Decision Procedures in Verification

Viorica Sofronie-Stokkermans

e-mail: sofronie@uni-koblenz.de

Part 1: Propositional Logic

Literature (also for first-order logic)

Schöning: Logik für Informatiker, Spektrum
Fitting: First-Order Logic and Automated Theorem Proving, Springer

Part 1: Propositional Logic

Propositional logic

- logic of truth values
- decidable (but NP-complete)
- can be used to describe functions over a finite domain
- important for hardware applications (e.g., model checking)

1.1 Syntax

- propositional variables
- logical symbols
\Rightarrow Boolean combinations

Propositional Variables

Let Π be a set of propositional variables.
We use letters P, Q, R, S, to denote propositional variables.

Propositional Formulas

F_{Π} is the set of propositional formulas over Π defined as follows:

$$
\begin{array}{rllr}
F, G, H & ::= & \perp & \text { (falsum) } \\
& \mid & \top & \text { (verum) } \\
& \mid & P, \quad P \in \Pi & \text { (atomic formula) } \\
& \mid & \neg F & \text { (negation) } \\
& (F \wedge G) & \text { (conjunction) } \\
& (F \vee G) & \text { (disjunction) } \\
& \mid & (F \rightarrow G) & \text { (implication) } \\
& (F \leftrightarrow G) & \text { (equivalence) }
\end{array}
$$

Notational Conventions

- We omit brackets according to the following rules:
$-\neg>_{p} \wedge>_{p} \vee>_{p} \rightarrow>_{p} \leftrightarrow \quad$ (binding precedences)
- \vee and \wedge are associative and commutative

1.2 Semantics

In classical logic (dating back to Aristoteles) there are "only" two truth values "true" and "false" which we shall denote, respectively, by 1 and 0 .

There are multi-valued logics having more than two truth values.

Valuations

A propositional variable has no intrinsic meaning. The meaning of a propositional variable has to be defined by a valuation.

A Π-valuation is a map

$$
\mathcal{A}: \Pi \rightarrow\{0,1\} .
$$

where $\{0,1\}$ is the set of truth values.

Truth Value of a Formula in \mathcal{A}

Given a Π-valuation \mathcal{A}, the function $\mathcal{A}^{*}: \Sigma$-formulas $\rightarrow\{0,1\}$ is defined inductively over the structure of F as follows:

$$
\begin{aligned}
\mathcal{A}^{*}(\perp) & =0 \\
\mathcal{A}^{*}(\top) & =1 \\
\mathcal{A}^{*}(P) & =\mathcal{A}(P) \\
\mathcal{A}^{*}(\neg F) & =1-\mathcal{A}^{*}(F) \\
\mathcal{A}^{*}(F \rho G) & =\mathrm{B}_{\rho}\left(\mathcal{A}^{*}(F), \mathcal{A}^{*}(G)\right) \\
& \text { with } \mathrm{B}_{\rho} \text { the Boolean function associated with } \rho
\end{aligned}
$$

For simplicity, we write \mathcal{A} instead of \mathcal{A}^{*}.

Truth Value of a Formula in \mathcal{A}

Example: Let's evaluate the formula

$$
(P \rightarrow Q) \wedge(P \wedge Q \rightarrow R) \rightarrow(P \rightarrow R)
$$

w.r.t. the valuation \mathcal{A} with

$$
\mathcal{A}(P)=1, \mathcal{A}(Q)=0, \mathcal{A}(R)=1
$$

(On the blackboard)

1.3 Models, Validity, and Satisfiability

F is valid in $\mathcal{A}(\mathcal{A}$ is a model of $F ; F$ holds under $\mathcal{A})$:

$$
\mathcal{A} \models F: \Leftrightarrow \mathcal{A}(F)=1
$$

F is valid (or is a tautology):

$$
\models F: \Leftrightarrow \mathcal{A} \models F \text { for all } \Pi \text {-valuations } \mathcal{A}
$$

F is called satisfiable iff there exists an \mathcal{A} such that $\mathcal{A} \models F$.
Otherwise F is called unsatisfiable (or contradictory).

1.3 Models, Validity, and Satisfiability

Examples:

$F \rightarrow F$ and $F \vee \neg F$ are valid for all formulae F.

Obviously, every valid formula is also satisfiable
$F \wedge \neg F$ is unsatisfiable

The formula P is satisfiable, but not valid

Entailment and Equivalence

F entails (implies) G (or G is a consequence of F), written $F \models G$, if for all Π-valuations \mathcal{A}, whenever $\mathcal{A} \models F$ then $\mathcal{A} \models G$.
F and G are called equivalent if for all Π-valuations \mathcal{A} we have $\mathcal{A} \models F \Leftrightarrow \mathcal{A} \models G$.

Proposition 1.1:
F entails G iff $(F \rightarrow G)$ is valid
Proposition 1.2:
F and G are equivalent iff $(F \leftrightarrow G)$ is valid.

