Decision Procedures in Verification

First-Order Logic (4)
3.12.2012

Viorica Sofronie-Stokkermans

e-mail: sofronie@uni-koblenz.de

Until now:

Syntax (one-sorted signatures vs. many-sorted signatures)

Semantics

Models, Validity, and Satisfiability
Entailment and Equivalence
Logical theories
Syntactic view: axioms \mathcal{F} of (closed) first-order Σ-formulae.
$\operatorname{Mod}(\mathcal{F})=\{\mathcal{A} \in \Sigma$-alg $\mid \mathcal{A} \models G$, for all G in $\mathcal{F}\}$
Semantic view: class \mathcal{M} of Σ-algebras
$\operatorname{Th}(\mathcal{M})=\left\{G \in F_{\Sigma}(X)\right.$ closed $\left.\mid \mathcal{M} \models G\right\}$
Algorithmic Problems; Decidability, Undecidability

Until now:

Methods for checking satisfiability: resolution

Normal Forms:
Prenex Normal Form
Skolemization
Clausal Normal Form (Conjunctive Normal Form)
General resolution:
Proposition resolution/resolution for ground clauses
Lifting principle
General resolution calculus (soundness and completeness)
Unification
Consequences:
Herbrand's theorem
The theorem of Löwenheim-Skolem
Compactness of predicate logic

Resolution for ground clauses

- Refinements with orderings and selection functions:

Need: - well-founded ordering on ground atomic formulae/literals

- selection function (for negative literals)
$S: C \mapsto$ set of occurrences of negative literals in C
Example of selection with selected literals indicated as X :

$$
\begin{aligned}
& \neg A \vee \neg A \vee B \\
& \hline \neg B_{0} \vee \neg B_{1} \vee A
\end{aligned}
$$

Ordered resolution with selection $\operatorname{Res}_{S}^{\succ}$

Ordered resolution with selection

$$
\frac{C \vee A \quad D \vee \neg A}{C \vee D}
$$

if

1. $A \succ C$;
2. nothing is selected in C by S;
3. $\neg A$ is selected in $D \vee \neg A$,
or else nothing is selected in $D \vee \neg A$ and $\neg A \succeq \max (D)$.

Note: For positive literals, $A \succ C$ is the same as $A \succ \max (C)$.
Ordered factoring

$$
\frac{C \vee A \vee A}{(C \vee A)}
$$

if A is maximal in C and nothing is selected in C.

2.8 Ordered Resolution with Selection

Resolution Calculus $\operatorname{Res}_{S}^{\succ}$

In the completeness proof, we talk about (strictly) maximal literals of ground clauses.

In the non-ground calculus, we have to consider those literals that correspond to (strictly) maximal literals of ground instances:

Let \succ be a total and well-founded ordering on ground atoms. A literal L is called [strictly] maximal in a clause C if and only if there exists a ground substitution σ such that for all L^{\prime} in C : $L \sigma \succeq L^{\prime} \sigma\left[L \sigma \succ L^{\prime} \sigma\right]$.

Example

Let $\Sigma=(\Omega, \Pi)$, with $\Omega=\{c / 0, d / 0\}$ and $\Pi=\{p / 1, q / 2\}$
Let \succ be a total ordering on ground atoms such that

$$
p(c) \succ q(c, c) \succ q(c, d) \succ q(d, c) \succ q(d, d) \succ p(d)
$$

Consider the clause $C=p(x) \vee q(x, y)$.

- $p(x)$ is strictly maximal in C :

There exists a ground substitution σ_{1} with $\sigma_{1}(x)=c=\sigma_{1}(y)$ such that $\sigma_{1}(p(x))=p(c) \succ q(c, c) \succ \sigma_{1}(q(x, y))$.

- $q(x, y)$ is strictly maximal in C:

There exists a ground substitution σ_{2} with $\sigma_{2}(x)=d=\sigma_{2}(y)$ such that $\sigma_{2}(q(x, y))=q(d, d) \succ p(d)=\sigma_{2}(p(x))$.

Resolution Calculus $\operatorname{Res}_{S}^{\succ}$

Let \succ be an atom ordering and S a selection function.

$$
\frac{C \vee A \quad \neg B \vee D}{(C \vee D) \sigma}
$$

[ordered resolution with selection]

if $\sigma=\mathrm{mgu}(A, B)$ and
(i) $A \sigma$ strictly maximal wrt. $C \sigma$;
(ii) nothing is selected in C by S;
(iii) either $\neg B$ is selected, or else nothing is selected in $\neg B \vee D$ and $\neg B \sigma$ is maximal in $D \sigma$.

Resolution Calculus $\operatorname{Res}_{S}^{\succ}$

$$
\frac{C \vee A \vee B}{(C \vee A) \sigma} \quad \text { [ordered factoring] }
$$

if $\sigma=\operatorname{mgu}(A, B)$ and $A \sigma$ is maximal in $C \sigma$ and nothing is selected in C.

Example

Let $\Sigma=(\Omega, \Pi)$, with $\Omega=\{c / 0, d / 0\}$ and $\Pi=\{p / 1, q / 2\}$
Let \succ be a total ordering on ground atoms such that

$$
p(c) \succ q(c, c) \succ q(c, d) \succ q(d, c) \succ q(d, d) \succ p(d)
$$

Consider the clauses $C=p(x) \vee q(x, y), \quad C_{1}=\neg p(z), \quad C_{2}=\neg q(z, u)$

- $p(x)$ and $q(x, y)$ are both strictly maximal in C.

The following inferences are possible:

$$
\frac{p(x) \vee q(x, y) \quad \neg p(z)}{q(z, y)} \quad \frac{p(x) \vee q(x, y) \quad \neg q(z, u)}{p(z)}
$$

Soundness and Refutational Completeness

Theorem 2.39:
Let \succ be an atom ordering and S a selection function such that $\operatorname{Res}_{S}^{\succ}(N) \subseteq N$. Then

$$
N \models \perp \Leftrightarrow \perp \in N
$$

[^0]
Redundancy

So far: local restrictions of the resolution inference rules using orderings and selection functions.

Is it also possible to delete clauses altogether?
Under which circumstances are clauses unnecessary?
(Conjecture: e.g., if they are tautologies or if they are subsumed by other clauses.)

Intuition: If a clause is guaranteed to be neither a minimal counterexample nor productive, then we do not need it.

Construction of Candidate Models Formally

Let N, \succ be given.

- Order N increasing w.r.t. the extension of \succ to clauses.
- Define sets I_{C} and Δ_{C} for all ground clauses C over the given signature inductively over \succ :

$$
\begin{aligned}
& I_{C}:=\bigcup_{C \succ D} \Delta_{D} \\
& \Delta_{C}:= \begin{cases}\{A\}, & \text { if } C \in N, C=C^{\prime} \vee A, A \succ C^{\prime}, I_{C} \not \models C \\
\emptyset, & \text { and nothing is selected in } C\end{cases}
\end{aligned}
$$

We say that C produces A, if $\Delta_{C}=\{A\}$.
The candidate model for $N\left(\right.$ wrt. \succ) is given as $I_{N}^{\succ}:=\bigcup_{C} \Delta_{C}$.
(We write I_{N} for I_{N}^{\succ} if \succ is irrelevant or known from the context.)

Recall

Construction of I for the extended clause set:

	clauses C	I_{C}	Δ_{C}	Remarks
1	$\neg P_{0}$	\emptyset	\emptyset	
2	$P_{0} \vee P_{1}$	\emptyset	$\left\{P_{1}\right\}$	
3	$P_{1} \vee P_{2}$	$\left\{P_{1}\right\}$	\emptyset	
4	$\neg P_{1} \vee P_{2}$	$\left\{P_{1}\right\}$	$\left\{P_{2}\right\}$	
9	$\neg P_{1} \vee \neg P_{1} \vee P_{3} \vee P_{0}$	$\left\{P_{1}, P_{2}\right\}$	$\left\{P_{3}\right\}$	
8	$\neg P_{1} \vee \neg P_{1} \vee P_{3} \vee P_{3} \vee P_{0}$	$\left\{P_{1}, P_{2}, P_{3}\right\}$	\emptyset	true in \mathcal{A}_{C}
5	$\neg P_{1} \vee P_{4} \vee P_{3} \vee P_{0}$	$\left\{P_{1}, P_{2}, P_{3}\right\}$	\emptyset	
6	$\neg P_{1} \vee \neg P_{4} \vee P_{3}$	$\left\{P_{1}, P_{2}, P_{3}\right\}$	\emptyset	true in \mathcal{A}_{C}
7	$\neg P_{3} \vee P_{5}$	$\left\{P_{1}, P_{2}, P_{3}\right\}$	$\left\{P_{5}\right\}$	

The resulting $I=\left\{P_{1}, P_{2}, P_{3}, P_{5}\right\}$ is a model of the clause set.

A Formal Notion of Redundancy

Let N be a set of ground clauses and C a ground clause (not necessarily in N). C is called redundant w.r.t. N, if there exist $C_{1}, \ldots, C_{n} \in N, n \geq 0$, such that $C_{i} \prec C$ and $C_{1}, \ldots, C_{n} \models C$.

Redundancy for general clauses:
C is called redundant w.r.t. N, if all ground instances $C \sigma$ of C are redundant w.r.t. $G_{\Sigma}(N)$.

Intuition: Redundant clauses are neither minimal counterexamples nor productive.

Note: The same ordering \succ is used for ordering restrictions and for redundancy (and for the completeness proof).

Examples of Redundancy

Proposition 2.40:

- C tautology (i.e., $\models C$) $\Rightarrow C$ redundant w.r.t. any set N.
- $C \sigma \subset D \Rightarrow D$ redundant w.r.t. $N \cup\{C\}$
- $C \sigma \subseteq D \Rightarrow D \vee \bar{L} \sigma$ redundant w.r.t. $N \cup\{C \vee L, D\}$
(Under certain conditions one may also use non-strict subsumption, but this requires a slightly more complicated definition of redundancy.)

Saturation up to Redundancy

N is called saturated up to redundancy (wrt. $\operatorname{Res}_{S}^{\succ}$)

$$
: \Leftrightarrow \operatorname{Res}_{S}^{\succ}(N \backslash \operatorname{Red}(N)) \subseteq N \cup \operatorname{Red}(N)
$$

Theorem 2.41:
Let N be saturated up to redundancy. Then

$$
N \models \perp \Leftrightarrow \perp \in N
$$

Saturation up to Redundancy

Proof (Sketch):
(i) Ground case:

- consider the construction of the candidate model I_{N}^{\succ} for $\operatorname{Res}_{S}^{\succ}$
- redundant clauses are not productive
- redundant clauses in N are not minimal counterexamples for I_{N}^{\succ}

The premises of "essential" inferences are either minimal counterexamples or productive.
(ii) Lifting: no additional problems over the proof of Theorem 2.39.

Monotonicity Properties of Redundancy

Theorem 2.42:
(i) $N \subseteq M \Rightarrow \operatorname{Red}(N) \subseteq \operatorname{Red}(M)$
(ii) $M \subseteq \operatorname{Red}(N) \Rightarrow \operatorname{Red}(N) \subseteq \operatorname{Red}(N \backslash M)$

We conclude that redundancy is preserved when, during a theorem proving process, one adds (derives) new clauses or deletes redundant clauses.

Monotonicity Properties of Redundancy

Theorem 2.42:
(i) $N \subseteq M \Rightarrow \operatorname{Red}(N) \subseteq \operatorname{Red}(M)$
(ii) $M \subseteq \operatorname{Red}(N) \Rightarrow \operatorname{Red}(N) \subseteq \operatorname{Red}(N \backslash M)$

Proof:
(i) Let $C \in \operatorname{red}(N)$. Then there exist $C_{1}, \ldots, C_{n} \in N, n \geq 0$ such that $C_{i} \prec C$ for all $i=1, \ldots, n$ and $C_{1}, \ldots, C_{n} \equiv C$.

We assumed that $N \subseteq M$, so we know that $C_{1}, \ldots, C_{n} \in M$. Thus: there exist $C_{1}, \ldots, C_{n} \in M, n \geq 0$ such that $C_{i} \prec C$ for all $i=1, \ldots, n$ and $C_{1}, \ldots, C_{n} \equiv C$. Therefore, $C \in \operatorname{Red}(M)$.

Monotonicity Properties of Redundancy

Theorem 2.42:
(i) $N \subseteq M \Rightarrow \operatorname{Red}(N) \subseteq \operatorname{Red}(M)$
(ii) $M \subseteq \operatorname{Red}(N) \Rightarrow \operatorname{Red}(N) \subseteq \operatorname{Red}(N \backslash M)$

Proof (Idea):
(ii) Let $C \in \operatorname{Red}(N)$. Then there exist $C_{1}, \ldots, C_{n} \in N, n \geq 0$ such that
$C_{i} \prec C$ for all $i=1, \ldots, n$ and $C_{1}, \ldots, C_{n} \models C$.
Case 1: For all $i, C_{i} \notin M$. Then $C \in \operatorname{Red}(N \backslash M)$.
Case 2: For some $i, C_{i} \in M \subseteq \operatorname{Red}(N)$. Then for every such index i there exist $C_{1}^{i}, \ldots, C_{n_{i}}^{i} \in N$ such that $C_{j}^{i} \prec C_{i}$ and $C_{1}^{i}, \ldots, C_{n_{i}}^{i} \models C_{i}$. We can replace C_{i} above with $C_{1}^{i}, \ldots, C_{n_{i}}^{i}$. We can iterate the procedure until none of the C_{i} 's are in M (termination guaranteed by the fact that \succ is well-founded).

Decidable subclasses of first-order logic

Herbrand Interpretations

Assume Ω contains at least one constant symbol.

A Herbrand interpretation (over Σ) is a Σ-algebra \mathcal{A} such that

- $U_{\mathcal{A}}=\mathrm{T}_{\Sigma}(=$ the set of ground terms over $\Sigma)$
- $f_{\mathcal{A}}:\left(s_{1}, \ldots, s_{n}\right) \mapsto f\left(s_{1}, \ldots, s_{n}\right), f / n \in \Omega$

$$
f_{\mathcal{A}}(\triangle, \ldots, \triangle)=
$$

Herbrand Interpretations

In other words, values are fixed to be ground terms and functions are fixed to be the term constructors. Only predicate symbols $p / m \in \Pi$ may be freely interpreted as relations $p_{\mathcal{A}} \subseteq \mathrm{T}_{\Sigma}^{m}$.

Proposition 2.12

Every set of ground atoms / uniquely determines a Herbrand interpretation \mathcal{A} via

$$
\left(s_{1}, \ldots, s_{n}\right) \in p_{\mathcal{A}} \quad: \Leftrightarrow \quad p\left(s_{1}, \ldots, s_{n}\right) \in I
$$

Thus we shall identify Herbrand interpretations (over Σ) with sets of \sum-ground atoms.

Herbrand Interpretations

Example: $\Sigma_{\text {Pres }}=(\{0 / 0, s / 1,+/ 2\}, \quad\{</ 2, \leq / 2\})$
\mathbb{N} as Herbrand interpretation over $\sum_{\text {Pres }}$:

$$
\begin{aligned}
I=\{ & 0 \leq 0,0 \leq s(0), 0 \leq s(s(0)), \ldots, \\
& 0+0 \leq 0,0+0 \leq s(0), \ldots, \\
& \ldots,(s(0)+0)+s(0) \leq s(0)+(s(0)+s(0))
\end{aligned}
$$

$$
s(0)+0<s(0)+0+0+s(0)
$$

$$
\ldots\}
$$

Existence of Herbrand Models

A Herbrand interpretation I is called a Herbrand model of F, if $I \models F$.

Theorem 2.13

Let N be a set of \sum-clauses.
N satisfiable $\Leftrightarrow N$ has a Herbrand model (over Σ)

$$
\left.\Leftrightarrow \quad G_{\Sigma}(N) \text { has a Herbrand model (over } \Sigma\right)
$$

where $G_{\Sigma}(N)=\left\{C \sigma\right.$ ground clause $\left.\mid C \in N, \sigma: X \rightarrow \mathrm{~T}_{\Sigma}\right\}$ is the set of ground instances of N.
(Proof - completeness proof of resolution for first-order logic.)

Example of a G_{Σ}

For $\Sigma_{\text {Pres }}$ one obtains for

$$
C=(x<y) \vee(y \leq s(x))
$$

the following ground instances:

$$
\begin{aligned}
& (0<0) \vee(0 \leq s(0)) \\
& (s(0)<0) \vee(0 \leq s(s(0)))
\end{aligned}
$$

$$
(s(0)+s(0)<s(0)+0) \vee(s(0)+0 \leq s(s(0)+s(0)))
$$

. . .

Consequences of Herbrans's theorem

Decidability results.

- Formulae without function symbols and without equality

The Bernays-Schönfinkel Class $\quad \exists^{*} \forall^{*}$

The Bernays-Schönfinkel Class

$\Sigma=(\Omega, \Pi), \Omega$ is a finite set of constants
The Bernays-Schönfinkel class consists only of sentences of the form

$$
\exists x_{1} \ldots \exists x_{n} \forall y_{1} \ldots \forall y_{m} F\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right)
$$

The Bernays-Schönfinkel Class

$\Sigma=(\Omega, \Pi), \Omega$ is a finite set of constants
The Bernays-Schönfinkel class consists only of sentences of the form

$$
\exists x_{1} \ldots \exists x_{n} \forall y_{1} \ldots \forall y_{m} F\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right)
$$

Idea: CNF translation:

$$
\begin{aligned}
& \exists \bar{x}_{1} \forall \bar{y}_{1} F_{1} \wedge \ldots \exists \bar{x}_{n} \forall \bar{y}_{n} F_{n} \\
& \Rightarrow_{P} \exists \bar{x}_{1} \ldots \exists \bar{x}_{n} \forall \bar{y}_{1} \ldots \forall \bar{y}_{n} F\left(\bar{x}_{1}, \ldots, \bar{x}_{n}, \bar{y}_{1}, \ldots, \bar{y}_{n}\right) \\
& \Rightarrow_{S} \forall \bar{y}_{1} \ldots \forall \bar{y}_{m} F\left(\bar{c}_{1}, \ldots, \bar{c}_{n}, \bar{y}_{1}, \ldots, \bar{y}_{n}\right) \\
& \Rightarrow_{k} \forall \bar{y}_{1} \ldots \forall \bar{y}_{m} \wedge \bigvee L_{i}\left(\left(\bar{c}_{1}, \ldots, \bar{c}_{n}, \bar{y}_{1}, \ldots, \bar{y}_{n}\right)\right. \\
& \bar{c}_{1}, \ldots, \bar{c}_{n} \text { are tuples of Skolem constants }
\end{aligned}
$$

The Bernays-Schönfinkel Class

$\Sigma=(\Omega, \Pi), \Omega$ is a finite set of constants
The Bernays-Schönfinkel class consists only of sentences of the form

$$
\exists x_{1} \ldots \exists x_{n} \forall y_{1} \ldots \forall y_{m} F\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right)
$$

Idea: CNF translation:

$$
\begin{aligned}
& \exists \bar{x}_{1} \forall \bar{y}_{1} F_{1} \wedge \ldots \exists \bar{x}_{n} \forall \bar{y}_{n} F_{n} \\
& \Rightarrow_{K}^{*} \forall \bar{y}_{1} \ldots \forall \bar{y}_{m} \wedge \bigvee L_{i}\left(\left(\bar{c}_{1}, \ldots, \bar{c}_{n}, \bar{y}_{1}, \ldots, \bar{y}_{n}\right)\right. \\
& \bar{c}_{1}, \ldots, \bar{c}_{n} \text { are tuples of Skolem constants }
\end{aligned}
$$

The Herbrand Universe is finite \mapsto decidability

[^0]: Proof:
 The " \Leftarrow " part is trivial. For the " \Rightarrow " part consider first the propositional level: Construct a candidate model I_{N} as for unrestricted resolution, except that clauses C in N that have selected literals are not productive, even when they are false in I_{C} and when their maximal atom occurs only once and positively.
 The result for general clauses follows using the same argument as in the completeness proof for "usual" resolution.

