Decision Procedures in Verification

Decision Procedures (3)

7.1.2013

Viorica Sofronie-Stokkermans

e-mail: sofronie@uni-koblenz.de

Logical Theories: generalities

Theory of Uninterpreted Function Symbols

DAG representation of terms/Congruence closure of DAGs

Decision procedures for numeric domains

brief mention of undecidability results

brief mention of decidability of the theory of real closed fields

Linear arithmetic: definition

- simple fragment of linear arithmetic: Difference logic

Positive difference logic: Reminder

Syntax

The syntax of formulae in positive difference logic is defined as follows:

• Atomic formulae (also called difference constraints) are of the form:

 $x-y \leq c$

where x, y are variables and c is a numerical constant.

• The set of formulae is:

F, G, H::=A(atomic formula)| $(F \land G)$ (conjunction)

Semantics:

Versions of difference logic exist, where the standard interpretation is $\mathbb Q$ or resp. $\mathbb Z.$

Positive difference logic: Reminder

A decision procedure for positive difference logic (\leq only)

Let S be a set (i.e. conjunction) of atoms in (positive) difference logic. G(S) = (V, E, w), the inequality graph of S, is a weighted graph with:

- V = X(S), the set of variables occurring in S
- $e = (x, y) \in E$ with w(e) = c iff $x y \leq c \in S$

Theorem 3.4.1.

Let S be a conjunction of difference constraints, and G(S) the inequality graph of S. Then S is satisfiable iff there is no negative cycle in G(S).

Searching for negative cycles in a graph can be done with the Bellman-Ford algorithm for finding the single-source shortest paths in a directed weighted graph in time $O(|V| \cdot |E|)$. (Side-effect of the algorithm exploited - if there exists a negative cycle in the graph then the algorithm finds it and aborts.)

Positive difference logic: Reminder

Theorem 3.4.1.

Let S be a conjunction of difference constraints, and G(S) the inequality graph of S. Then S is satisfiable iff there is no negative cycle in G(S).

Proof: (\Rightarrow) Assume *S* satisfiable. Let $\beta : X \to \mathbb{Z}$ satisfying assignment. Let $v_1 \stackrel{c_{12}}{\to} v_2 \stackrel{c_{23}}{\to} \cdots \stackrel{c_{n-1,n}}{\to} v_n \stackrel{c_{n1}}{\to} v_1$ be a cycle in G(S).

Then:
$$\beta(v_1) - \beta(v_2) \leq c_{12}$$

 $\beta(v_2) - \beta(v_3) \leq c_{23}$
...
 $g \quad \frac{\beta(v_n) - \beta(v_1)}{\beta(v_1) - \beta(v_1)} \leq c_{n1}$
 $0 = \quad \beta(v_1) - \beta(v_1) \leq \sum_{i=1}^{n-1} c_{i,i+1} + c_{n1}$

Thus, for satisfiability it is necessary that all cycles are positive.

Theorem 3.4.1.

Let S be a conjunction of difference constraints, and G(S) the inequality graph of S. Then S is satisfiable iff there is no negative cycle in G(S).

Proof: (\Leftarrow) Assume that there is no negative cycle.

Add a new vertex s and an 0-weighted edge from every vertex in V to s. (This does not introduce negative cycles.)

Let δ_{uv} denote the minimal weight of the paths from u to v.

- $\delta_{uv} = \infty$ if there is no path from u to v.
- well-defined since there are no negative cycles

Define $\beta: V \to \mathbb{Z}$ by $\beta(v) = \delta_{vs}$. Claim: β satisfying assignment for S.

Let $x - y \le c \in S$. Consider the shortest paths from x to s and from y to s. By the triangle inequality, $\delta_{xs} \le c + \delta_{ys}$, i.e. $\beta(x) - \beta(y) \le c$.

Syntax

• Atomic formulae (difference constraints): $x - y \leq c$

where x, y are variables and c is a numerical constant.

• Formulae: F, G, H ::= A (atomic formula) $| \neg A$ $| (F \land G)$ (conjunction)

Note: $\neg(x - y \le c)$ is equivalent to y - x < c.

Syntax

• Atomic formulae (difference constraints): $x - y \leq c$

where x, y are variables and c is a numerical constant.

• Formulae: F, G, H ::= A (atomic formula) $| \neg A$ $| (F \land G)$ (conjunction)

Note: $\neg(x - y \le c)$ is equivalent to y - x < c.

Satisfiability over $\ensuremath{\mathbb{Z}}$

$$y - x < c$$
 iff $y - x \leq c - 1$

Natural reduction to positive difference logic.

Syntax

• Atomic formulae (difference constraints): $x - y \leq c$

where x, y are variables and c is a numerical constant.

• Formulae: F, G, H ::= A (atomic formula) $| \neg A$ $| (F \land G)$ (conjunction)

Note: $\neg(x - y \le c)$ is equivalent to y - x < c.

Theorem 3.4.2.

Let S be a conjunction of strict and non-strict difference constraints, and G(S) the inequality graph of S. Then S is satisfiable iff there is no negative cycle in G(S).

Theorem 3.4.2.

Let S be a conjunction of strict and non-strict difference constraints, and G(S) the inequality graph of S. Then S is satisfiable iff there is no negative cycle in G(S).

Proof:

Need to extend the graph construction and the unsatisfiability condition:

 $x_1 - x_2 \prec_1 c_1, \ldots, x_n - x_1 \prec_n c_n$ unsatisfiable iff

• $\sum_{i=1}^{n} c_i < 0$, or • $\sum_{i=1}^{n} c_i = 0$ and one \prec_i is strict.

Consider pairs (\prec, c) instead of numbers c

- $(\prec, c) <_B (\prec', c')$ iff c < c' or $(c = c', \prec_1 = < and \prec_2 = \le)$
- $(\prec, c) + (\prec', c') = (\prec'', c + c')$ where $\prec'' = <$ iff \prec or \prec' is <.

- 1. Th(\mathbb{Z}_+) $\mathbb{Z}_+ = (\mathbb{Z}, 0, s, +, <)$ the standard interpretation of integers.
- 2. Presburger arithmetic.

Axiomatization:

$$\begin{aligned} \forall x \neg (x+1 \approx 0) & (\text{zero}) \\ \forall x \forall y (x+1 \approx y+1 \rightarrow x \approx y) & (\text{successor}) \\ F[0] \land (\forall x (F[x] \rightarrow F[x+1]) \rightarrow \forall x F[x]) & (\text{induction}) \\ \forall x (x+0 \approx x) & (\text{plus zero}) \\ \forall x, y (x+(y+1) \approx (x+y)+1) & (\text{plus successor}) \end{aligned}$$

Linear arithmetic over $\mathbb N$ or $\mathbb Z$

Presburger arithmetic decidable in 3EXPTIME [Presburger'29]

• automata theoretic method

Linear arithmetic over \mathbb{Z} :

check satisfiability of conjunctions of equalities over $\mathbb{Z} \colon$ NP-hard

• Integer linear programming

use branch-and-bound/cutting planes

• The Omega test – use variable elimination

Linear arithmetic over ${\mathbb R}$ or ${\mathbb Q}$

- Th(ℝ)
 ℝ = (ℝ, {0, 1, +}, {<}) the standard interpretation of real numbers;
- Th(ℚ)

 $\mathbb{Q}=(\mathbb{Q},\{0,1,+\},\{<\})$ the standard interpretation of rational numbers.

Linear arithmetic over $\mathbb R$ or $\mathbb Q$

Theorem.

- (1) The satisfiability of any conjunction of (strict and non-strict) linear inequalities can be checked in PTIME [Khakian'79].
- (2) The complexity of checking the satisfiability of sets of clauses in linear arithmetic is in NP [Sonntag'85].

Literature

- [Khakian'79] L. Khachian. "A polynomial time algorithm for linear programming." *Soviet Math. Dokl.* 20:191-194, 1979.
- [Sonntag'85] E.D. Sontag. "Real addition and the polynomial hierarchy". Inf. Proc. Letters 20(3):115-120, 1985.

Methods The algorithms currently used are not PTIME.

- The simplex method
- The Fourier-Motzkin method use variable elimination

Problem:

check satisfiability of conjunctions of equalities over a numerical domain D

```
Complexity: D = \mathbb{R}: PTIME; D = \mathbb{Z}: NP-hard
```

Methods

• The simplex method $(D = \mathbb{R})$

• Integer linear programming $(D = \mathbb{Z})$ use branch-and-bound/cutting planes

- The Fourier-Motzkin method $(D = \mathbb{R})$ use variable elimination
- The Omega test $(D = \mathbb{Z})$

use variable elimination

Problem:

check satisfiability of conjunctions of equalities over a numerical domain D

```
Complexity: D = \mathbb{R}: PTIME; D = \mathbb{Z}: NP-hard
```

Methods

- The simplex method $(D = \mathbb{R})$
- Integer linear programming $(D = \mathbb{Z})$ use branch-and-bound/cutting planes
- The Fourier-Motzkin method $(D = \mathbb{R})$

Today

use variable elimination

• The Omega test $(D = \mathbb{Z})$

use variable elimination

Axiomatization:

The equational part of linear rational arithmetic is described by the theory of divisible torsion-free abelian groups:

Note: Quantification over natural numbers is not part of our language. We really need infinitely many axioms for torsion-freeness and divisibility.

By adding the axioms of a compatible strict total ordering, we define ordered divisible abelian groups (ODAG):

 $\begin{aligned} \forall x \ (\neg x < x) & (\text{irreflexivity}) \\ \forall x, y, z \ (x < y \land y < z \rightarrow x < z) & (\text{transitivity}) \\ \forall x, y \ (x < y \lor y < x \lor x \approx y) & (\text{totality}) \\ \forall x, y, z \ (x < y \rightarrow x + z < y + z) & (\text{compatibility}) \\ & 0 < 1 & (\text{non-triviality}) \end{aligned}$

Note: The second non-triviality axiom renders the first one superfluous.

Moreover, as soon as we add the axioms of compatible strict total orderings, torsion-freeness can be omitted.

Every ordered divisible abelian group is obviously torsion-free. In fact the converse holds: Every torsion-free abelian group can be ordered [F.-W. Levi, 1913].

Examples: \mathbb{Q} , \mathbb{R} , \mathbb{Q}^n , \mathbb{R}^n , . . .

The signature can be extended by further symbols:

- \leq /2, > /2, \geq /2, $\not\approx$ /2: defined using < and \approx
- -/1: Skolem function for inverse axiom
- -/2: defined using +/2 and -/1
- $\operatorname{div}_n/1$: Skolem functions for divisibility axiom for all $n \ge 1$.
- $\operatorname{mult}_n/1$: defined by $\forall x(\operatorname{mult}_n(x) \approx \underbrace{x + \cdots + x}_{x + \cdots + x}$ for all $n \ge 1$.

n times

- mult_q/1: defined using mult_n, div_n, for all q ∈ Q.
 (We usually write q ⋅ t or qt instead of mult_q(t).)
- q/0 (for $q \in \mathbb{Q}$): defined by $q \approx q \cdot 1$.

Note: Every formula using the additional symbols is ODAG-equivalent to a formula over the base signature.

When \cdot is considered as a binary operator, (ordered) divisible torsion-free abelian groups correspond to (ordered) rational vector spaces.

Linear rational arithmetic permits quantifier elimination:

every formula $\exists xF$ or $\forall xF$ in linear rational arithmetic can be converted into an equivalent formula without the variable x.

The method was discovered in 1826 by J. Fourier and re-discovered by T. Motzkin in 1936.

Observation: Every literal over the variables $x, y_1, ..., y_n$ can be converted into an ODAG-equivalent atom $x \sim t[\overline{y}]$ or $0 \sim t[\overline{y}]$, where $\sim \in \{<, >, \le, \ge, \approx, \not\approx\}$ and $t[\overline{y}]$ has the form $\sum_i q_i \cdot y_i + q_0$.

In other words, we can either eliminate x completely or isolate it on one side of the atom.

Moreover, we can convert every $\not\approx$ atom into an ODAG-equivalent disjunction of two < atoms.

Fourier-Motzkin Quantifier Elimination

We first consider existentially quantified conjunctions of atoms.

(1) If the conjunction contains an equation $x \approx t[\overline{y}]$, we can eliminate the quantifier $\exists x$ by substitution:

 $\exists x (x \approx t[\overline{y}] \wedge F)$

is equivalent to

 $F\sigma$, where $\sigma = [t[\overline{y}]/x]$

Fourier-Motzkin Quantifier Elimination

We first consider existentially quantified conjunctions of atoms.

(2) If x occurs only in inequations, then:

$$\exists x \quad (\bigwedge_{i} x < s_{i}(\overline{y}) \land \bigwedge_{j} x \leq t_{j}(\overline{y}) \land \land \land_{k} x > u_{k}(\overline{y}) \land \bigwedge_{l} x \geq v_{l}(\overline{y}) \land F(\overline{y}))$$

is equivalent to:

$$\bigwedge_{i} \bigwedge_{k} s_{i}(\overline{y}) > u_{k}(\overline{y}) \land \bigwedge_{j} \bigwedge_{k} t_{j}(\overline{y}) > u_{k}(\overline{y}) \land \\ \bigwedge_{i} \bigwedge_{l} s_{i}(\overline{y}) > v_{l}(\overline{y}) \land \bigwedge_{j} \bigwedge_{l} t_{j}(\overline{y}) \ge v_{l}(\overline{y}) \land \\ F(\overline{y})$$

Proof: " \Rightarrow " follows by transitivity; " \Leftarrow " Take $\frac{1}{2}(\min\{s_i, t_j\} + \max\{u_k, v_l\})$ as a witness.

Fourier-Motzkin Quantifier Elimination

Extension to arbitrary formulas:

- Transform into prenex formula;
- If innermost quantifier is \exists :

transform matrix into DNF and move \exists into disjunction;

• If innermost quantifier is \forall : replace $\forall xF$ by $\neg \exists x \neg F$, then eliminate \exists .

Consequences:

- (1) Every closed formula over the signature of ODAGs is ODAG-equivalent to either \top or \perp .
- (2) ODAGs are a complete theory, i.e., every closed formula over the signature of ODAGs is either valid or unsatisfiable w.r.t. ODAGs.
- (3) Every closed formula over the signature of ODAGs holds either in all ODAGs or in no ODAG.

ODAGs are indistinguishable by first-order formulas over the signature of ODAGs. (These properties do not hold for extended signatures!)

Fourier-Motzkin: Complexity

• One FM-step for \exists :

formula size grows quadratically, therefore $O(n^2)$ runtime.

• *m* quantifiers $\exists \ldots \exists$:

naive implementation needs $O(n^{2^m})$ runtime;

It is unknown whether optimized implementation with simply exponential runtime is possible.

• *m* quantifiers $\exists \forall \exists \forall \dots \exists \forall$:

CNF/DNF conversion (exponential!) required after each step; therefore non-elementary runtime.

Fourier-Motzkin: Complexity

• One FM-step for \exists :

formula size grows quadratically, therefore $O(n^2)$ runtime.

• *m* quantifiers $\exists \ldots \exists$:

naive implementation needs $O(n^{2^m})$ runtime;

It is unknown whether optimized implementation with simply exponential runtime is possible.

• *m* quantifiers $\exists \forall \exists \forall \dots \exists \forall$:

CNF/DNF conversion (exponential!) required after each step; therefore non-elementary runtime.

Improvement: Loos-Weispfenning Quantifier Elimination

(will not be presented in this lecture)

3.5. Combinations of theories

Program Verification

Generate verification conditions and prove that they are valid Predicates:

- sorted(a, l, u): $\forall i, j(l \le i \le j \le u \rightarrow a[i] \le a[j])$
- partitioned(a, l_1 , u_1 , l_2 , u_2): $\forall i, j(l_1 \leq i \leq u_1 \leq l_2 \leq j \leq u_2 \rightarrow a[i] \leq a[j])$

Generate verification conditions and prove that they are valid $C_2(a) \wedge \text{Update}(a, a') \rightarrow C_2(a')$

Verification of real time/hybrid systems

Mathematics

Example:	Lipschitz functions
	$\mathbb{R} \cup (L^{f}_{c,\lambda_1}) \cup (L^{g}_{c,\lambda_2}) \models (\mathcal{L}^{f+g}_{c,(\lambda_1+\lambda_2)})$
(L_{c,λ_1}^f)	$\forall x \; f(x) - f(c) \leq \lambda_1 \cdot x - c $
(L_{c,λ_2}^g)	$\forall x \; g(x) - g(c) \leq \lambda_2 \cdot x - c $
$(L_{c,(\lambda_1+\lambda_2)}^{f+g})$	$\forall x f(x) + g(x) - f(c) - g(c) \leq (\lambda_1 + \lambda_2) \cdot x - c $
Similar:	- free functions; (piecewise) monotone functions
	 functions defined according to a partition of their domain of definition,

Problems

The combined decidability problem II

- For i = 1, 2 let T_i be a first-order theory in signature Σ_i
 - let \mathcal{L}_i be a class of (closed) Σ_i -formulae
 - P_i decision procedure for \mathcal{T}_i -validity for \mathcal{L}_i

Let $\mathcal{T}_1 \bigoplus \mathcal{T}_2$ be a combination of \mathcal{T}_1 and \mathcal{T}_2 Let $\mathcal{L}_1 \bigoplus \mathcal{L}_2$ be a combination of \mathcal{L}_1 and \mathcal{L}_2

Question: Can we combine P_1 and P_2 modularly into a decision procedure for the $\mathcal{T}_1 \bigoplus \mathcal{T}_2$ -validity problem for $\mathcal{L}_1 \bigoplus \mathcal{L}_2$?

Main issue: How are $\mathcal{T}_1 \bigoplus \mathcal{T}_2$ and $\mathcal{L}_1 \bigoplus \mathcal{L}_2$ defined?

Combinations of theories and models

Forgetting symbols

Let $\Sigma = (\Omega, \Pi)$ and $\Sigma' = (\Omega', \Pi')$ s.t. $\Sigma \subseteq \Sigma'$, i.e., $\Omega \subseteq \Omega'$ and $\Pi \subseteq \Pi'$ For $\mathcal{A} \in \Sigma'$ -alg, we denote by $\mathcal{A}_{|\Sigma}$ the Σ -structure for which:

$$egin{aligned} & U_{\mathcal{A}_{\mid \Sigma}} = U_{\mathcal{A}}, & f_{\mathcal{A}_{\mid \Sigma}} = f_{\mathcal{A}} & ext{ for } f \in \Omega; \ & P_{\mathcal{A}_{\mid \Sigma}} = P_{\mathcal{A}} & ext{ for } P \in \Pi \end{aligned}$$

(ignore functions and predicates associated with symbols in $\Sigma' \setminus \Sigma$)

 $\mathcal{A}_{|\Sigma}$ is called the restriction (or the reduct) of \mathcal{A} to Σ .

$$\begin{array}{ll} \mbox{Example:} & \Sigma' = (\{+/2, */2, 1/0\}, \{\leq/2, \mbox{even}/1, \mbox{odd}/1\}) \\ & \Sigma = (\{+/2, 1/0\}, \{\leq/2\}) \subseteq \Sigma' \\ & \mathcal{N} = (\mathbb{N}, +, *, 1, \leq, \mbox{even}, \mbox{odd}) & \mathcal{N}_{|\Sigma} = (\mathbb{N}, +, 1, \leq) \end{array}$$