Decision Procedures in Verification First-Order Logic (1) 12.11.2012

Viorica Sofronie-Stokkermans

e-mail: sofronie@uni-koblenz.de

First-order logic

- formalizes fundamental mathematical concepts
- is expressive (Turing-complete)
- is not too expressive
 (e.g. not axiomatizable: natural numbers, uncountable sets)
- has a rich structure of decidable fragments
- has a rich model and proof theory

First-order logic is also called (first-order) predicate logic.

2.1 Syntax

Syntax:

- non-logical symbols (domain-specific)
 ⇒ terms, atomic formulas
- logical symbols (domain-independent)
 ⇒ Boolean combinations, quantifiers

Signature

A signature

$$\Sigma = (\Omega, \Pi),$$

fixes an alphabet of non-logical symbols, where

- Ω is a set of function symbols f with arity n ≥ 0, written f/n,
- Π is a set of predicate symbols p with arity m ≥ 0, written p/m.

If n = 0 then f is also called a constant (symbol). If m = 0 then p is also called a propositional variable. We use letters P, Q, R, S, to denote propositional variables. Refined concept for practical applications: *many-sorted* signatures (corresponds to simple type systems in programming languages).

Most results established for one-sorted signatures extend in a natural way to many-sorted signatures.

A many-sorted signature

$$\Sigma = (S, \Omega, \Pi),$$

fixes an alphabet of non-logical symbols, where

- *S* is a set of sorts,
- Ω is a set of function symbols f with arity $a(f) = s_1 \dots s_n \rightarrow s$,
- Π is a set of predicate symbols p with arity $a(p) = s_1 \dots s_m$

where s_1, \ldots, s_n, s_m, s are sorts.

Variables

Predicate logic admits the formulation of abstract, schematic assertions. (Object) variables are the technical tool for schematization.

We assume that

X

is a given countably infinite set of symbols which we use for (the denotation of) variables.

Variables

Predicate logic admits the formulation of abstract, schematic assertions. (Object) variables are the technical tool for schematization.

We assume that

X

is a given countably infinite set of symbols which we use for (the denotation of) variables.

Many-sorted case:

We assume that for every sort $s \in S$, X_s is a given countably infinite set of symbols which we use for (the denotation of) variables of sort s.

Terms

Terms over Σ (resp., Σ -terms) are formed according to these syntactic rules:

t, u, v ::= x , $x \in X$ (variable) $| f(s_1, ..., s_n) , f/n \in \Omega$ (functional term)

By $T_{\Sigma}(X)$ we denote the set of Σ -terms (over X). A term not containing any variable is called a ground term. By T_{Σ} we denote the set of Σ -ground terms.

Terms

Terms over Σ (resp., Σ -terms) are formed according to these syntactic rules:

t, u, v ::= x , $x \in X$ (variable) $\mid f(t_1, ..., t_n)$, $f/n \in \Omega$ (functional term)

By $T_{\Sigma}(X)$ we denote the set of Σ -terms (over X). A term not containing any variable is called a ground term. By T_{Σ} we denote the set of Σ -ground terms.

Many-sorted case:

a variable $x \in X_s$ is a term of sort s

if $a(f) = s_1 \dots s_n \rightarrow s$, and t_i are terms of sort s_i , $i = 1, \dots, n$ then $f(t_1, \dots, t_n)$ is a term of sort s.

Terms

In other words, terms are formal expressions with well-balanced brackets which we may also view as marked, ordered trees. The markings are function symbols or variables. The nodes correspond to the subterms of the term. A node v that is marked with a function symbol f of arity n has exactly nsubtrees representing the n immediate subterms of v. Atoms (also called atomic formulas) over Σ are formed according to this syntax:

Whenever we admit equations as atomic formulas we are in the realm of first-order logic with equality. Admitting equality does not really increase the expressiveness of first-order logic, (cf. exercises). But deductive systems where equality is treated specifically can be much more efficient. Atoms (also called atomic formulas) over Σ are formed according to this syntax:

Whenever we admit equations as atomic formulas we are in the realm of first-order logic with equality. Admitting equality does not really increase the expressiveness of first-order logic, (cf. exercises). But deductive systems where equality is treated specifically can be much more efficient.

Many-sorted case:

If
$$a(p) = s_1 \dots s_m$$
, we require that t_i is a term of sort s_i for $i = 1, \dots, m$.

Literals

$$L ::= A$$
 (positive literal)

$$| \neg A$$
 (negative literal)

 $F_{\Sigma}(X)$ is the set of first-order formulas over Σ defined as follows:

F, G, H	::=	\perp	(falsum)
		Т	(verum)
		A	(atomic formula)
		$\neg F$	(negation)
		$(F \wedge G)$	(conjunction)
		$(F \lor G)$	(disjunction)
		$(F \rightarrow G)$	(implication)
		$(F \leftrightarrow G)$	(equivalence)
		$\forall x F$	(universal quantification)
		$\exists x F$	(existential quantification)

Notational Conventions

We omit brackets according to the following rules:

- $\neg >_p \land >_p \lor \lor >_p \rightarrow >_p \leftrightarrow$ (binding precedences)
- $\bullet~\vee$ and \wedge are associative and commutative
- $\bullet \ \rightarrow \text{ is right-associative}$

 $Qx_1, \ldots, x_n F$ abbreviates $Qx_1 \ldots Qx_n F$.

Notational Conventions

We use infix-, prefix-, postfix-, or mixfix-notation with the usual operator precedences.

Examples:

Example: Peano Arithmetic

Signature:

$$\begin{split} \Sigma_{PA} &= (\Omega_{PA}, \ \Pi_{PA}) \\ \Omega_{PA} &= \{0/0, \ +/2, \ */2, \ s/1\} \\ \Pi_{PA} &= \{ \le /2, \ _p \ + \ >_p \ < \ >_p \ \le \ e^{-2p} \end{split}$$

Examples of formulas over this signature are:

$$orall x, y(x \leq y \leftrightarrow \exists z(x + z \approx y))$$

 $\exists x \forall y(x + y \approx y)$
 $\forall x, y(x * s(y) \approx x * y + x)$
 $\forall x, y(s(x) \approx s(y) \rightarrow x \approx y)$
 $\forall x \exists y(x < y \land \neg \exists z(x < z \land z < y))$

We observe that the symbols \leq , <, 0, s are redundant as they can be defined in first-order logic with equality just with the help of +. The first formula defines \leq , while the second defines zero. The last formula, respectively, defines s.

Eliminating the existential quantifiers by Skolemization (cf. below) reintroduces the "redundant" symbols.

Consequently there is a *trade-off* between the complexity of the quantification structure and the complexity of the signature.

Example: Specifying LISP lists

Signature:

$$\begin{split} \Sigma_{\text{Lists}} &= \left(\Omega_{\text{Lists}}, \Pi_{\text{Lists}}\right) \\ \Omega_{\text{Lists}} &= \{\text{car}/1, \text{cdr}/1, \text{cons}/2\} \\ \Pi_{\text{Lists}} &= \emptyset \end{split}$$

Examples of formulae:

 $\begin{array}{ll} \forall x, y & \mathsf{car}(\mathsf{cons}(x, y)) \approx x \\ \forall x, y & \mathsf{cdr}(\mathsf{cons}(x, y)) \approx y \\ \forall x & \mathsf{cons}(\mathsf{car}(x), \mathsf{cdr}(x)) \approx x \end{array}$

Many-sorted signatures

Example:

Signature

$$\begin{split} S &= \{\text{array, index, element}\}\\ \Omega &= \{\text{read, write}\}\\ & a(\text{read}) = \text{array} \times \text{index} \rightarrow \text{element}\\ & a(\text{write}) = \text{array} \times \text{index} \times \text{element} \rightarrow \text{array}\\ \Pi &= \emptyset \end{split}$$

 $X = \{X_s \mid s \in S\}$

Examples of formulae:

 $\forall x : \operatorname{array} \ \forall i : \operatorname{index} \ \forall j : \operatorname{index} \ (i \approx j \to \operatorname{write}(x, i, \operatorname{read}(x, j)) \approx x)$ $\forall x : \operatorname{array} \ \forall y : \operatorname{array} \ (x \approx y \leftrightarrow \forall i : \operatorname{index} \ (\operatorname{read}(x, i) \approx \operatorname{read}(y, i)))$

set of sorts

In $Q \times F$, $Q \in \{\exists, \forall\}$, we call F the scope of the quantifier $Q \times A$. An *occurrence* of a variable \times is called bound, if it is inside the scope of a quantifier $Q \times A$.

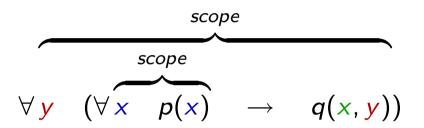
Any other occurrence of a variable is called free.

Formulas without free variables are also called closed formulas or sentential forms.

Formulas without variables are called ground.

Bound and Free Variables

Example:



The occurrence of y is bound, as is the first occurrence of x. The second occurrence of x is a free occurrence.

Substitutions

Substitution is a fundamental operation on terms and formulas that occurs in all inference systems for first-order logic.

In general, substitutions are mappings

$$\sigma: X \to \mathsf{T}_{\Sigma}(X)$$

such that the domain of σ , that is, the set

$$dom(\sigma) = \{x \in X \mid \sigma(x) \neq x\},\$$

is finite. The set of variables introduced by σ , that is, the set of variables occurring in one of the terms $\sigma(x)$, with $x \in dom(\sigma)$, is denoted by $codom(\sigma)$.

Substitution is a fundamental operation on terms and formulas that occurs in all inference systems for first-order logic.

In general, substitutions are mappings

$$\sigma: X \to \mathsf{T}_{\Sigma}(X)$$

such that the domain of σ , that is, the set

$$dom(\sigma) = \{x \in X \mid \sigma(x) \neq x\},\$$

is finite. The set of variables introduced by σ , that is, the set of variables occurring in one of the terms $\sigma(x)$, with $x \in dom(\sigma)$, is denoted by $codom(\sigma)$.

Many-sorted case: Substitutions must be sort-preserving: If x is a variable of sort s, then $\sigma(x)$ must be a term of sort s.

Substitutions

Substitutions are often written as $[s_1/x_1, \ldots, s_n/x_n]$, with x_i pairwise distinct, and then denote the mapping

$$[s_1/x_1, \ldots, s_n/x_n](y) = \begin{cases} s_i, & \text{if } y = x_i \\ y, & \text{otherwise} \end{cases}$$

We also write $x\sigma$ for $\sigma(x)$.

The modification of a substitution σ at x is defined as follows:

$$\sigma[x \mapsto t](y) = \begin{cases} t, & \text{if } y = x \\ \sigma(y), & \text{otherwise} \end{cases}$$

Why Substitution is Complicated

We define the application of a substitution σ to a term t or formula F by structural induction over the syntactic structure of t or F by the equations depicted on the next page.

In the presence of quantification it is surprisingly complex:

We need to make sure that the (free) variables in the codomain of σ are not *captured* upon placing them into the scope of a quantifier Qy, hence the bound variable must be renamed into a "fresh", that is, previously unused, variable z.

"Homomorphic" extension of σ to terms and formulas:

$$f(s_1, \ldots, s_n)\sigma = f(s_1\sigma, \ldots, s_n\sigma)$$

$$\perp \sigma = \perp$$

$$\top \sigma = \top$$

$$p(s_1, \ldots, s_n)\sigma = p(s_1\sigma, \ldots, s_n\sigma)$$

$$(u \approx v)\sigma = (u\sigma \approx v\sigma)$$

$$\neg F\sigma = \neg (F\sigma)$$

$$(F\rho G)\sigma = (F\sigma \rho G\sigma) ; \text{ for each binary connective } \rho$$

$$(Qx F)\sigma = Qz (F \sigma[x \mapsto z]) ; \text{ with } z \text{ a fresh variable}$$

Conventions

In what follows we will use the following conventions:

constants (0-ary function symbols) are denoted with *a*, *b*, *c*, *d*, ...

function symbols with arity ≥ 1 are denoted

- f, g, h, \dots if the formulae are interpreted into arbitrary algebras
- +, -, s, ... if the intended interpretation is into numerical domains

predicate symbols with arity 0 are denoted P, Q, R, S, ...

predicate symbols with arity ≥ 1 are denoted

- p, q, r, ... if the formulae are interpreted into arbitrary algebras
- \leq , \geq , <, > if the intended interpretation is into numerical domains

variables are denoted x, y, z, ...