
Part 1: Propositional Logic

Literature (also for first-order logic)

Schöning: Logik für Informatiker, Spektrum

Fitting: First-Order Logic and Automated Theorem Proving, Springer
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Conversion to CNF/DNF

Proposition 1.8:

For every formula there is an equivalent formula in CNF (and also an

equivalent formula in DNF).

Proof:

We consider the case of CNF.

Apply the following rules as long as possible (modulo associativity

and commutativity of ∧ and ∨):

Step 1: Eliminate equivalences:

(F ↔ G) ⇒K (F → G) ∧ (G → F )
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Conversion to CNF/DNF

Step 2: Eliminate implications:

(F → G) ⇒K (¬F ∨ G)

Step 3: Push negations downward:

¬(F ∨ G) ⇒K (¬F ∧ ¬G)

¬(F ∧ G) ⇒K (¬F ∨ ¬G)

Step 4: Eliminate multiple negations:

¬¬F ⇒K F

The formula obtained from a formula F after applying steps 1-4 is called

the negation normal form (NNF) of F
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Conversion to CNF/DNF

Step 5: Push disjunctions downward:

(F ∧ G) ∨ H ⇒K (F ∨ H) ∧ (G ∨ H)

Step 6: Eliminate ⊤ and ⊥:

(F ∧ ⊤) ⇒K F

(F ∧ ⊥) ⇒K ⊥

(F ∨ ⊤) ⇒K ⊤

(F ∨ ⊥) ⇒K F

¬⊥ ⇒K ⊤

¬⊤ ⇒K ⊥
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Conversion to CNF/DNF

Proving termination is easy for most of the steps; only steps 1, 3 and

5 are a bit more complicated.

The resulting formula is equivalent to the original one and in CNF.

The conversion of a formula to DNF works in the same way, except

that disjunctions have to be pushed downward in step 5.
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Complexity

Conversion to CNF (or DNF) may produce a formula whose size is

exponential in the size of the original one.
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Satisfiability-preserving Transformations

The goal

“find a formula G in CNF such that |= F ↔ G”

is unpractical.

But if we relax the requirement to

“find a formula G in CNF such that F |= ⊥ iff G |= ⊥”

we can get an efficient transformation.
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Satisfiability-preserving Transformations

Idea:

A formula F [F ′ ] is satisfiable iff F [P] ∧ (P ↔ F ′) is satisfiable

(where P new propositional variable that works as abbreviation for F ′).

We can use this rule recursively for all subformulas in the original formula

(this introduces a linear number of new propositional variables).

Conversion of the resulting formula to CNF increases the size only by an

additional factor (each formula P ↔ F ′ gives rise to at most one application

of the distributivity law).
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Optimized Transformations

A further improvement is possible by taking the polarity of the

subformula F into account.

Assume that F contains neither → nor ↔. A subformula F ′ of F has

positive polarity in F , if it occurs below an even number of negation

signs; it has negative polarity in F , if it occurs below an odd number

of negation signs.
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Optimized Transformations

Proposition 1.9:

Let F [F ′] be a formula containing neither → nor ↔; let P be a

propositional variable not occurring in F [F ′].

If F ′ has positive polarity in F , then F [F ′] is satisfiable if and only if

F [P] ∧ (P → F ′) is satisfiable.

If F ′ has negative polarity in F , then F [F ′] is satisfiable if and only if

F [P] ∧ (F ′ → P) is satisfiable.

Proof:

Exercise.

This satisfiability-preserving transformation to clause form is also called

structure-preserving transformation to clause form.
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Optimized Transformations

Example: Let F = (Q1 ∧ Q2) ∨ (R1 ∧ R2).

The following are equivalent:

• F |=⊥

• PF ∧ (PF ↔ (PQ1∧Q2 ∨ PR1∧R2) ∧ (PQ1∧Q2 ↔ (Q1 ∧ Q2))

∧ (PR1∧R2 ↔ (R1 ∧ R2)) |=⊥

• PF ∧ (PF → (PQ1∧Q2 ∨ PR1∧R2) ∧ (PQ1∧Q2 → (Q1 ∧ Q2))

∧ (PR1∧R2 → (R1 ∧ R2)) |=⊥

• PF ∧ (¬PF ∨ PQ1∧Q2 ∨ PR1∧R2) ∧ (¬PQ1∧Q2 ∨ Q1) ∧ (¬PQ1∧Q2 ∨ Q2)

∧ (¬PR1∧R2 ∨ R1) ∧ (¬PR1∧R2 ∨ R2)) |=⊥
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Decision Procedures for Satisfiability

• Simple Decision Procedures

truth table method

• The Resolution Procedure

• The Davis-Putnam-Logemann-Loveland Algorithm
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1.5 Inference Systems and Proofs

Inference systems Γ (proof calculi) are sets of tuples

(F1, . . . ,Fn, Fn+1), n ≥ 0,

called inferences or inference rules, and written

premises
z }| {

F1 . . . Fn

Fn+1
|{z}

conclusion

.

Clausal inference system: premises and conclusions are clauses. One

also considers inference systems over other data structures.
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Proofs

A proof in Γ of a formula F from a a set of formulas N (called

assumptions) is a sequence F1, . . . ,Fk of formulas where

(i) Fk = F ,

(ii) for all 1 ≤ i ≤ k: Fi ∈ N, or else there exists an inference

(Fi1 , . . . , Fini
, Fi ) in Γ, such that 0 ≤ ij < i , for 1 ≤ j ≤ ni .
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Soundness and Completeness

Provability ⊢Γ of F from N in Γ:

N ⊢Γ F :⇔ there exists a proof Γ of F from N.

Γ is called sound :⇔

F1 . . . Fn

F
∈ Γ ⇒ F1, . . . , Fn |= F

Γ is called complete :⇔

N |= F ⇒ N ⊢Γ F

Γ is called refutationally complete :⇔

N |= ⊥ ⇒ N ⊢Γ ⊥
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1.6 The Propositional Resolution Calculus

Resolution inference rule:

C ∨ A ¬A ∨ D

C ∨ D

Terminology: C ∨ D: resolvent; A: resolved atom

(Positive) factorisation inference rule:

C ∨ A ∨ A

C ∨ A
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The Resolution Calculus Res

These are schematic inference rules; for each substitution of the

schematic variables C , D, and A, respectively, by propositional clauses

and atoms we obtain an inference rule.

As “∨” is considered associative and commutative, we assume that

A and ¬A can occur anywhere in their respective clauses.
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Sample Refutation

1. ¬P ∨ ¬P ∨ Q (given)

2. P ∨ Q (given)

3. ¬R ∨ ¬Q (given)

4. R (given)

5. ¬P ∨ Q ∨ Q (Res. 2. into 1.)

6. ¬P ∨ Q (Fact. 5.)

7. Q ∨ Q (Res. 2. into 6.)

8. Q (Fact. 7.)

9. ¬R (Res. 8. into 3.)

10. ⊥ (Res. 4. into 9.)
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Resolution with Implicit Factorization RIF

C ∨ A ∨ . . . ∨ A ¬A ∨ D

C ∨ D

1. ¬P ∨ ¬P ∨ Q (given)

2. P ∨ Q (given)

3. ¬R ∨ ¬Q (given)

4. R (given)

5. ¬P ∨ Q ∨ Q (Res. 2. into 1.)

6. Q ∨ Q ∨ Q (Res. 2. into 5.)

7. ¬R (Res. 6. into 3.)

8. ⊥ (Res. 4. into 7.)
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Soundness of Resolution

Theorem 1.10. Propositional resolution is sound.

Proof:

Let A valuation. To be shown:

(i) for resolution: A |= C ∨ A, A |= D ∨ ¬A ⇒ A |= C ∨ D

(ii) for factorization: A |= C ∨ A ∨ A ⇒ A |= C ∨ A

(i): Assume A∗(C ∨ A) = 1,A∗(D ∨ ¬A) = 1.

Two cases need to be considered: (a) A∗(A) = 1, or (b) A∗(¬A) = 1.

(a) A |= A ⇒ A |= D ⇒ A |= C ∨ D

(b) A |= ¬A ⇒ A |= C ⇒ A |= C ∨ D

(ii): Assume A |= C ∨A∨A. Note that A∗(C ∨A∨A) = A∗(C ∨A),

i.e. the conclusion is also true in A.
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Soundness of Resolution

Note: In propositional logic we have:

1. A |= L1 ∨ . . . ∨ Ln ⇔ there exists i : A |= Li .

2. A |= A or A |= ¬A.
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Completeness of Resolution

How to show refutational completeness of propositional resolution:

• We have to show: N |= ⊥ ⇒ N ⊢Res ⊥,

or equivalently: If N 6⊢Res ⊥, then N has a model.

• Idea: Suppose that we have computed sufficiently many

inferences (and not derived ⊥).

Now order the clauses in N according to some appropriate

ordering, inspect the clauses in ascending order, and construct a

series of valuations.

• The limit valuation can be shown to be a model of N.
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Clause Orderings

1. We assume that ≻ is any fixed ordering on propositional

variables that is total and well-founded.

2. Extend ≻ to an ordering ≻L on literals:

[¬]P ≻L [¬]Q , if P ≻ Q

¬P ≻L P

3. Extend ≻L to an ordering ≻C on clauses:

≻C = (≻L)mul, the multi-set extension of ≻L.

Notation: ≻ also for ≻L and ≻C .
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Multi-Set Orderings

Let (M,≻) be a partial ordering. The multi-set extension of ≻ to

multi-sets over M is defined by

S1 ≻mul S2 :⇔ S1 6= S2

and ∀m ∈ M : [S2(m) > S1(m)

⇒ ∃m
′ ∈ M : (m′ ≻ m and S1(m

′) > S2(m
′))]

Theorem 1.11:

a) ≻mul is a partial ordering.

b) ≻ well-founded ⇒ ≻mul well-founded

c) ≻ total ⇒ ≻mul total

Proof:

see Baader and Nipkow, page 22–24.
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Example

Suppose P5 ≻ P4 ≻ P3 ≻ P2 ≻ P1 ≻ P0. Then:

P0 ∨ P1

≺ P1 ∨ P2

≺ ¬P1 ∨ P2

≺ ¬P1 ∨ P4 ∨ P3

≺ ¬P1 ∨ ¬P4 ∨ P3

≺ ¬P5 ∨ P5
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Stratified Structure of Clause Sets

Let A ≻ B. Clause sets are then stratified in this form:

{

{
.
..

..

.
≺

A

B
. . . ∨ B

. . .

. . . ∨ B ∨ B
. . .

¬B ∨ . . .

. . . ∨ A
. . .

. . . ∨ A ∨ A
. . .

¬A ∨ . . .

. . .

all D where max(D) = B

all C where max(C) = A
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Closure of Clause Sets under Res

Res(N) = {C | C is concl. of a rule in Res w/ premises in N}

Res0(N) = N

Resn+1(N) = Res(Resn(N)) ∪ Resn(N), for n ≥ 0

Res∗(N) =
S

n≥0 Resn(N)

N is called saturated (wrt. resolution), if Res(N) ⊆ N.

Proposition 1.12

(i) Res∗(N) is saturated.

(ii) Res is refutationally complete, iff for each set N of ground

clauses:

N |= ⊥ ⇔ ⊥ ∈ Res
∗(N)
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Construction of Interpretations

Given: set N of clauses, atom ordering ≻.

Wanted: Valuation A such that

• “many” clauses from N are valid in A;

• A |= N, if N is saturated and ⊥ 6∈ N.

Construction according to ≻, starting with the minimal clause.
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Main Ideas of the Construction

• Clauses are considered in the order given by ≺. We construct a

model for N incrementally.

• When considering C , one already has a partial interpretation IC

(initially IC = ∅) available.

In what follows, instead of referring to partial valuations

AC we will refer to partial interpretations IC (the set of

atoms which are true in the valuation AC ).

• If C is true in the partial interpretation IC , nothing is done.

(∆C = ∅).

• If C is false, one would like to change IC such that C becomes

true.
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Example

Let P5 ≻ P4 ≻ P3 ≻ P2 ≻ P1 ≻ P0 (max. literals in red)

clauses C IC = A−1
C (1) ∆C Remarks

1 ¬P0

2 P0 ∨ P1

3 P1 ∨ P2

4 ¬P1 ∨ P2

5 ¬P1 ∨ P4 ∨ P3 ∨ P0

6 ¬P1 ∨ ¬P4 ∨ P3

7 ¬P1 ∨ P5
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Example

Let P5 ≻ P4 ≻ P3 ≻ P2 ≻ P1 ≻ P0 (max. literals in red)

clauses C IC = A−1
C (1) ∆C Remarks

1 ¬P0 ∅ ∅ true in AC

2 P0 ∨ P1

3 P1 ∨ P2

4 ¬P1 ∨ P2

5 ¬P1 ∨ P4 ∨ P3 ∨ P0

6 ¬P1 ∨ ¬P4 ∨ P3

7 ¬P1 ∨ P5
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Example

Let P5 ≻ P4 ≻ P3 ≻ P2 ≻ P1 ≻ P0 (max. literals in red)

clauses C IC = A−1
C (1) ∆C Remarks

1 ¬P0 ∅ ∅ true in AC

2 P0 ∨ P1 ∅ {P1} P1 maximal

3 P1 ∨ P2

4 ¬P1 ∨ P2

5 ¬P1 ∨ P4 ∨ P3 ∨ P0

6 ¬P1 ∨ ¬P4 ∨ P3

7 ¬P1 ∨ P5
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Example

Let P5 ≻ P4 ≻ P3 ≻ P2 ≻ P1 ≻ P0 (max. literals in red)

clauses C IC = A−1
C (1) ∆C Remarks

1 ¬P0 ∅ ∅ true in AC

2 P0 ∨ P1 ∅ {P1} P1 maximal

3 P1 ∨ P2 {P1} ∅ true in AC

4 ¬P1 ∨ P2

5 ¬P1 ∨ P4 ∨ P3 ∨ P0

6 ¬P1 ∨ ¬P4 ∨ P3

7 ¬P1 ∨ P5
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Example

Let P5 ≻ P4 ≻ P3 ≻ P2 ≻ P1 ≻ P0 (max. literals in red)

clauses C IC = A−1
C (1) ∆C Remarks

1 ¬P0 ∅ ∅ true in AC

2 P0 ∨ P1 ∅ {P1} P1 maximal

3 P1 ∨ P2 {P1} ∅ true in AC

4 ¬P1 ∨ P2 {P1} {P2} P2 maximal

5 ¬P1 ∨ P4 ∨ P3 ∨ P0

6 ¬P1 ∨ ¬P4 ∨ P3

7 ¬P1 ∨ P5
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Example

Let P5 ≻ P4 ≻ P3 ≻ P2 ≻ P1 ≻ P0 (max. literals in red)

clauses C IC = A−1
C (1) ∆C Remarks

1 ¬P0 ∅ ∅ true in AC

2 P0 ∨ P1 ∅ {P1} P1 maximal

3 P1 ∨ P2 {P1} ∅ true in AC

4 ¬P1 ∨ P2 {P1} {P2} P2 maximal

5 ¬P1 ∨ P4 ∨ P3 ∨ P0 {P1, P2} {P4} P4 maximal

6 ¬P1 ∨ ¬P4 ∨ P3

7 ¬P1 ∨ P5
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Example

Let P5 ≻ P4 ≻ P3 ≻ P2 ≻ P1 ≻ P0 (max. literals in red)

clauses C IC = A−1
C (1) ∆C Remarks

1 ¬P0 ∅ ∅ true in AC

2 P0 ∨ P1 ∅ {P1} P1 maximal

3 P1 ∨ P2 {P1} ∅ true in AC

4 ¬P1 ∨ P2 {P1} {P2} P2 maximal

5 ¬P1 ∨ P4 ∨ P3 ∨ P0 {P1, P2} {P4} P4 maximal

6 ¬P1 ∨ ¬P4 ∨ P3 {P1, P2, P4} ∅ P3 not maximal;

min. counter-ex.

7 ¬P1 ∨ P5 {P1, P2, P4} {P5}

I = {P1, P2, P4,P5} = A−1(1): A is not a model of the clause set

⇒ there exists a counterexample.
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Main Ideas of the Construction

• Clauses are considered in the order given by ≺.

• When considering C , one already has a partial interpretation IC

(initially IC = ∅) available.

• If C is true in the partial interpretation IC , nothing is done.

(∆C = ∅).

• If C is false, one would like to change IC such that C becomes

true.
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Main Ideas of the Construction

• Changes should, however, be monotone. One never deletes

anything from IC and the truth value of clauses smaller than C

should be maintained the way it was in IC .

• Hence, one chooses ∆C = {A} if, and only if, C is false in IC , if

A occurs positively in C (adding A will make C become true)

and if this occurrence in C is strictly maximal in the ordering on

literals (changing the truth value of A has no effect on smaller

clauses).
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Resolution Reduces Counterexamples

¬P1 ∨ P4 ∨ P3 ∨ P0 ¬P1 ∨ ¬P4 ∨ P3

¬P1 ∨ ¬P1 ∨ P3 ∨ P3 ∨ P0

Construction of I for the extended clause set:

clauses C IC ∆C Remarks

1 ¬P0 ∅ ∅

2 P0 ∨ P1 ∅ {P1}

3 P1 ∨ P2 {P1} ∅

4 ¬P1 ∨ P2 {P1} {P2}

8 ¬P1 ∨ ¬P1 ∨ P3 ∨ P3 ∨ P0 {P1,P2} ∅ P3 occurs twice

minimal counter-ex.

5 ¬P1 ∨ P4 ∨ P3 ∨ P0 {P1,P2} {P4}

6 ¬P1 ∨ ¬P4 ∨ P3 {P1,P2,P4} ∅ counterexample

7 ¬P1 ∨ P5 {P1,P2,P4} {P5}

The same I , but smaller counterexample, hence some progress was made.
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Factorization Reduces Counterexamples

¬P1 ∨ ¬P1 ∨ P3 ∨ P3 ∨ P0

¬P1 ∨ ¬P1 ∨ P3 ∨ P0

Construction of I for the extended clause set:

clauses C IC ∆C Remarks

1 ¬P0 ∅ ∅

2 P0 ∨ P1 ∅ {P1}

3 P1 ∨ P2 {P1} ∅

4 ¬P1 ∨ P2 {P1} {P2}

9 ¬P1 ∨ ¬P1 ∨ P3 ∨ P0 {P1,P2} {P3}

8 ¬P1 ∨ ¬P1 ∨ P3 ∨ P3 ∨ P0 {P1,P2,P3} ∅ true in AC

5 ¬P1 ∨ P4 ∨ P3 ∨ P0 {P1,P2,P3} ∅

6 ¬P1 ∨ ¬P4 ∨ P3 {P1,P2,P3} ∅ true in AC

7 ¬P3 ∨ P5 {P1,P2,P3} {P5}

The resulting I = {P1,P2,P3,P5} is a model of the clause set.
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Construction of Candidate Models Formally

Let N,≻ be given. We define sets IC and ∆C for all ground clauses

C over the given signature inductively over ≻:

IC :=
S

C≻D
∆D

∆C :=

8

<

:

{A}, if C ∈ N, C = C ′ ∨ A, A ≻ C ′ , IC 6|= C

∅, otherwise

We say that C produces A, if ∆C = {A}.

The candidate model for N (wrt. ≻) is given as I≻N :=
S

C
∆C .

We also simply write IN , or I , for I≻N if ≻ is either irrelevant or known

from the context.

42



Structure of N ,≻

Let A ≻ B; producing a new atom does not affect smaller clauses.

{

{
.
.
.

.

..
≺

possibly productive

A

B
. . . ∨ B

. . .

. . . ∨ B ∨ B
. . .

¬B ∨ . . .

. . . ∨ A
. . .

. . . ∨ A ∨ A
. . .

¬A ∨ . . .

. . .

all D with max(D) = B

all C with max(C) = A
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