Literature (also for first-order logic)

Schöning: Logik für Informatiker, Spektrum Fitting: First-Order Logic and Automated Theorem Proving, Springer

Last time

1.1 Syntax

- Language
 - propositional variables
 - logical symbols \Rightarrow Boolean combinations
- Propositional Formulae

1.2 Semantics

- Valuations
- Truth value of a formula in a valuation
- Models, Validity, and Satisfiability

1.3 Models, Validity, and Satisfiability

F is valid in \mathcal{A} (\mathcal{A} is a model of *F*; *F* holds under \mathcal{A}):

```
\mathcal{A} \models \mathsf{F} : \Leftrightarrow \mathcal{A}(\mathsf{F}) = 1
```

F is valid (or is a tautology):

 $\models F :\Leftrightarrow \mathcal{A} \models F \text{ for all } \Pi\text{-valuations } \mathcal{A}$

F is called satisfiable iff there exists an A such that $A \models F$. Otherwise *F* is called unsatisfiable (or contradictory).

Entailment and Equivalence

F entails (implies) *G* (or *G* is a consequence of *F*), written $F \models G$, if for all Π -valuations \mathcal{A} , whenever $\mathcal{A} \models F$ then $\mathcal{A} \models G$.

F and *G* are called equivalent if for all Π -valuations \mathcal{A} we have $\mathcal{A} \models F \Leftrightarrow \mathcal{A} \models G$.

Proposition 1.1: F entails G iff $(F \rightarrow G)$ is valid

Proposition 1.2:

F and G are equivalent iff $(F \leftrightarrow G)$ is valid.

Extension to sets of formulas N in the "natural way", e.g., $N \models F$ if for all Π -valuations \mathcal{A} : if $\mathcal{A} \models G$ for all $G \in N$, then $\mathcal{A} \models F$. Validity and unsatisfiability are just two sides of the same medal as explained by the following proposition.

Proposition 1.3:

F valid $\Leftrightarrow \neg F$ unsatisfiable

Hence in order to design a theorem prover (validity checker) it is sufficient to design a checker for unsatisfiability.

Q: In a similar way, entailment $N \models F$ can be reduced to unsatisfiability. How?

Validity and unsatisfiability are just two sides of the same medal as explained by the following proposition.

Proposition 1.4:

 $N \models F \Leftrightarrow N \cup \neg F$ unsatisfiable

Hence in order to design a theorem prover (validity/entailment checker) it is sufficient to design a checker for unsatisfiability.

Every formula F contains only finitely many propositional variables. Obviously, $\mathcal{A}(F)$ depends only on the values of those finitely many variables in F under \mathcal{A} .

If *F* contains *n* distinct propositional variables, then it is sufficient to check 2^n valuations to see whether *F* is satisfiable or not. \Rightarrow truth table.

So the satisfiability problem is clearly decidable (but, by Cook's Theorem, NP-complete).

Nevertheless, in practice, there are (much) better methods than truth tables to check the satisfiability of a formula. (later more)

The satisfiability problem is clearly decidable (but, by Cook's Theorem, NP-complete).

For sets of propositional formulae of a certain type, satisfiability can be checked in polynomial time:

Examples: 2SAT, Horn-SAT (will be discussed in the exercises)

Dichotomy theorem. Schaefer [Schaefer, STOC 1978] identified six classes of sets S of Boolean formulae for which SAT(S) is in PTIME. He proved that all other types of sets of formulae yield an NP-complete problem.

Proposition 1.5:

Let F and G be equivalent formulas, let H be a formula in which F occurs as a subformula.

Then H is equivalent to H' where H' is obtained from H by replacing the occurrence of the subformula F by G. (Notation: H = H[F], H' = H[G].)

Proof: By induction over the formula structure of H.

Goal: Prove a property P of propositional formulae

Prove that for every formula F, P(F) holds.

Induction basis: Show that P(F) holds for all $F \in \Pi \cup \{\top, \bot\}$

Let F be a formula (not in $\Pi \cup \{\top, \bot\}$).

Induction hypothesis: We assume that P(G) holds for all strict subformulae G of F.

Induction step: Using the induction hypothesis, we show that P(F) holds as well. In order to prove that P(F) holds we usually need to consider various cases (reflecting the way the formula F is built):

Case 1: $F = \neg G$ Case 2: $F = G_1 \land G_2$ Case 3: $F = G_1 \lor G_2$ Case 4: $F = G_1 \rightarrow G_2$ Case 5: $F = G_1 \leftrightarrow G_2$

Proposition 1.6:

The following equivalences are valid for all formulas F, G, H:

 $(F \land F) \leftrightarrow F$ $(F \lor F) \leftrightarrow F$ (Idempotency) $(F \land G) \leftrightarrow (G \land F)$ $(F \lor G) \leftrightarrow (G \lor F)$ (Commutativity) $(F \land (G \land H)) \leftrightarrow ((F \land G) \land H)$ $(F \lor (G \lor H)) \leftrightarrow ((F \lor G) \lor H)$ (Associativity) $(F \land (G \lor H)) \leftrightarrow ((F \land G) \lor (F \land H))$ $(F \lor (G \land H)) \leftrightarrow ((F \lor G) \land (F \lor H))$ (Distributivity)

Proposition 1.7:

The following equivalences are valid for all formulas F, G, H:

 $(F \land (F \lor G)) \leftrightarrow F$ $(F \lor (F \land G)) \leftrightarrow F$ (Absorption) $(\neg\neg F) \leftrightarrow F$ (Double Negation) $\neg (F \land G) \leftrightarrow (\neg F \lor \neg G)$ $\neg (F \lor G) \leftrightarrow (\neg F \land \neg G)$ (De Morgan's Laws) $(F \land G) \leftrightarrow F$, if G is a tautology $(F \lor G) \leftrightarrow \top$, if G is a tautology (Tautology Laws) $(F \land G) \leftrightarrow \bot$, if G is unsatisfiable $(F \lor G) \leftrightarrow F$, if G is unsatisfiable (Tautology Laws)

We define conjunctions of formulas as follows:

.

$$igwedge_{i=1}^{0} F_i = op.$$

 $igwedge_{i=1}^{1} F_i = F_1.$
 $igwedge_{i=1}^{n+1} F_i = igwedge_{i=1}^{n} F_i \wedge F_{n+1}$

and analogously disjunctions:

$$\bigvee_{i=1}^{0} F_{i} = \bot.$$
$$\bigvee_{i=1}^{1} F_{i} = F_{1}.$$
$$\bigvee_{i=1}^{n+1} F_{i} = \bigvee_{i=1}^{n} F_{i} \vee F_{n+1}.$$

A literal is either a propositional variable P or a negated propositional variable $\neg P$.

A clause is a (possibly empty) disjunction of literals.

A literal is either a propositional variable P or a negated propositional variable $\neg P$.

A clause is a (possibly empty) disjunction of literals.

Example of clauses:

\perp	the empty clause
Ρ	positive unit clause
$\neg P$	negative unit clause
$P \lor Q \lor R$	positive clause
$P \lor \neg Q \lor \neg R$	clause
$P \lor P \lor \neg Q \lor \neg R \lor R$	allow repetitions/complementary literals

A formula is in conjunctive normal form (CNF, clause normal form), if it is a conjunction of disjunctions of literals (or in other words, a conjunction of clauses).

A formula is in disjunctive normal form (DNF), if it is a disjunction of conjunctions of literals.

Warning: definitions in the literature differ:

are complementary literals permitted?
are duplicated literals permitted?
are empty disjunctions/conjunctions permitted?

Checking the validity of CNF formulas or the unsatisfiability of DNF formulas is easy:

A formula in CNF is valid, if and only if each of its disjunctions contains a pair of complementary literals P and $\neg P$.

Conversely, a formula in DNF is unsatisfiable, if and only if each of its conjunctions contains a pair of complementary literals P and $\neg P$.

On the other hand, checking the unsatisfiability of CNF formulas or the validity of DNF formulas is known to be coNP-complete.

Proposition 1.8:

For every formula there is an equivalent formula in CNF (and also an equivalent formula in DNF).

Proof:

We consider the case of CNF.

Apply the following rules as long as possible (modulo associativity and commutativity of \land and \lor):

Step 1: Eliminate equivalences:

$$(F \leftrightarrow G) \ \Rightarrow_{\mathcal{K}} \ (F \rightarrow G) \land (G \rightarrow F)$$

Conversion to CNF/DNF

Step 2: Eliminate implications:

$$(F \rightarrow G) \Rightarrow_{\kappa} (\neg F \lor G)$$

Step 3: Push negations downward:

$$eg (F \lor G) \Rightarrow_{\mathcal{K}} (\neg F \land \neg G)$$

 $eg (F \land G) \Rightarrow_{\mathcal{K}} (\neg F \lor \neg G)$

Step 4: Eliminate multiple negations:

$$\neg \neg F \Rightarrow_{K} F$$

The formula obtained from a formula F after applying steps 1-4 is called the negation normal form (NNF) of F

Conversion to CNF/DNF

Step 5: Push disjunctions downward:

$$(F \wedge G) \vee H \Rightarrow_{\mathcal{K}} (F \vee H) \wedge (G \vee H)$$

Step 6: Eliminate \top and \bot :

$$(F \land \top) \Rightarrow_{\kappa} F$$
$$(F \land \bot) \Rightarrow_{\kappa} \bot$$
$$(F \lor \top) \Rightarrow_{\kappa} \top$$
$$(F \lor \bot) \Rightarrow_{\kappa} F$$
$$\neg \bot \Rightarrow_{\kappa} T$$
$$\neg \top \Rightarrow_{\kappa} \bot$$

Proving termination is easy for most of the steps; only steps 1, 3 and 5 are a bit more complicated.

The resulting formula is equivalent to the original one and in CNF.

The conversion of a formula to DNF works in the same way, except that disjunctions have to be pushed downward in step 5.

Conversion to CNF (or DNF) may produce a formula whose size is exponential in the size of the original one.