Decision Procedures in Verification

First-Order Logic (1)

12.11.2012

Viorica Sofronie-Stokkermans

e-mail: sofronie@uni-koblenz.de

Part 2: First-Order Logic

First-order logic
e formalizes fundamental mathematical concepts
e is expressive (Turing-complete)

e Is not too expressive
(e. g. not axiomatizable: natural numbers, uncountable sets)

e has a rich structure of decidable fragments
e has a rich model and proof theory

First-order logic is also called (first-order) predicate logic.

2.1 Syntax

Syntax:

e non-logical symbols (domain-specific)
= terms, atomic formulas

e logical symbols (domain-independent)
= Boolean combinations, quantifiers

Signature

A signature
> = (1),

fixes an alphabet of non-logical symbols, where

e () is a set of function symbols f with arity n > 0,
written f/n,

e [1is a set of predicate symbols p with arity m > 0,

written p/m.

If n =0 then f is also called a constant (symbol).
If m = 0 then p is also called a propositional variable.
We use letters P, Q, R, S, to denote propositional variables.

Signature

Refined concept for practical applications:
many-sorted signatures (corresponds to simple type systems in
programming languages).

Most results established for one-sorted signatures extend in a
natural way to many-sorted signatures.

Many-sorted Signature

A many-sorted signature

> =(5,Q,N),
fixes an alphabet of non-logical symbols, where

e S is a set of sorts,

e () is a set of function symbols f with arity a(f) = s1...s5, — s,
e [1is a set of predicate symbols p with arity a(p) = s1...5sm

where s1,...,Sn, Sm, S are sorts.

Variables

Predicate logic admits the formulation of abstract, schematic assertions.
(Object) variables are the technical tool for schematization.

We assume that
X

is a given countably infinite set of symbols which we use for (the denotation
of) variables.

Variables

Predicate logic admits the formulation of abstract, schematic assertions.
(Object) variables are the technical tool for schematization.

We assume that
X

is a given countably infinite set of symbols which we use for (the denotation
of) variables.

Many-sorted case:

We assume that for every sort s € S, Xs is a given countably infinite set of
symbols which we use for (the denotation of) variables of sort s.

Terms

Terms over ¥ (resp., X-terms) are formed according to these syntactic
rules:

tuv = Xx x e X (variable)
| f(si,....sn) , f/n€Q (functional term)
By Ty (X) we denote the set of X-terms (over X).

A term not containing any variable is called a ground term.
By Ts we denote the set of 2-ground terms.

Terms

Terms over ¥ (resp., X-terms) are formed according to these syntactic
rules:

tuv = Xx x e X (variable)
| f(t1,...tn) ,f/neQ (functional term)

By Ty (X) we denote the set of X-terms (over X).
A term not containing any variable is called a ground term.
By Ts we denote the set of 2-ground terms.

Many-sorted case:
a variable x € X is a term of sort s
if a(f) = s1...sp — s, and t; are terms of sort s;, i = 1,...,n then

f(t1,..., tn) is a term of sort s.

10

Terms

In other words, terms are formal expressions with well-balanced brackets
which we may also view as marked, ordered trees.

The markings are function symbols or variables.

The nodes correspond to the subterms of the term.

A node v that is marked with a function symbol f of arity n has exactly n

subtrees representing the n immediate subterms of v.

11

Atoms

Atoms (also called atomic formulas) over ¥ are formed according to this

syntax:
AB = p(ti,...tm) ,p/meTl
[| (t =~ t') (equation) }

Whenever we admit equations as atomic formulas we are in the realm of
first-order logic with equality. Admitting equality does not really increase
the expressiveness of first-order logic, (cf. exercises). But deductive systems
where equality is treated specifically can be much more efficient.

12

Atoms

Atoms (also called atomic formulas) over ¥ are formed according to this

syntax:
AB = p(ti,...tm) ,p/meTl
[| (t =~ t') (equation) }

Whenever we admit equations as atomic formulas we are in the realm of
first-order logic with equality. Admitting equality does not really increase
the expressiveness of first-order logic, (cf. exercises). But deductive systems
where equality is treated specifically can be much more efficient.

Many-sorted case:

If a(p) = s1...5m, we require that t; is a term of sort s; for i =1,..., m.

13

Literals

L =
|

A
—A

(positive literal)

(negative literal)

14

Clauses

VL,

k>1

(empty clause)

(non-empty clause)

15

General First-Order Formulas

Fs(X) is the set of first-order formulas over ¥ defined as follows:

F.G,H = 1 (falsum)
T (verum)
A (atomic formula)
—F (negation)
(FAG) (conjunction)
(FVG) (disjunction)
(F— G) (implication)
(F — G) (equivalence)
VxF (universal quantification)
IxF (existential quantification)

Notational Conventions

We omit brackets according to the following rules:

® >P A\ >P V >p — >p —
(binding precedences)

e \V and A are associative and commutative

e — is right-associative

®Qx1,...,xn F abbreviates Q@x3...Qx,F.

17

Notational Conventions

We use infix-, prefix-, postfix-, or mixfix-notation with the usual operator

precedences.

Examples:
s+txu for

sxu<t+v for

—5s for

0 for

+(s, *(t, u))
< (x(s, u), +(t, v))
—(s)
0()

18

Example: Peano Arithmetic

Signature:

Ypa = (Qpa, Mpa)

Qpa = {0/0, +/2, %/2, s/1}

Mpa = {< /2, < /23

+, %, <, <infix; * >, 4+ >p < >p <

Examples of formulas over this signature are:

Vx,y(x <y« dz(x+z=y))
IxVy(x +y ~y)

Vx, y(x % s(y) = x *x y + x)

VX, y(s(x) = s(y) = x = y)
VxJy(x < y A—dz(x < zA z < y))

19

Remarks About the Example

We observe that the symbols <, <, 0, s are redundant as they can be
defined in first-order logic with equality just with the help of 4. The

first formula defines <, while the second defines zero. The last formula,
respectively, defines s.

Eliminating the existential quantifiers by Skolemization (cf. below)
reintroduces the “redundant” symbols.

Consequently there is a trade-off between the complexity of the
quantification structure and the complexity of the signature.

20

Example: Specifying LISP lists

Signature:

Y Lists = (QUists, Miists)

Quists = {car/1,cdr/1, cons/2}
Miists = 0

Examples of formulae:

Vx,y car(cons(x,y)) =~ x
Vx,y cdr(cons(x,y)) ~y
Vx cons(car(x), cdr(x)) =~ x

21

Many-sorted signatures

Example:
Signature

S = {array, index, element} set of sorts
(2 = {read, write}

a(read) = array X index — element
a(write) = array X index x element — array

=10

X={Xs|s€S}

Examples of formulae:

Vx :array Vi:index Vj:index (i~ j — write(x,/,read(x,J)) =~ x)

Vx :array Vy :array (x =y < Vi:index (read(x, i)~ read(y,/)))

22

Bound and Free Variables

In QxF, Q € {3, V}, we call F the scope of the quantifier Qx.
An occurrence of a variable x is called bound, if it is inside the scope of a

quantifier Qx.
Any other occurrence of a variable is called free.

Formulas without free variables are also called closed formulas or sentential

forms.

Formulas without variables are called ground.

23

Bound and Free Variables

Example:

scope

7\
’7 N\

scope

——
Vy (Vx p(x) — q(xy))

The occurrence of y is bound, as is the first occurrence of x. The second

occurrence of x is a free occurrence.

24

Substitutions

Substitution is a fundamental operation on terms and formulas that occurs
in all inference systems for first-order logic.

In general, substitutions are mappings
o: X — Tg(X)
such that the domain of o, that is, the set
dom(o) = {x € X | o(x) # x},

is finite. The set of variables introduced by o, that is, the set of variables
occurring in one of the terms o(x), with x € dom(o), is denoted by
codom(o).

25

Substitutions

Substitution is a fundamental operation on terms and formulas that occurs
in all inference systems for first-order logic.

In general, substitutions are mappings
o: X — Tg(X)
such that the domain of o, that is, the set
dom(o) = {x € X | o(x) # x},

is finite. The set of variables introduced by o, that is, the set of variables
occurring in one of the terms o(x), with x € dom(o), is denoted by
codom(o).

Many-sorted case: Substitutions must be sort-preserving:
If x is a variable of sort s, then o(x) must be a term of sort s.

26

Substitutions

Substitutions are often written as [s;/x, ..., sn/Xn|, with x; pairwise

distinct, and then denote the mapping

S;, if Yy = X
[s1/x1, -2 sn/xn](y) = _
y, otherwise

We also write xo for o(x).

The modification of a substitution o at x is defined as follows:

t, if y = x
olx = tl(y) = _
o(y), otherwise

27

Why Substitution is Complicated

We define the application of a substitution o to a term t or formula F by
structural induction over the syntactic structure of t or F by the equations
depicted on the next page.

In the presence of quantification it is surprisingly complex:

We need to make sure that the (free) variables in the codomain of o are not
captured upon placing them into the scope of a quantifier Qy, hence the
bound variable must be renamed into a “fresh”, that is, previously unused,
variable z.

28

Application of a Substitution

“Homomorphic” extension of o to terms and formulas:

f(s1,..., sn)o = f(si0o,..., Sho)
lo=_1
To=T

p(si, ..., sn)o = p(sio, ..., Sno)

(u~v)o = (uoc = vo)
—Fo = —=(Fo)
(FpG)o = (Fo p Go) ; for each binary connective p
(Qx F)o = Qz(F o[x — z]) ; with z a fresh variable

Conventions

In what follows we will use the following conventions:
constants (0-ary function symbols) are denoted with a, b, ¢, d, ...

function symbols with arity > 1 are denoted
e f, g, h, ... if the formulae are interpreted into arbitrary algebras
e +,—,s, ... if the intended interpretation is into numerical domains

predicate symbols with arity O are denoted P, Q, R, S, ...

predicate symbols with arity > 1 are denoted
® p,q,r,... if the formulae are interpreted into arbitrary algebras
o <, >, <, > if the intended interpretation is into numerical domains

variables are denoted X, y, z, ...

30

