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Until now:

Syntax (one-sorted signatures vs. many-sorted signatures)

Semantics

Models, Validity, and Satisfiability

Entailment and Equivalence

Logical theories

Syntactic view: axioms F of (closed) first-order Σ-formulae.

Mod(F) = {A ∈ Σ-alg | A |= G , for all G in F}

Semantic view: class M of Σ-algebras

Th(M) = {G ∈ FΣ(X ) closed | M |= G}

Algorithmic Problems; Decidability, Undecidability
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Until now:

Methods for checking satisfiability: resolution

Normal Forms:

Prenex Normal Form

Skolemization

Clausal Normal Form (Conjunctive Normal Form)

General resolution:

Proposition resolution/resolution for ground clauses

Lifting principle

General resolution calculus (soundness and completeness)

Unification

Consequences:

Herbrand’s theorem

The theorem of Löwenheim-Skolem

Compactness of predicate logic
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Resolution for ground clauses

• Refinements with orderings and selection functions:

Need: - well-founded ordering on ground atomic formulae/literals

- selection function (for negative literals)

S : C 7→ set of occurrences of negative literals in C

Example of selection with selected literals indicated as X :

¬A ∨ ¬A ∨ B

¬B0 ∨ ¬B1 ∨ A
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Ordered resolution with selection Res
≻
S

Ordered resolution with selection

C ∨ A D ∨ ¬A

C ∨ D

if

1. A ≻ C ;

2. nothing is selected in C by S;

3. ¬A is selected in D ∨ ¬A,

or else nothing is selected in D ∨ ¬A and ¬A � max(D).

Note: For positive literals, A ≻ C is the same as A ≻ max(C).

Ordered factoring

C ∨ A ∨ A

(C ∨ A)

if A is maximal in C and nothing is selected in C .
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2.8 Ordered Resolution with Selection

Resolution Calculus Res≻S

In the completeness proof, we talk about (strictly) maximal

literals of ground clauses.

In the non-ground calculus, we have to consider those literals

that correspond to (strictly) maximal literals of ground instances:

Let ≻ be a total and well-founded ordering on ground atoms.

A literal L is called [strictly] maximal in a clause C if and only

if there exists a ground substitution σ such that for all L′ in C :

Lσ � L′
σ [Lσ ≻ L′

σ].
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Example

Let Σ = (Ω, Π), with Ω = {c/0, d/0} and Π = {p/1, q/2}

Let ≻ be a total ordering on ground atoms such that

p(c) ≻ q(c, c) ≻ q(c, d) ≻ q(d , c) ≻ q(d , d) ≻ p(d)

Consider the clause C = p(x) ∨ q(x , y).

• p(x) is strictly maximal in C :

There exists a ground substitution σ1 with σ1(x) = c = σ1(y) such

that σ1(p(x)) = p(c) ≻ q(c, c) ≻ σ1(q(x , y)).

• q(x , y) is strictly maximal in C :

There exists a ground substitution σ2 with σ2(x) = d = σ2(y) such

that σ2(q(x , y)) = q(d , d) ≻ p(d) = σ2(p(x)).
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Resolution Calculus Res
≻
S

Let ≻ be an atom ordering and S a selection function.

C ∨ A ¬B ∨ D

(C ∨ D)σ
[ordered resolution with selection]

if σ = mgu(A,B) and

(i) Aσ strictly maximal wrt. Cσ;

(ii) nothing is selected in C by S ;

(iii) either ¬B is selected,

or else nothing is selected in ¬B ∨ D and ¬Bσ is maximal

in Dσ.
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Resolution Calculus Res
≻
S

C ∨ A ∨ B

(C ∨ A)σ
[ordered factoring]

if σ = mgu(A,B) and Aσ is maximal in Cσ and nothing is

selected in C .
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Example

Let Σ = (Ω, Π), with Ω = {c/0, d/0} and Π = {p/1, q/2}

Let ≻ be a total ordering on ground atoms such that

p(c) ≻ q(c, c) ≻ q(c, d) ≻ q(d , c) ≻ q(d , d) ≻ p(d)

Consider the clauses C = p(x) ∨ q(x , y), C1 = ¬p(z), C2 = ¬q(z, u)

• p(x) and q(x , y) are both strictly maximal in C .

The following inferences are possible:

p(x) ∨ q(x , y) ¬p(z)

q(z, y)

p(x) ∨ q(x , y) ¬q(z, u)

p(z)
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Soundness and Refutational Completeness

Theorem 2.39:

Let ≻ be an atom ordering and S a selection function such that

Res≻S (N) ⊆ N. Then

N |= ⊥ ⇔ ⊥ ∈ N

Proof:

The “⇐” part is trivial. For the “⇒” part consider first the propositional

level: Construct a candidate model IN as for unrestricted resolution, except

that clauses C in N that have selected literals are not productive, even

when they are false in IC and when their maximal atom occurs only once

and positively.

The result for general clauses follows using the same argument as in the

completeness proof for “usual” resolution.
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Redundancy

So far: local restrictions of the resolution inference rules using

orderings and selection functions.

Is it also possible to delete clauses altogether?

Under which circumstances are clauses unnecessary?

(Conjecture: e. g., if they are tautologies or if they are subsumed

by other clauses.)

Intuition: If a clause is guaranteed to be neither a minimal

counterexample nor productive, then we do not need it.
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Construction of Candidate Models Formally

Let N,≻ be given.

• Order N increasing w.r.t. the extension of ≻ to clauses.

• Define sets IC and ∆C for all ground clauses C over the given

signature inductively over ≻:

IC :=
S

C≻D
∆D

∆C :=

8

>

>

<

>

>

:

{A}, if C ∈ N, C = C ′ ∨ A, A ≻ C ′ , IC 6|= C

and nothing is selected in C

∅, otherwise

We say that C produces A, if ∆C = {A}.

The candidate model for N (wrt. ≻) is given as I≻N :=
S

C
∆C .

(We write IN for I≻N if ≻ is irrelevant or known from the context.)
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Recall

Construction of I for the extended clause set:

clauses C IC ∆C Remarks

1 ¬P0 ∅ ∅

2 P0 ∨ P1 ∅ {P1}

3 P1 ∨ P2 {P1} ∅

4 ¬P1 ∨ P2 {P1} {P2}

9 ¬P1 ∨ ¬P1 ∨ P3 ∨ P0 {P1,P2} {P3}

8 ¬P1 ∨ ¬P1 ∨ P3 ∨ P3 ∨ P0 {P1,P2,P3} ∅ true in AC

5 ¬P1 ∨ P4 ∨ P3 ∨ P0 {P1,P2,P3} ∅

6 ¬P1 ∨ ¬P4 ∨ P3 {P1,P2,P3} ∅ true in AC

7 ¬P3 ∨ P5 {P1,P2,P3} {P5}

The resulting I = {P1,P2,P3,P5} is a model of the clause set.
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A Formal Notion of Redundancy

Let N be a set of ground clauses and C a ground clause (not

necessarily in N). C is called redundant w. r. t. N, if there exist

C1, . . . ,Cn ∈ N, n ≥ 0, such that Ci ≺ C and C1, . . . ,Cn |= C .

Redundancy for general clauses:

C is called redundant w. r. t. N, if all ground instances Cσ of C

are redundant w. r. t. GΣ(N).

Intuition: Redundant clauses are neither minimal counterexam-

ples nor productive.

Note: The same ordering ≻ is used for ordering restrictions and

for redundancy (and for the completeness proof).
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Examples of Redundancy

Proposition 2.40:

• C tautology (i.e., |= C ) ⇒ C redundant w. r. t. any set N.

• Cσ ⊂ D ⇒ D redundant w. r. t. N ∪ {C}

• Cσ ⊆ D ⇒ D ∨ Lσ redundant w. r. t. N ∪ {C ∨ L, D}

(Under certain conditions one may also use non-strict subsump-

tion, but this requires a slightly more complicated definition of

redundancy.)
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Saturation up to Redundancy

N is called saturated up to redundancy (wrt. Res≻S )

:⇔ Res≻S (N \ Red(N)) ⊆ N ∪ Red(N)

Theorem 2.41:

Let N be saturated up to redundancy. Then

N |= ⊥ ⇔ ⊥ ∈ N
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Saturation up to Redundancy

Proof (Sketch):

(i) Ground case:

• consider the construction of the candidate model I≻N
for Res≻S

• redundant clauses are not productive

• redundant clauses in N are not minimal counterexamples

for I≻N

The premises of “essential” inferences are either minimal

counterexamples or productive.

(ii) Lifting: no additional problems over the proof of Theo-

rem 2.39.
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Monotonicity Properties of Redundancy

Theorem 2.42:

(i) N ⊆ M ⇒ Red(N) ⊆ Red(M)

(ii) M ⊆ Red(N) ⇒ Red(N) ⊆ Red(N \ M)

We conclude that redundancy is preserved when, during a theorem proving

process, one adds (derives) new clauses or deletes redundant clauses.
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Monotonicity Properties of Redundancy

Theorem 2.42:

(i) N ⊆ M ⇒ Red(N) ⊆ Red(M)

(ii) M ⊆ Red(N) ⇒ Red(N) ⊆ Red(N \ M)

Proof:

(i) Let C ∈ red(N). Then there exist C1, . . . ,Cn ∈ N, n ≥ 0 such that

Ci ≺ C for all i = 1, . . . , n and C1, . . . ,Cn |= C .

We assumed that N ⊆ M, so we know that C1, . . . ,Cn ∈ M. Thus: there

exist C1, . . . ,Cn ∈ M, n ≥ 0 such that Ci ≺ C for all i = 1, . . . , n and

C1, . . . ,Cn |= C . Therefore, C ∈ Red(M).
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Monotonicity Properties of Redundancy

Theorem 2.42:

(i) N ⊆ M ⇒ Red(N) ⊆ Red(M)

(ii) M ⊆ Red(N) ⇒ Red(N) ⊆ Red(N \ M)

Proof (Idea):

(ii) Let C ∈ Red(N). Then there exist C1, . . . ,Cn ∈ N, n ≥ 0 such that

Ci ≺ C for all i = 1, . . . , n and C1, . . . ,Cn |= C .

Case 1: For all i , Ci 6∈ M. Then C ∈ Red(N\M).

Case 2: For some i , Ci ∈ M ⊆ Red(N). Then for every such index i there

exist C i
1, . . . ,C

i
ni

∈ N such that C i
j ≺ Ci and C i

1, . . . ,C
i
ni

|= Ci . We can

replace Ci above with C i
1, . . . ,C

i
ni

. We can iterate the procedure until

none of the Ci ’s are in M (termination guaranteed by the fact that ≻ is

well-founded).
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Decidable subclasses of first-order logic
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Herbrand Interpretations

Assume Ω contains at least one constant symbol.

A Herbrand interpretation (over Σ) is a Σ-algebra A such that

• UA = TΣ (= the set of ground terms over Σ)

• fA : (s1, . . . , sn) 7→ f (s1, . . . , sn), f /n ∈ Ω

f

fA(△, . . . ,△) =

△ . . . △
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Herbrand Interpretations

In other words, values are fixed to be ground terms and functions

are fixed to be the term constructors. Only predicate symbols

p/m ∈ Π may be freely interpreted as relations pA ⊆ Tm
Σ .

Proposition 2.12

Every set of ground atoms I uniquely determines a Herbrand

interpretation A via

(s1, . . . , sn) ∈ pA :⇔ p(s1, . . . , sn) ∈ I

Thus we shall identify Herbrand interpretations (over Σ) with

sets of Σ-ground atoms.
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Herbrand Interpretations

Example: ΣPres = ({0/0, s/1,+/2}, {</2,≤/2})

N as Herbrand interpretation over ΣPres :

I = { 0 ≤ 0, 0 ≤ s(0), 0 ≤ s(s(0)), . . . ,

0 + 0 ≤ 0, 0 + 0 ≤ s(0), . . . ,

. . . , (s(0) + 0) + s(0) ≤ s(0) + (s(0) + s(0))

. . .

s(0) + 0 < s(0) + 0 + 0 + s(0)

. . .}
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Existence of Herbrand Models

A Herbrand interpretation I is called a Herbrand model of F ,

if I |= F .

Theorem 2.13

Let N be a set of Σ-clauses.

N satisfiable ⇔ N has a Herbrand model (over Σ)

⇔ GΣ(N) has a Herbrand model (over Σ)

where GΣ(N) = {Cσ ground clause | C ∈ N, σ : X → TΣ} is the set

of ground instances of N.

(Proof – completeness proof of resolution for first-order logic.)
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Example of a GΣ

For ΣPres one obtains for

C = (x < y) ∨ (y ≤ s(x))

the following ground instances:

(0 < 0) ∨ (0 ≤ s(0))

(s(0) < 0) ∨ (0 ≤ s(s(0)))

. . .

(s(0) + s(0) < s(0) + 0) ∨ (s(0) + 0 ≤ s(s(0) + s(0)))

. . .
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Consequences of Herbrans’s theorem

Decidability results.

• Formulae without function symbols and without equality

The Bernays-Schönfinkel Class ∃∗∀∗

28



The Bernays-Schönfinkel Class

Σ = (Ω,Π), Ω is a finite set of constants

The Bernays-Schönfinkel class consists only of sentences of the form

∃x1 . . . ∃xn∀y1 . . . ∀ymF (x1, . . . , xn, y1, . . . , yn)
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The Bernays-Schönfinkel Class

Σ = (Ω,Π), Ω is a finite set of constants

The Bernays-Schönfinkel class consists only of sentences of the form

∃x1 . . . ∃xn∀y1 . . . ∀ymF (x1, . . . , xn, y1, . . . , yn)

Idea: CNF translation:

∃x1∀y1F1 ∧ . . . ∃xn∀ynFn

⇒P ∃x1 . . . ∃xn∀y1 . . . ∀ynF (x1, . . . , xn, y1, . . . , yn)

⇒S ∀y1 . . . ∀ymF (c1, . . . , cn, y1, . . . , yn)

⇒K ∀y1 . . . ∀ym

V W

Li ((c1, . . . , cn, y1, . . . , yn)

c1, . . . , cn are tuples of Skolem constants

30



The Bernays-Schönfinkel Class

Σ = (Ω,Π), Ω is a finite set of constants

The Bernays-Schönfinkel class consists only of sentences of the form

∃x1 . . . ∃xn∀y1 . . . ∀ymF (x1, . . . , xn, y1, . . . , yn)

Idea: CNF translation:

∃x1∀y1F1 ∧ . . . ∃xn∀ynFn

⇒∗

K
∀y1 . . . ∀ym

V W

Li ((c1, . . . , cn, y1, . . . , yn)

c1, . . . , cn are tuples of Skolem constants

The Herbrand Universe is finite 7→ decidability
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