
Part 1: Propositional Logic

Literature (also for first-order logic)

Schöning: Logik für Informatiker, Spektrum

Fitting: First-Order Logic and Automated Theorem Proving, Springer

1

Last time

1.1 Syntax

• Language

– propositional variables

– logical symbols

⇒ Boolean combinations

• Propositional Formulae

1.2 Semantics

• Valuations

• Truth value of a formula in a valuation

• Models, Validity, and Satisfiability

2

1.3 Models, Validity, and Satisfiability

F is valid in A (A is a model of F ; F holds under A):

A |= F :⇔ A(F) = 1

F is valid (or is a tautology):

|= F :⇔ A |= F for all Π-valuations A

F is called satisfiable iff there exists an A such that A |= F .

Otherwise F is called unsatisfiable (or contradictory).

3

Entailment and Equivalence

F entails (implies) G (or G is a consequence of F), written F |= G ,

if for all Π-valuations A, whenever A |= F then A |= G .

F and G are called equivalent if for all Π-valuations A we have

A |= F ⇔ A |= G .

Proposition 1.1:

F entails G iff (F → G) is valid

Proposition 1.2:

F and G are equivalent iff (F ↔ G) is valid.

4

Entailment and Equivalence

Extension to sets of formulas N in the “natural way”, e.g., N |= F if

for all Π-valuations A: if A |= G for all G ∈ N, then A |= F .

5

Validity vs. Unsatisfiability

Validity and unsatisfiability are just two sides of the same medal as

explained by the following proposition.

Proposition 1.3:

F valid ⇔ ¬F unsatisfiable

Hence in order to design a theorem prover (validity checker) it is

sufficient to design a checker for unsatisfiability.

Q: In a similar way, entailment N |= F can be reduced to

unsatisfiability. How?

6

Validity vs. Unsatisfiability

Validity and unsatisfiability are just two sides of the same medal as

explained by the following proposition.

Proposition 1.4:

N |= F ⇔ N ∪ ¬F unsatisfiable

Hence in order to design a theorem prover (validity/entailment

checker) it is sufficient to design a checker for unsatisfiability.

7

Checking Unsatisfiability

Every formula F contains only finitely many propositional variables.

Obviously, A(F) depends only on the values of those finitely many

variables in F under A.

If F contains n distinct propositional variables, then it is sufficient to

check 2n valuations to see whether F is satisfiable or not.

⇒ truth table.

So the satisfiability problem is clearly decidable

(but, by Cook’s Theorem, NP-complete).

Nevertheless, in practice, there are (much) better methods than truth

tables to check the satisfiability of a formula. (later more)

8

Checking Unsatisfiability

The satisfiability problem is clearly decidable

(but, by Cook’s Theorem, NP-complete).

For sets of propositional formulae of a certain type, satisfiability can

be checked in polynomial time:

Examples: 2SAT, Horn-SAT (will be discussed in the exercises)

Dichotomy theorem. Schaefer [Schaefer, STOC 1978] identified

six classes of sets S of Boolean formulae for which SAT (S) is in

PTIME. He proved that all other types of sets of formulae yield an

NP-complete problem.

9

Substitution Theorem

Proposition 1.5:

Let F and G be equivalent formulas, let H be a formula in which F

occurs as a subformula.

Then H is equivalent to H
′ where H

′ is obtained from H by replacing

the occurrence of the subformula F by G .

(Notation: H = H[F], H
′ = H[G].)

Proof: By induction over the formula structure of H.

10

Structural Induction

Goal: Prove a property P of propositional formulae

Prove that for every formula F , P(F) holds.

Induction basis: Show that P(F) holds for all F ∈ Π ∪ {⊤,⊥}

Let F be a formula (not in Π ∪ {⊤,⊥}).

Induction hypothesis: We assume that P(G) holds for all strict subformulae G of F .

Induction step: Using the induction hypothesis, we show that P(F) holds as well.

In order to prove that P(F) holds we usually need to consider various cases (reflecting

the way the formula F is built):

Case 1: F = ¬G

Case 2: F = G1 ∧ G2

Case 3: F = G1 ∨ G2

Case 4: F = G1 → G2

Case 5: F = G1 ↔ G2

11

Some Important Equivalences

Proposition 1.6:

The following equivalences are valid for all formulas F , G , H:

(F ∧ F) ↔ F

(F ∨ F) ↔ F (Idempotency)

(F ∧ G) ↔ (G ∧ F)

(F ∨ G) ↔ (G ∨ F) (Commutativity)

(F ∧ (G ∧ H)) ↔ ((F ∧ G) ∧ H)

(F ∨ (G ∨ H)) ↔ ((F ∨ G) ∨ H) (Associativity)

(F ∧ (G ∨ H)) ↔ ((F ∧ G) ∨ (F ∧ H))

(F ∨ (G ∧ H)) ↔ ((F ∨ G) ∧ (F ∨ H)) (Distributivity)

12

Some Important Equivalences

Proposition 1.7:

The following equivalences are valid for all formulas F , G , H:

(F ∧ (F ∨ G)) ↔ F

(F ∨ (F ∧ G)) ↔ F (Absorption)

(¬¬F) ↔ F (Double Negation)

¬(F ∧ G) ↔ (¬F ∨ ¬G)

¬(F ∨ G) ↔ (¬F ∧ ¬G) (De Morgan’s Laws)

(F ∧ G) ↔ F , if G is a tautology

(F ∨ G) ↔ ⊤, if G is a tautology (Tautology Laws)

(F ∧ G) ↔ ⊥, if G is unsatisfiable

(F ∨ G) ↔ F , if G is unsatisfiable (Tautology Laws)

13

1.4 Normal Forms

We define conjunctions of formulas as follows:

V0
i=1 Fi = ⊤.

V1
i=1 Fi = F1.

V

n+1
i=1 Fi =

V

n

i=1 Fi ∧ Fn+1.

and analogously disjunctions:

W0
i=1 Fi = ⊥.

W1
i=1 Fi = F1.

W

n+1
i=1 Fi =

W

n

i=1 Fi ∨ Fn+1.

14

Literals and Clauses

A literal is either a propositional variable P or a negated propositional

variable ¬P.

A clause is a (possibly empty) disjunction of literals.

15

Literals and Clauses

A literal is either a propositional variable P or a negated propositional

variable ¬P.

A clause is a (possibly empty) disjunction of literals.

Example of clauses:

⊥ the empty clause

P positive unit clause

¬P negative unit clause

P ∨ Q ∨ R positive clause

P ∨ ¬Q ∨ ¬R clause

P ∨ P ∨ ¬Q ∨ ¬R ∨ R allow repetitions/complementary literals

16

CNF and DNF

A formula is in conjunctive normal form (CNF, clause normal form),

if it is a conjunction of disjunctions of literals (or in other words, a

conjunction of clauses).

A formula is in disjunctive normal form (DNF), if it is a disjunction

of conjunctions of literals.

Warning: definitions in the literature differ:

are complementary literals permitted?

are duplicated literals permitted?

are empty disjunctions/conjunctions permitted?

17

CNF and DNF

Checking the validity of CNF formulas or the unsatisfiability of DNF

formulas is easy:

A formula in CNF is valid, if and only if each of its disjunctions

contains a pair of complementary literals P and ¬P.

Conversely, a formula in DNF is unsatisfiable, if and only if each of

its conjunctions contains a pair of complementary literals P and

¬P.

On the other hand, checking the unsatisfiability of CNF formulas or

the validity of DNF formulas is known to be coNP-complete.

18

Conversion to CNF/DNF

Proposition 1.8:

For every formula there is an equivalent formula in CNF (and also an

equivalent formula in DNF).

Proof:

We consider the case of CNF.

Apply the following rules as long as possible (modulo associativity

and commutativity of ∧ and ∨):

Step 1: Eliminate equivalences:

(F ↔ G) ⇒K (F → G) ∧ (G → F)

19

Conversion to CNF/DNF

Step 2: Eliminate implications:

(F → G) ⇒K (¬F ∨ G)

Step 3: Push negations downward:

¬(F ∨ G) ⇒K (¬F ∧ ¬G)

¬(F ∧ G) ⇒K (¬F ∨ ¬G)

Step 4: Eliminate multiple negations:

¬¬F ⇒K F

The formula obtained from a formula F after applying steps 1-4 is called

the negation normal form (NNF) of F

20

Conversion to CNF/DNF

Step 5: Push disjunctions downward:

(F ∧ G) ∨ H ⇒K (F ∨ H) ∧ (G ∨ H)

Step 6: Eliminate ⊤ and ⊥:

(F ∧ ⊤) ⇒K F

(F ∧ ⊥) ⇒K ⊥

(F ∨ ⊤) ⇒K ⊤

(F ∨ ⊥) ⇒K F

¬⊥ ⇒K ⊤

¬⊤ ⇒K ⊥

21

Conversion to CNF/DNF

Proving termination is easy for most of the steps; only steps 1, 3 and

5 are a bit more complicated.

The resulting formula is equivalent to the original one and in CNF.

The conversion of a formula to DNF works in the same way, except

that disjunctions have to be pushed downward in step 5.

22

Complexity

Conversion to CNF (or DNF) may produce a formula whose size is

exponential in the size of the original one.

23

