
Decision Procedures in Verification

First-Order Logic (3)

26.11.2012

Viorica Sofronie-Stokkermans

e-mail: sofronie@uni-koblenz.de

1

Until now:

Syntax (one-sorted signatures vs. many-sorted signatures)

Semantics

Models, Validity, and Satisfiability

Entailment and Equivalence

Logical theories

Syntactic view: axioms F of (closed) first-order Σ-formulae.

Mod(F) = {A ∈ Σ-alg | A |= G , for all G in F}

Semantic view: class M of Σ-algebras

Th(M) = {G ∈ FΣ(X) closed | M |= G}

Algorithmic Problems; Decidability, Undecidability

2

Today:

Proving (un-)satisfiability of first-order formulas.

• Normal Forms

• Unification General Resolution

• Theorems of Herbrand and Löwenheim/Skolem

• Ordered Resolution with Selection

3

2.5 Normal Forms and Skolemization

Study of normal forms motivated by

• reduction of logical concepts,

• efficient data structures for theorem proving.

The main problem in first-order logic is the treatment of quantifiers. The

subsequent normal form transformations are intended to eliminate many of

them.

Format often required:

∀x1 . . . ∀xn (L11 ∨ . . . ∨ L1k) ∧ . . . ∧ (Ln1 ∨ . . . ∨ Lnl)

4

Prenex Normal Form

Prenex formulas have the form

Q1x1 . . .Qnxn F ,

where F is quantifier-free and Qi ∈ {∀,∃};

we call Q1x1 . . .Qnxn the quantifier prefix and F the matrix of

the formula.

5

Prenex Normal Form

Computing prenex normal form by the rewrite relation ⇒P :

(F ↔ G) ⇒P (F → G) ∧ (G → F)

¬QxF ⇒P Qx¬F (¬Q)

(QxF ρ G) ⇒P Qy(F [y/x] ρ G), y fresh, ρ ∈ {∧,∨}

(QxF → G) ⇒P Qy(F [y/x] → G), y fresh

(F ρ QxG) ⇒P Qy(F ρ G [y/x]), y fresh, ρ ∈ {∧,∨,→}

Here Q denotes the quantifier dual to Q, i.e., ∀ = ∃ and ∃ = ∀.

6

Example

F := (∀x((p(x)∨ q(x , y))∧∃z r(x , y , z))) → ((p(z)∧ q(x , z))∧∀z r(z, x , y))

7

Example

F := (∀x((p(x) ∨ q(x , y)) ∧ ∃z r(x , y , z))) → ((p(z)∧ q(x , z))∧∀z r(z, x , y))

⇒P ∃x′ ((p(x′) ∨ q(x′, y)) ∧ ∃z r(x′, y , z)) → ((p(z) ∧ q(x , z)) ∧ ∀z r(z, x , y))

8

Example

F := (∀x((p(x) ∨ q(x , y)) ∧ ∃z r(x , y , z))) → ((p(z)∧ q(x , z))∧∀z r(z, x , y))

⇒P ∃x′((p(x′) ∨ q(x′, y)) ∧ ∃z r(x′, y , z)) → ((p(z) ∧ q(x , z)) ∧ ∀z r(z, x , y))

⇒P ∃x′(∃z′((p(x′) ∨ q(x′, y)) ∧ r(x′, y , z′))) → ((p(z) ∧ q(x , z)) ∧ ∀z r(z, x , y))

9

Example

F := (∀x((p(x) ∨ q(x , y)) ∧ ∃z r(x , y , z))) → ((p(z)∧ q(x , z))∧∀z r(z, x , y))

⇒P ∃x′((p(x′) ∨ q(x′, y)) ∧ ∃z r(x′, y , z))) → ((p(z) ∧ q(x , z)) ∧ ∀z r(z, x , y))

⇒P ∃x′(∃z′((p(x′) ∨ q(x′, y)) ∧ r(x′, y , z′))) → ((p(z) ∧ q(x , z)) ∧ ∀z r(z, x , y))

⇒P ∃x′∀z′ (((p(x′) ∨ q(x′, y)) ∧ r(x′, y , z′))) → ((p(z) ∧ q(x , z)) ∧ ∀z r(z, x , y))

10

Example

F := (∀x((p(x) ∨ q(x , y)) ∧ ∃z r(x , y , z))) → ((p(z)∧ q(x , z))∧∀z r(z, x , y))

⇒P ∃x′((p(x′) ∨ q(x′, y)) ∧ ∃z r(x′, y , z))) → ((p(z) ∧ q(x , z)) ∧ ∀z r(z, x , y))

⇒P ∃x′(∃z′((p(x′) ∨ q(x′, y)) ∧ r(x′, y , z′))) → ((p(z) ∧ q(x , z)) ∧ ∀z r(z, x , y))

⇒P ∃x′∀z′ ((p(x′) ∨ q(x′, y)) ∧ r(x′, y , z′)) → ((p(z) ∧ q(x , z)) ∧ ∀z r(z, x , y))

⇒P ∃x′∀z′ ((p(x′) ∨ q(x′, y)) ∧ r(x′, y , z′)) → ∀z′′((p(z) ∧ q(x , z)) ∧ r(z′′, x , y))

11

Example

F := (∀x((p(x) ∨ q(x , y)) ∧ ∃z r(x , y , z))) → ((p(z)∧ q(x , z))∧∀z r(z, x , y))

⇒P ∃x′((p(x′) ∨ q(x′, y)) ∧ ∃z r(x′, y , z))) → ((p(z) ∧ q(x , z)) ∧ ∀z r(z, x , y))

⇒P ∃x′(∃z′((p(x′) ∨ q(x′, y)) ∧ r(x′, y , z′))) → ((p(z) ∧ q(x , z)) ∧ ∀z r(z, x , y))

⇒P ∃x′∀z′ ((p(x′) ∨ q(x′, y)) ∧ r(x′, y , z′)) → ((p(z) ∧ q(x , z)) ∧ ∀z r(z, x , y))

⇒P ∃x′∀z′ ((p(x′) ∨ q(x′, y)) ∧ r(x′, y , z′)) → ∀z′′((p(z) ∧ q(x , z)) ∧ r(z′′, x , y))

⇒P ∃x′∀z′∀z′′(((p(x′) ∨ q(x′, y)) ∧ r(x′, y , z′)) → ((p(z) ∧ q(x , z)) ∧ r(z′′, x , y)))

12

Skolemization

Intuition: replacement of ∃y by a concrete choice function

computing y from all the arguments y depends on.

Transformation ⇒S (to be applied outermost, not in

subformulas):

∀x1, . . . , xn∃yF ⇒S ∀x1, . . . , xnF [f (x1, . . . , xn)/y]

where f /n is a new function symbol (Skolem function).

13

Skolemization

Together: F
∗

⇒P G
︸︷︷︸

prenex

∗
⇒S H

︸︷︷︸

prenex, no ∃

Theorem 2.9:

Let F , G , and H as defined above and closed. Then

(i) F and G are equivalent.

(ii) H |= G but the converse is not true in general.

(iii) G satisfiable (wrt. Σ-alg) ⇔ H satisfiable (wrt. Σ′-Alg)

where Σ′ = (Ω ∪ SKF , Π), if Σ = (Ω,Π).

14

Clausal Normal Form (ConjunctiveNormal Form)

(F ↔ G) ⇒K (F → G) ∧ (G → F)

(F → G) ⇒K (¬F ∨ G)

¬(F ∨ G) ⇒K (¬F ∧ ¬G)

¬(F ∧ G) ⇒K (¬F ∨ ¬G)

¬¬F ⇒K F

(F ∧ G) ∨ H ⇒K (F ∨ H) ∧ (G ∨ H)

(F ∧ ⊤) ⇒K F

(F ∧ ⊥) ⇒K ⊥

(F ∨ ⊤) ⇒K ⊤

(F ∨ ⊥) ⇒K F

These rules are to be applied modulo associativity and commutativity

of ∧ and ∨. The first five rules, plus the rule (¬Q), compute the

negation normal form (NNF) of a formula.

15

The Complete Picture

F
∗

⇒P Q1y1 . . .Qnyn G (G quantifier-free)
∗

⇒S ∀x1, . . . , xm H (m ≤ n, H quantifier-free)

∗
⇒K ∀x1, . . . , xm

︸ ︷︷ ︸

leave out

k∧

i=1

ni∨

j=1

Lij

︸ ︷︷ ︸

clauses Ci
︸ ︷︷ ︸

F ′

N = {C1, . . . ,Ck} is called the clausal (normal) form (CNF) of F .

Note: the variables in the clauses are implicitly universally quantified.

Theorem 2.10:

Let F be closed. Then F ′ |= F . (The converse is not true in general.)

Theorem 2.11:

Let F be closed. Then F is satisfiable iff F ′ is satisfiable iff N is satisfiable

16

Example

Given: ∃u∀w(∃x(p(w , x , u) ∨ ∀y(q(w , x , y) ∧ ∃z r(y , z))))

17

Example

Given: ∃u∀w(∃x(p(w , x , u) ∨ ∀y (q(w , x , y) ∧ ∃z r(y , z))))

Prenex Normal Form:

∗
⇒P ∃u∀w∃x∀y∃z((p(w , x , u) ∨ (q(w , x , y) ∧ r(y , z))))

18

Example

Given: ∃u∀w(∃x(p(w , x , u) ∨ ∀y (q(w , x , y) ∧ ∃z r(y , z))))

Prenex Normal Form:

∗
⇒P ∃u∀w∃x∀y∃z((p(w , x , u) ∨ (q(w , x , y) ∧ r(y , z))))

Skolemisation:

∗
⇒S ∀w∀y((p(w , skx (w), sku) ∨ (q(w , skx (w), y) ∧ r(y , g(w , y)))))

19

Example

Given: ∃u∀w(∃x(p(w , x , u) ∨ ∀y (q(w , x , y) ∧ ∃z r(y , z))))

Prenex Normal Form:

∗
⇒P ∃u∀w∃x∀y∃z((p(w , x , u) ∨ (q(w , x , y) ∧ r(y , z))))

Skolemisation:

∗
⇒S ∀w∀y((p(w , skx (w), sku) ∨ (q(w , skx (w), y) ∧ r(y , g(w , y)))))

Clause normal form:

∗
⇒K ∀w∀y [(p(w , skx (w), sku)∨q(w , skx (w), y))∧(p(w , skx (w), sku)∨r(y , g(w , y)))]

Set of clauses:

{p(w , skx (w), sku)∨q(w , skx (w), y), p(w , skx (w), sku)∨r(y , g(w , y))}

20

Optimization

Here is lots of room for optimization since we only can preserve

satisfiability anyway:

• size of the CNF exponential when done naively;

• want to preserve the original formula structure;

• want small arity of Skolem functions:

∀x∃y .p(x)∨ q(y)←− (∀x p(x))∨ (∃y q(y)) −→ ∃y∀x p(x)∨ q(y)

21

2.6 General Resolution

Propositional resolution:

refutationally complete,

clearly inferior to the DPLL procedure

(even with various improvements).

But: in contrast to the DPLL procedure, resolution can be easily

extended to non-ground clauses.

22

Propositional resolution

Resolution inference rule:

C ∨ A ¬A ∨ D

C ∨ D

Terminology: C ∨ D: resolvent; A: resolved atom

(Positive) factorisation inference rule:

C ∨ A ∨ A

C ∨ A

23

Resolution for ground clauses

• Exactly the same as for propositional clauses

Ground atoms 7→ propositional variables

Theorem

Res is sound and refutationally complete (for all sets of ground

clauses)

24

Sample Refutation

1. ¬P(f (a)) ∨ ¬P(f (a)) ∨ Q(b) (given)

2. P(f (a)) ∨ Q(b) (given)

3. ¬P(g(b, a)) ∨ ¬Q(b) (given)

4. P(g(b, a)) (given)

5. ¬P(f (a)) ∨ Q(b) ∨ Q(b) (Res. 2. into 1.)

6. ¬P(f (a)) ∨ Q(b) (Fact. 5.)

7. Q(b) ∨ Q(b) (Res. 2. into 6.)

8. Q(b) (Fact. 7.)

9. ¬P(g(b, a)) (Res. 8. into 3.)

10. ⊥ (Res. 4. into 9.)

25

Resolution for ground clauses

• Refinements with orderings and selection functions:

Need: - well-founded ordering on ground atomic formulae/literals

- selection function (for negative literals)

S : C 7→ set of occurrences of negative literals in C

Example of selection with selected literals indicated as X :

¬A ∨ ¬A ∨ B

¬B0 ∨ ¬B1 ∨ A

26

Resolution Calculus Res
≻
S

Ordered resolution with selection

C ∨ A ¬A ∨ D

C ∨ D

if

1. A ≻ C ;

2. nothing is selected in C by S;

3. ¬A is selected in D ∨ ¬A,

or else nothing is selected in D ∨ ¬A and ¬A � max(D).

Note: For positive literals, A ≻ C is the same as A ≻ max(C).

Ordered factoring

C ∨ A ∨ A

(C ∨ A)

if A is maximal in C and nothing is selected in C .

27

Resolution for ground clauses

Let ≻ be a total and well-founded ordering on ground atoms, and S

a selection function.

Theorem. Res≻S is sound and refutationally complete for all sets of

ground clauses.

Soundness: sufficient to show that

(1) C ∨ A,¬A ∨ D |= C ∨ D

(2) C ∨ A ∨ A |= C ∨ A

Completeness: Let ≻ be a clause ordering, let N be saturated

wrt. Res≻S , and suppose that ⊥ 6∈ N. Then I≻N |= N, where I≻N is

incrementally constructed as follows:

28

Construction of Candidate Models Formally

Let N,≻ be given.

• Order N increasing w.r.t. the extension of ≻ to clauses.

• Define sets IC and ∆C for all ground clauses C over the given

signature inductively over ≻:

IC :=
⋃

C≻D ∆D

∆C :=















{A}, if C ∈ N, C = C ′ ∨ A, A ≻ C ′, IC 6|= C

and nothing is selected in C

∅, otherwise

We say that C produces A, if ∆C = {A}.

The candidate model for N (wrt. ≻) is given as I≻N :=
⋃

C ∆C .

(We write IN for I≻N if ≻ is irrelevant or known from the context.)

29

Completeness

Theorem. Let ≻ be a clause ordering, let N be saturated wrt. Res≻
S
, and

suppose that ⊥ 6∈ N. Then I≻
N

|= N.

Proof: Suppose ⊥ 6∈ N, but I≻
N

6|= N. Let C ∈ N minimal (in ≻) such that

I≻
N

6|= C . Since C is false in IN , C is not productive. As C 6= ⊥ there exists

a maximal atom A in C .

1. C = ¬A ∨ C ′ (maximal atom occurs negatively) ⇒ IN |=A, IN 6 |=C ′

Then some D = D′ ∨ A ∈ N produces A. As D′
∨A ¬A∨C′

D′∨C′ , we

infer that D′ ∨ C ′ ∈ N, and C ≻ D′ ∨ C ′ and IN 6|= D′ ∨ C ′

⇒ contradicts minimality of C .

2. C = ¬A ∨ C ′ (¬A is selected) ⇒ IN |=A, IN 6 |=C ′

The argument in 1. applies also in this case.

3. C = C ′ ∨ A ∨ A. Then C′
∨A∨A

C′∨A
yields a smaller counterexample

C ′ ∨ A ∈ N. ⇒ contradicts minimality of C .

30

General Resolution through Instantiation

Idea: instantiate clauses appropriately:

31

General Resolution through Instantiation

Problems:

More than one instance of a clause can participate in a proof.

Even worse: There are infinitely many possible instances.

Observation:

Instantiation must produce complementary literals

(so that inferences become possible).

Idea:

Do not instantiate more than necessary to get complementary literals.

32

General Resolution through Instantiation

Idea: do not instantiate more than necessary:

P(z ′, z ′) ∨ ¬Q(z) ¬P(a, y) P(x ′, b) ∨ Q(f (x ′, x))

P(a, a) ∨ ¬Q(z) ¬P(a, a) ¬P(a, b) P(a, b) ∨ Q(f (a, x))

¬Q(z) Q(f (a, x))

¬Q(f (a, x)) Q(f (a, x))

⊥

[a/z ′] [a/y] [b/y] [a/x ′]

[f (a, x)/z]

33

Lifting Principle

Problem: Make saturation of infinite sets of clauses as they arise from

taking the (ground) instances of finitely many general clauses (with

variables) effective and efficient.

Idea (Robinson 65):

• Resolution for general clauses:

• Equality of ground atoms is generalized to unifiability of general

atoms;

• Only compute most general (minimal) unifiers.

34

Lifting Principle

Significance: The advantage of the method in (Robinson 65) compared

with (Gilmore 60) is that unification enumerates only those instances

of clauses that participate in an inference.

Moreover, clauses are not right away instantiated into ground clauses.

Rather they are instantiated only as far as required for an inference.

Inferences with non-ground clauses in general represent infinite sets of

ground inferences which are computed simultaneously in a single step.

35

Resolution for General Clauses

General binary resolution Res:

C ∨ A ¬B ∨ D

(C ∨ D)σ
if σ = mgu(A,B) [resolution]

C ∨ A ∨ B

(C ∨ A)σ
if σ = mgu(A,B) [factorization]

For inferences with more than one premise, we assume that the variables in

the premises are (bijectively) renamed such that they become different to

any variable in the other premises.

We do not formalize this. Which names one uses for variables is otherwise

irrelevant.

36

Unification

Let E = {s1
.
= t1, . . . , sn

.
= tn} (si , ti terms or atoms) a multi-set of

equality problems. A substitution σ is called a unifier of E if siσ = tiσ for

all 1 ≤ i ≤ n.

If a unifier of E exists, then E is called unifiable.

37

Unification after Martelli/Montanari

(1) t
.
= t,E ⇒MM E

(2) f (s1, . . . , sn)
.
= f (t1, . . . , tn),E ⇒MM s1

.
= t1, . . . , sn

.
= tn,E

(3) f (. . .)
.
= g(. . .),E ⇒MM ⊥

(4) x
.
= t,E ⇒MM x

.
= t,E [t/x]

if x ∈ var(E), x 6∈ var(t)

(5) x
.
= t,E ⇒MM ⊥

if x 6= t, x ∈ var(t)

(6) t
.
= x ,E ⇒MM x

.
= t,E

if t 6∈ X

38

Examples

Example 1:

{x
.
= f (a), g(x , x)

.
= g(x , y)}

⇒4 {x
.
= f (a), g(f (a), f (a))

.
= g(f (a), y)}

⇒2 {x
.
= f (a), f (a)

.
= f (a), f (a)

.
= y}

⇒1 {x
.
= f (a), f (a)

.
= y}

⇒6 {x
.
= f (a), y

.
= f (a)}

Example 2:

{x
.
= f (a), g(x , x)

.
= h(x , y)} ⇒3 ⊥

Example 3:

{f (x , x)
.
= f (y , g(y))}

⇒2 {x
.
= y , x

.
= g(y)}

⇒4 {x
.
= y , y

.
= g(y)} ⇒5 ⊥

39

Martelli/Montanari: Main Properties

If E = x1
.
= u1, . . . , xk

.
= uk , with xi pairwise distinct, xi 6∈ var(uj), then E

is called an (equational problem in) solved form representing the solution

σE = [u1/x1, . . . , uk/xk].

Proposition 2.28:

If E is a solved form then σE is am mgu of E .

40

Martelli/Montanari: Main Properties

If E = x1
.
= u1, . . . , xk

.
= uk , with xi pairwise distinct, xi 6∈ var(uj), then E

is called an (equational problem in) solved form representing the solution

σE = [u1/x1, . . . , uk/xk].

Theorem 2.29:

(1) If E ⇒MM E ′ then σ is a unifier of E iff σ is a unifier of E ′

(2) If E
∗

⇒MM ⊥ then E is not unifiable.

(3) If E
∗

⇒MM E ′ with E ′ in solved form, then σE′ is an mgu of E .

Proof:

(1) We have to show this for each of the rules. Let’s treat the case for the

4th rule here. Suppose σ is a unifier of x
.
= t, that is, xσ = tσ. Thus,

σ ◦ [t/x] = σ[x 7→ tσ] = σ[x 7→ xσ] = σ. Therefore, for any equation

u
.
= v in E : uσ = vσ, iff u[t/x]σ = v [t/x]σ. (2) and (3) follow by

induction from (1) using Proposition 2.28.

41

Main Unification Theorem

Theorem 2.30:

E is unifiable if and only if there is a most general unifier σ of E , such that

σ is idempotent and dom(σ) ∪ codom(σ) ⊆ var(E).

Proof: See e.g. Baader & Nipkow: Term rewriting and all that.

Problem: exponential growth of terms possible

Example:

E = {x1 ≈ f (x0, x0), x2 ≈ f (x1, x1), . . . , xn ≈ f (xn−1, xn−1)}

m.g.u. [x1 7→ f (x0, x0), x2 7→ f (f (x0, x0), f (x0, x0)), ...]

xi 7→ complete binary tree of heigth i

Solution: Use acyclic term graphs; union/find algorithms

42

Lifting Lemma

Lemma 2.31

Let C and D be variable-disjoint clauses. If

C

σ

��

D

ρ

��

Cσ Dρ

C ′
[propositional resolution]

then there exists a substitution τ such that

C D

C ′′

ρ

��

C ′ = C ′′
τ

[general resolution]

An analogous lifting lemma holds for factorization.

43

Saturation of Sets of General Clauses

Corollary 2.32:

Let N be a set of general clauses saturated under Res, i.e., Res(N) ⊆ N.

Then also the set GΣ(N) of ground instances of N is saturated, that is,

Res(GΣ(N)) ⊆ GΣ(N).

Proof: W.l.o.g. we assume that clauses in N are pairwise variable-disjoint.

(If not, make them disjoint; renaming changes neither Res(N) nor GΣ(N).)

Let C ′ ∈ Res(GΣ(N)), meaning (i) C ′ ∈ GΣ(N), (ii) there exist resolvable

ground instances Cσ and Dρ of N with resolvent C ′, or else (iii) C ′ is a

factor of a ground instance Cσ of C .

Case (ii): By the Lifting Lemma, C and D are resolvable with a resolvent

C ′′ with C ′′
τ = C ′, for a suitable substitution τ . As C ′′ ∈ N by

assumption, we obtain that C ′ ∈ GΣ(N).

Case (iii): Similar.

44

2.7 Herbrand Interpretations

From now on we shall consider PL without equality. Ω shall

contain at least one constant symbol.

A Herbrand interpretation (over Σ) is a Σ-algebra A such that

• UA = TΣ (= the set of ground terms over Σ)

• fA : (s1, . . . , sn) 7→ f (s1, . . . , sn), f /n ∈ Ω

f

fA(△, . . . ,△) =

△ . . . △

45

Herbrand Interpretations

In other words, values are fixed to be ground terms and functions

are fixed to be the term constructors. Only predicate symbols

p/m ∈ Π may be freely interpreted as relations pA ⊆ Tm
Σ .

Proposition 2.12

Every set of ground atoms I uniquely determines a Herbrand

interpretation A via

(s1, . . . , sn) ∈ pA :⇔ p(s1, . . . , sn) ∈ I

Thus we shall identify Herbrand interpretations (over Σ) with

sets of Σ-ground atoms.

46

Herbrand Interpretations

Example: ΣPres = ({0/0, s/1,+/2}, {</2,≤/2})

N as Herbrand interpretation over ΣPres :

I = { 0 ≤ 0, 0 ≤ s(0), 0 ≤ s(s(0)), . . . ,

0 + 0 ≤ 0, 0 + 0 ≤ s(0), . . . ,

. . . , (s(0) + 0) + s(0) ≤ s(0) + (s(0) + s(0))

. . .

s(0) + 0 < s(0) + 0 + 0 + s(0)

. . .}

47

Existence of Herbrand Models

A Herbrand interpretation I is called a Herbrand model of F ,

if I |= F .

Theorem 2.13

Let N be a set of Σ-clauses.

N satisfiable ⇔ N has a Herbrand model (over Σ)

⇔ GΣ(N) has a Herbrand model (over Σ)

where GΣ(N) = {Cσ ground clause | C ∈ N, σ : X → TΣ} is the set

of ground instances of N.

(Proof – completeness proof of resolution for first-order logic.)

48

Example of a GΣ

For ΣPres one obtains for

C = (x < y) ∨ (y ≤ s(x))

the following ground instances:

(0 < 0) ∨ (0 ≤ s(0))

(s(0) < 0) ∨ (0 ≤ s(s(0)))

. . .

(s(0) + s(0) < s(0) + 0) ∨ (s(0) + 0 ≤ s(s(0) + s(0)))

. . .

49

Herbrand’s Theorem

Lemma 2.33: Let N be a set of Σ-clauses, let A be an interpretation.

Then A |= N implies A |= GΣ(N).

Lemma 2.34: Let N be a set of Σ-clauses, let A be a Herbrand

interpretation. Then A |= GΣ(N) implies A |= N.

Theorem 2.35 (Herbrand):

A set N of Σ-clauses is satisfiable iff it has a Herbrand model over Σ.

Proof:

The “⇐” part is trivial. For the “⇒” part let N 6|= ⊥.

N 6|= ⊥ ⇒ ⊥ 6∈ Res∗(N) (resolution is sound)

⇒ ⊥ 6∈ GΣ(Res
∗(N))

⇒ IGΣ(Res
∗(N)) |= GΣ(Res

∗(N)) (Thm. 2.23; Cor. 2.32)

⇒ IGΣ(Res
∗(N)) |= Res∗(N) (Lemma 2.34)

⇒ IGΣ(Res
∗(N)) |= N (N ⊆ Res∗(N))

50

The Theorem of Löwenheim-Skolem

Theorem 2.36 (Löwenheim–Skolem):

Let Σ be a countable signature and let S be a set of closed Σ-formulas.

Then S is satisfiable iff S has a model over a countable universe.

Proof:

If both X and Σ are countable, then S can be at most countably infinite.

Now generate, maintaining satisfiability, a set N of clauses from S . This

extends Σ by at most countably many new Skolem functions to Σ′. As Σ′

is countable, so is TΣ′ , the universe of Herbrand-interpretations over Σ′.

Now apply Theorem 2.35.

51

Refutational Completeness of General Resolution

Theorem 2.37:

Let N be a set of general clauses where Res(N) ⊆ N. Then

N |= ⊥ ⇔ ⊥ ∈ N.

Proof:

Let Res(N) ⊆ N. By Corollary 2.32: Res(GΣ(N)) ⊆ GΣ(N)

N |= ⊥ ⇔ GΣ(N) |= ⊥ (Lemma 2.33/2.34; Theorem 2.35)

⇔ ⊥ ∈ GΣ(N) (propositional resolution sound and complete)

⇔ ⊥ ∈ N

52

Compactness of Predicate Logic

Theorem 2.38 (Compactness Theorem for First-Order Logic):

Let Φ be a set of first-order formulas.

Φ is unsatisfiable ⇔ some finite subset Ψ ⊆ Φ is unsatisfiable.

Proof:

The “⇐” part is trivial. For the “⇒” part let Φ be unsatisfiable and let N

be the set of clauses obtained by Skolemization and CNF transformation

of the formulas in Φ. Clearly Res∗(N) is unsatisfiable. By Theorem 2.37,

⊥ ∈ Res∗(N), and therefore ⊥ ∈ Resn(N) for some n ∈ N. Consequently,

⊥ has a finite resolution proof B of depth ≤ n. Choose Ψ as the subset of

formulas in Φ such that the corresponding clauses contain the assumptions

(leaves) of B.

53

