 1936.

Observation: Every literal over the variables x , y1, ..., yn can be

converted into an ODAG-equivalent atom x ∼ t[y ] or 0 ∼ t[y ],

where ∼∈ {<,>,≤,≥,≈, 6≈} and t[y ] has the form
∑

i qi · yi + q0.

In other words, we can either eliminate x completely or isolate it on one

side of the atom.

Moreover, we can convert every 6≈ atom into an ODAG-equivalent

disjunction of two < atoms.
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Fourier-Motzkin Quantifier Elimination

We first consider existentially quantified conjunctions of atoms.

(1) If the conjunction contains an equation x ≈ t[y ],

we can eliminate the quantifier ∃x by substitution:

∃x(x ≈ t[y ] ∧ F )

is equivalent to

Fσ, where σ = [t[y ]/x]

22



Fourier-Motzkin Quantifier Elimination

We first consider existentially quantified conjunctions of atoms.

(2) If x occurs only in inequations, then:

∃x (
∧

i x < si (y) ∧
∧

j x ≤ tj (y)∧
∧

k x > uk (y) ∧
∧

l x ≥ vl (y)∧

F (y))

is equivalent to:
∧

i

∧
k si (y) > uk (y) ∧

∧
j

∧
k tj (y) > uk (y)∧

∧
i

∧
l si (y) > vl (y) ∧

∧
j

∧
l tj (y) ≥ vl (y)∧

F (y)

Proof: “⇒” follows by transitivity;

“⇐” Take 1
2
(min{si , tj}+max{uk , vl}) as a witness.
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Fourier-Motzkin Quantifier Elimination

Extension to arbitrary formulas:

• Transform into prenex formula;

• If innermost quantifier is ∃:

transform matrix into DNF and move ∃ into disjunction;

• If innermost quantifier is ∀: replace ∀xF by ¬∃x¬F , then eliminate ∃.

Consequences:
(1) Every closed formula over the signature of ODAGs is ODAG-equivalent

to either ⊤ or ⊥.
(2) ODAGs are a complete theory, i.e., every closed formula over the

signature of ODAGs is either valid or unsatisfiable w.r.t. ODAGs.
(3) Every closed formula over the signature of ODAGs holds either in all

ODAGs or in no ODAG.

ODAGs are indistinguishable by first-order formulas over the signature of

ODAGs. (These properties do not hold for extended signatures!)
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Fourier-Motzkin: Complexity

• One FM-step for ∃:

formula size grows quadratically, therefore O(n2) runtime.

• m quantifiers ∃ . . . ∃:

naive implementation needs O(n2
m
) runtime;

It is unknown whether optimized implementation with simply

exponential runtime is possible.

• m quantifiers ∃∀∃∀ . . . ∃∀:

CNF/DNF conversion (exponential!) required after each step;

therefore non-elementary runtime.
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Fourier-Motzkin: Complexity

• One FM-step for ∃:

formula size grows quadratically, therefore O(n2) runtime.

• m quantifiers ∃ . . . ∃:

naive implementation needs O(n2
m
) runtime;

It is unknown whether optimized implementation with simply

exponential runtime is possible.

• m quantifiers ∃∀∃∀ . . . ∃∀:

CNF/DNF conversion (exponential!) required after each step;

therefore non-elementary runtime.

Improvement: Loos-Weispfenning Quantifier Elimination

(will not be presented in this lecture)
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3.5. Combinations of theories
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Motivation

Program Verification

Example: Does BubbleSort return

a sorted array?

int [] BubbleSort(int[] a) {

int i , j , t;

for (i := |a| − 1; i > 0; i := i − 1) {

for (j := 0; j < i ; j := j + 1) {

if (a[j] > a[j + 1]){t := a[j];

a[j] := a[j + 1];

a[j + 1] := t};

}} return a}
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Motivation

Example: Does BubbleSort return

a sorted array?

int [] BubbleSort(int[] a) {

int i , j , t;

for (i := |a| − 1; i > 0; i := i − 1) {

for (j := 0; j < i ; j := j + 1) {

if (a[j] > a[j + 1]){t := a[j];

a[j] := a[j + 1];

a[j + 1] := t};

}} return a}

−1 ≤ i < |a|∧

partitioned(a, 0, i , i + 1, |a| − 1)∧

sorted(a, i , |a| − 1)

−1 ≤ i < |a| ∧ 0 ≤ j ≤ i∧

partitioned(a, 0, i , i + 1, |a| − 1)∧

sorted(a, i , |a| − 1)

partinioned(a, 0, j − 1, j, j)

Generate verification conditions and prove that they are valid

Predicates:

• sorted(a, l , u): ∀i , j(l≤i≤j≤u→a[i ]≤a[j])

• partitioned(a, l1, u1, l2, u2): ∀i , j(l1≤i≤u1≤l2≤j≤u2→a[i ]≤a[j])
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Motivation

Example: Does BubbleSort return

a sorted array?

int [] BubbleSort(int[] a) {

int i , j , t;

for (i := |a| − 1; i > 0; i := i − 1) {

for (j := 0; j < i ; j := j + 1) {

if (a[j] > a[j + 1]){t := a[j];

a[j] := a[j + 1];

a[j + 1] := t};

}} return a}

−1≤i<|a|∧ C1(a)

partitioned(a, 0, i , i + 1, |a| − 1)∧

sorted(a, i , |a| − 1)

−1≤i<|a| ∧ 0≤j≤i∧ C2(a)

partitioned(a, 0, i , i + 1, |a| − 1)∧

sorted(a, i , |a| − 1)

partinioned(a, 0, j − 1, j, j)

Generate verification conditions and prove that they are valid

C2(a) ∧ Update(a, a′) → C2(a
′)
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Motivation

Verification of real time/hybrid systems

Check:

• No overflow

• Substances in the right proportion

• If substances in wrong proportion,

tank can be drained in ≤ 200s.

Determine values for parameters

such that this is the case

Train controllers

RBC

braking + reaction
distance

• Task: check collision freeness
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Motivation

Mathematics

Example: Lipschitz functions

R∪ (Lf
c,λ1

)∪ (Lg
c,λ2

) |= (Lf+g

c ,(λ1+λ2)
)

(Lf
c,λ1

) ∀x |f (x) − f (c)| ≤ λ1 · |x − c|

(Lg
c,λ2

) ∀x |g(x) − g(c)| ≤ λ2 · |x − c|

(Lf+g
c,(λ1+λ2)

) ∀x |f (x)+g(x)−f (c)−g(c)|≤(λ1+λ2) · |x−c|

Similar: - free functions; (piecewise) monotone functions

- functions defined according to a partition of

their domain of definition, ...
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Combinations of theories

The combined validity problem

For i = 1, 2 • let Ti be a first-order theory in signature Σi

• let Li be a class of (closed) Σi -formulae

Let T1
⊕

T2 be a combination of T1 and T2
Let L1

⊕
L2 be a combination of L1 and L2

Problem: Given φ in L1
⊕

L2, is it the case that T1
⊕

T2 |= φ?
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Problems

The combined decidability problem I

For i = 1, 2 • let Ti be a first-order theory in signature Σi

• let Li be a class of (closed) Σi -formulae
• assume the Ti -validity problem for Li is decidable

Let T1
⊕

T2 be a combination of T1 and T2
Let L1

⊕
L2 be a combination of L1 and L2

Question: Is the T1
⊕

T2-validity problem for L1
⊕

L2 decidable?
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Problems

The combined decidability problem II

For i = 1, 2 • let Ti be a first-order theory in signature Σi

• let Li be a class of (closed) Σi -formulae
• Pi decision procedure for Ti -validity for Li

Let T1
⊕

T2 be a combination of T1 and T2
Let L1

⊕
L2 be a combination of L1 and L2

Question: Can we combine P1 and P2 modularly into a decision

procedure for the T1
⊕

T2-validity problem for L1
⊕

L2?

Main issue: How are T1
⊕

T2 and L1
⊕

L2 defined?
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Combinations of theories and models

Forgetting symbols

Let Σ = (Ω,Π) and Σ′ = (Ω′, Π′) s.t. Σ ⊆ Σ′, i.e., Ω ⊆ Ω′ and Π ⊆ Π′

For A ∈ Σ′-alg, we denote by A|Σ the Σ-structure for which:

UA|Σ
= UA, fA|Σ

= fA for f ∈ Ω;

PA|Σ
= PA for P ∈ Π

(ignore functions and predicates associated with symbols in Σ′\Σ)

A|Σ is called the restriction (or the reduct) of A to Σ.

Example: Σ′ = ({+/2, ∗/2, 1/0}, {≤ /2, even/1, odd/1})

Σ = ({+/2, 1/0}, {≤ /2}) ⊆ Σ′

N = (N, +, ∗, 1,≤, even, odd) N|Σ = (N, +, 1,≤)
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