Decision Procedures in Verification

Viorica Sofronie-Stokkermans

e-mail: sofronie@uni-koblenz.de

Part 1: Propositional Logic

Literature (also for first-order logic)

Schöning: Logik für Informatiker, Spektrum Fitting: First-Order Logic and Automated Theorem Proving, Springer Propositional logic

- logic of truth values
- decidable (but NP-complete)
- can be used to describe functions over a finite domain
- important for hardware applications (e.g., model checking)

1.1 Syntax

- propositional variables
- logical symbols
 - \Rightarrow Boolean combinations

Propositional Variables

Let Π be a set of propositional variables.

We use letters P, Q, R, S, to denote propositional variables.

Propositional Formulas

 F_{Π} is the set of propositional formulas over Π defined as follows:

F, G, H	::=	\perp	(falsum)
		\top	(verum)
		P , $P\in \Pi$	(atomic formula)
		$\neg F$	(negation)
		$(F \wedge G)$	(conjunction)
		$(F \lor G)$	(disjunction)
		$(F \rightarrow G)$	(implication)
		$(F \leftrightarrow G)$	(equivalence)

Notational Conventions

- We omit brackets according to the following rules:
 - $\neg \neg >_{p} \land >_{p} \lor \lor >_{p} \rightarrow >_{p} \leftrightarrow$ (binding precedences)
 - $\,\vee\,$ and $\,\wedge\,$ are associative and commutative

In classical logic (dating back to Aristoteles) there are "only" two truth values "true" and "false" which we shall denote, respectively, by 1 and 0.

There are multi-valued logics having more than two truth values.

A propositional variable has no intrinsic meaning. The meaning of a propositional variable has to be defined by a valuation.

A Π -valuation is a map

 $\mathcal{A}:\Pi
ightarrow\{0,1\}.$

where $\{0, 1\}$ is the set of truth values.

Given a Π -valuation \mathcal{A} , the function $\mathcal{A}^* : \Sigma$ -formulas $\rightarrow \{0, 1\}$ is defined inductively over the structure of F as follows:

For simplicity, we write \mathcal{A} instead of \mathcal{A}^* .

Example: Let's evaluate the formula

$$(P
ightarrow Q) \land (P \land Q
ightarrow R)
ightarrow (P
ightarrow R)$$

w.r.t. the valuation \mathcal{A} with

$$\mathcal{A}(P)=1$$
 , $\mathcal{A}(Q)=0$, $\mathcal{A}(R)=1$

(On the blackboard)

F is valid in \mathcal{A} (\mathcal{A} is a model of *F*; *F* holds under \mathcal{A}):

```
\mathcal{A} \models \mathsf{F} : \Leftrightarrow \mathcal{A}(\mathsf{F}) = 1
```

F is valid (or is a tautology):

 $\models F :\Leftrightarrow \mathcal{A} \models F \text{ for all } \Pi\text{-valuations } \mathcal{A}$

F is called satisfiable iff there exists an \mathcal{A} such that $\mathcal{A} \models F$. Otherwise *F* is called unsatisfiable (or contradictory).

1.3 Models, Validity, and Satisfiability

Examples:

 $F \rightarrow F$ and $F \lor \neg F$ are valid for all formulae F.

Obviously, every valid formula is also satisfiable

 $F \land \neg F$ is unsatisfiable

The formula P is satisfiable, but not valid

F entails (implies) *G* (or *G* is a consequence of *F*), written $F \models G$, if for all Π -valuations \mathcal{A} , whenever $\mathcal{A} \models F$ then $\mathcal{A} \models G$.

F and *G* are called equivalent if for all Π -valuations \mathcal{A} we have $\mathcal{A} \models F \Leftrightarrow \mathcal{A} \models G$.

Proposition 1.1: *F* entails *G* iff $(F \rightarrow G)$ is valid

Proposition 1.2:

F and G are equivalent iff $(F \leftrightarrow G)$ is valid.