Part 1: Propositional Logic

Literature (also for first-order logic)

Schöning: Logik für Informatiker, Spektrum
Fitting: First-Order Logic and Automated Theorem Proving, Springer

Last time

1.1 Syntax

1.2 Semantics
1.3 Models, Validity, and Satisfiability
1.4 Normal forms: CNF; DNF

Conversion to CNF/DNF

Proposition 1.8:

For every formula there is an equivalent formula in CNF (and also an equivalent formula in DNF).

Proof:
We consider the case of CNF.
Apply the following rules as long as possible (modulo associativity and commutativity of \wedge and \vee):

Step 1: Eliminate equivalences:

$$
(F \leftrightarrow G) \Rightarrow_{k}(F \rightarrow G) \wedge(G \rightarrow F)
$$

Conversion to CNF/DNF

Step 2: Eliminate implications:

$$
(F \rightarrow G) \Rightarrow_{k}(\neg F \vee G)
$$

Step 3: Push negations downward:

$$
\begin{aligned}
& \neg(F \vee G) \Rightarrow_{k} \quad(\neg F \wedge \neg G) \\
& \neg(F \wedge G) \Rightarrow_{k} \quad(\neg F \vee \neg G)
\end{aligned}
$$

Step 4: Eliminate multiple negations:

$$
\neg \neg F \Rightarrow k \quad F
$$

The formula obtained from a formula F after applying steps $1-4$ is called the negation normal form (NNF) of F

Conversion to CNF/DNF

Step 5: Push disjunctions downward:

$$
(F \wedge G) \vee H \Rightarrow_{K}(F \vee H) \wedge(G \vee H)
$$

Step 6: Eliminate T and \perp :

$$
\begin{aligned}
(F \wedge \top) & \Rightarrow_{K} F \\
(F \wedge \perp) & \Rightarrow_{K} \perp \\
(F \vee \top) & \Rightarrow_{K} \top \\
(F \vee \perp) & \Rightarrow_{K} F \\
\neg \perp & \Rightarrow_{K} \top \\
\neg \top & \Rightarrow_{K} \perp
\end{aligned}
$$

Conversion to CNF/DNF

Proving termination is easy for most of the steps; only steps 1,3 and 5 are a bit more complicated.

The resulting formula is equivalent to the original one and in CNF.

The conversion of a formula to DNF works in the same way, except that disjunctions have to be pushed downward in step 5 .

Complexity

Conversion to CNF (or DNF) may produce a formula whose size is exponential in the size of the original one.

Satisfiability-preserving Transformations

The goal
"find a formula G in CNF such that $\models F \leftrightarrow G$ "
is unpractical.

But if we relax the requirement to
"find a formula G in CNF such that $F \models \perp$ iff $G \models \perp$ "
we can get an efficient transformation.

Satisfiability-preserving Transformations

Idea:
A formula $F\left[F^{\prime}\right]$ is satisfiable iff $F[P] \wedge\left(P \leftrightarrow F^{\prime}\right)$ is satisfiable (where P new propositional variable that works as abbreviation for F^{\prime}).

We can use this rule recursively for all subformulas in the original formula (this introduces a linear number of new propositional variables).

Conversion of the resulting formula to CNF increases the size only by an additional factor (each formula $P \leftrightarrow F^{\prime}$ gives rise to at most one application of the distributivity law).

Optimized Transformations

A further improvement is possible by taking the polarity of the subformula F into account.

Assume that F contains neither \rightarrow nor \leftrightarrow. A subformula F^{\prime} of F has positive polarity in F, if it occurs below an even number of negation signs; it has negative polarity in F, if it occurs below an odd number of negation signs.

Optimized Transformations

Proposition 1.9:

Let $F\left[F^{\prime}\right]$ be a formula containing neither \rightarrow nor \leftrightarrow; let P be a propositional variable not occurring in $F\left[F^{\prime}\right]$.

If F^{\prime} has positive polarity in F, then $F\left[F^{\prime}\right]$ is satisfiable if and only if $F[P] \wedge\left(P \rightarrow F^{\prime}\right)$ is satisfiable.

If F^{\prime} has negative polarity in F, then $F\left[F^{\prime}\right]$ is satisfiable if and only if $F[P] \wedge\left(F^{\prime} \rightarrow P\right)$ is satisfiable.

Proof:
Exercise.

This satisfiability-preserving transformation to clause form is also called structure-preserving transformation to clause form.

Optimized Transformations

Example: Let $F=\left(Q_{1} \wedge Q_{2}\right) \vee\left(R_{1} \wedge R_{2}\right)$.
The following are equivalent:

- $F \models \perp$
- $P_{F} \wedge\left(P_{F} \leftrightarrow\left(P_{Q_{1} \wedge Q_{2}} \vee P_{R_{1} \wedge R_{2}}\right) \wedge\left(P_{Q_{1} \wedge Q_{2}} \leftrightarrow\left(Q_{1} \wedge Q_{2}\right)\right)\right.$ $\wedge\left(P_{R_{1} \wedge R_{2}} \leftrightarrow\left(R_{1} \wedge R_{2}\right)\right) \models \perp$
- $P_{F} \wedge\left(P_{F} \rightarrow\left(P_{Q_{1} \wedge Q_{2}} \vee P_{R_{1} \wedge R_{2}}\right) \wedge\left(P_{Q_{1} \wedge Q_{2}} \rightarrow\left(Q_{1} \wedge Q_{2}\right)\right)\right.$ $\wedge\left(P_{R_{1} \wedge R_{2}} \rightarrow\left(R_{1} \wedge R_{2}\right)\right) \models \perp$
- $P_{F} \wedge\left(\neg P_{F} \vee P_{Q_{1} \wedge Q_{2}} \vee P_{R_{1} \wedge R_{2}}\right) \wedge\left(\neg P_{Q_{1} \wedge Q_{2}} \vee Q_{1}\right) \wedge\left(\neg P_{Q_{1} \wedge Q_{2}} \vee Q_{2}\right)$ $\left.\wedge\left(\neg P_{R_{1} \wedge R_{2}} \vee R_{1}\right) \wedge\left(\neg P_{R_{1} \wedge R_{2}} \vee R_{2}\right)\right) \models \perp$

Decision Procedures for Satisfiability

- Simple Decision Procedures truth table method
- The Resolution Procedure
- The Davis-Putnam-Logemann-Loveland Algorithm

1.5 Inference Systems and Proofs

Inference systems 「 (proof calculi) are sets of tuples

$$
\left(F_{1}, \ldots, F_{n}, F_{n+1}\right), n \geq 0,
$$

called inferences or inference rules, and written

Clausal inference system: premises and conclusions are clauses. One also considers inference systems over other data structures.

Proofs

A proof in Γ of a formula F from a a set of formulas N (called assumptions) is a sequence F_{1}, \ldots, F_{k} of formulas where
(i) $F_{k}=F$,
(ii) for all $1 \leq i \leq k: F_{i} \in N$, or else there exists an inference $\left(F_{i_{1}}, \ldots, F_{i_{n_{i}}}, F_{i}\right)$ in Γ, such that $0 \leq i_{j}<i$, for $1 \leq j \leq n_{i}$.

Soundness and Completeness

Provability \vdash_{Γ} of F from N in Γ :
$N \vdash_{\Gamma} F: \Leftrightarrow$ there exists a proof Γ of F from N.
Γ is called sound $: \Leftrightarrow$

$$
\frac{F_{1} \ldots F_{n}}{F} \in \Gamma \Rightarrow F_{1}, \ldots, F_{n} \models F
$$

「 is called complete $: \Leftrightarrow$

$$
N \models F \Rightarrow N \vdash_{\ulcorner } F
$$

「 is called refutationally complete $: \Leftrightarrow$

$$
N \models \perp \Rightarrow N \vdash_{\ulcorner\perp}
$$

1.6 The Propositional Resolution Calculus

Resolution inference rule:

$$
\frac{C \vee A \quad \neg A \vee D}{C \vee D}
$$

Terminology: $C \vee D$: resolvent; A : resolved atom
(Positive) factorisation inference rule:

$$
\frac{C \vee A \vee A}{C \vee A}
$$

The Resolution Calculus Res

These are schematic inference rules; for each substitution of the schematic variables C, D, and A, respectively, by propositional clauses and atoms we obtain an inference rule.

As " \vee " is considered associative and commutative, we assume that A and $\neg A$ can occur anywhere in their respective clauses.

Sample Refutation

1.	$\neg P \vee \neg P \vee Q$	(given)
2.	$P \vee Q$	(given)
3.	$\neg R \vee \neg Q$	(given)
4.	R	(given)
5.	$\neg P \vee Q \vee Q$	(Res. 2. into 1.)
6.	$\neg P \vee Q$	(Fact. 5.)
7.	$Q \vee Q$	(Res. 2. into 6.)
8.	Q	(Fact. 7.)
9.	$\neg R$	(Res. 8. into 3.)
10.	\perp	(Res. 4. into 9.)

Resolution with Implicit Factorization RIF

$$
\frac{C \vee A \vee \ldots \vee A \quad \neg A \vee D}{C \vee D}
$$

1. $\neg P \vee \neg P \vee Q$
2. $\quad P \vee Q$
3. $\neg R \vee \neg Q$
4. R
5. $\neg P \vee Q \vee Q$
6. $\quad Q \vee Q \vee Q$
7. $\neg R$
8. \perp
(given)
(given)
(given)
(given)
(Res. 2. into 1.)
(Res. 2. into 5.)
(Res. 6. into 3.)
(Res. 4. into 7.)

Soundness of Resolution

Theorem 1.10. Propositional resolution is sound.
Proof:
Let \mathcal{A} valuation. To be shown:
(i) for resolution: $\mathcal{A} \models C \vee \mathcal{A}, \mathcal{A} \models D \vee \neg A \Rightarrow \mathcal{A} \models C \vee D$
(ii) for factorization: $\mathcal{A} \models C \vee A \vee A \Rightarrow \mathcal{A} \models C \vee A$
(i): Assume $\mathcal{A}^{*}(C \vee A)=1, \mathcal{A}^{*}(D \vee \neg A)=1$.

Two cases need to be considered: (a) $\mathcal{A}^{*}(A)=1$, or (b) $\mathcal{A}^{*}(\neg A)=1$. (a) $\mathcal{A} \models A \Rightarrow \mathcal{A} \models D \Rightarrow \mathcal{A} \models C \vee D$
(b) $\mathcal{A} \models \neg A \Rightarrow \mathcal{A} \models C \Rightarrow \mathcal{A} \models C \vee D$
(ii): Assume $\mathcal{A} \models C \vee A \vee A$. Note that $\mathcal{A}^{*}(C \vee A \vee A)=\mathcal{A}^{*}(C \vee A)$,
i.e. the conclusion is also true in \mathcal{A}.

Soundness of Resolution

Note: In propositional logic we have:

1. $\mathcal{A} \models L_{1} \vee \ldots \vee L_{n} \Leftrightarrow$ there exists $i: \mathcal{A} \models L_{i}$.
2. $\mathcal{A} \models A$ or $\mathcal{A} \models \neg A$.

Completeness of Resolution

How to show refutational completeness of propositional resolution:

- We have to show: $N \models \perp \Rightarrow N \vdash$ Res \perp, or equivalently: If $N \nvdash$ Res \perp, then N has a model.
- Idea: Suppose that we have computed sufficiently many inferences (and not derived \perp).

Now order the clauses in N according to some appropriate ordering, inspect the clauses in ascending order, and construct a series of valuations.

- The limit valuation can be shown to be a model of N.

Clause Orderings

1. We assume that \succ is any fixed ordering on propositional variables that is total and well-founded.
2. Extend \succ to an ordering \succ_{L} on literals:

$$
\begin{array}{ccc}
{[\neg] P} & \succ_{L} & {[\neg] Q} \\
\neg P & \succ_{L} & \text {, if } P \succ Q
\end{array}
$$

3. Extend \succ_{L} to an ordering \succ_{C} on clauses:
$\succ_{C}=\left(\succ_{L}\right)_{\text {mul }}$, the multi-set extension of \succ_{L}.
Notation: \succ also for \succ_{L} and \succ_{C}.

Multi-Set Orderings

Let (M, \succ) be a partial ordering. The multi-set extension of \succ to multi-sets over M is defined by

$$
\begin{aligned}
& S_{1} \succ_{\text {mul }} S_{2}: \Leftrightarrow S_{1} \neq S_{2} \\
& \quad \text { and } \forall m \in M:\left[S_{2}(m)>S_{1}(m)\right. \\
& \left.\quad \Rightarrow \quad \exists m^{\prime} \in M:\left(m^{\prime} \succ m \text { and } S_{1}\left(m^{\prime}\right)>S_{2}\left(m^{\prime}\right)\right)\right]
\end{aligned}
$$

Theorem 1.11:

a) $\succ_{\text {mul }}$ is a partial ordering.
b) \succ well-founded $\Rightarrow \succ_{\text {mul }}$ well-founded
c) \succ total $\Rightarrow \succ_{\text {mul }}$ total

Proof:
see Baader and Nipkow, page 22-24.

Example

Suppose $P_{5} \succ P_{4} \succ P_{3} \succ P_{2} \succ P_{1} \succ P_{0}$. Then:

$$
\begin{array}{lc}
& P_{0} \vee P_{1} \\
\prec & P_{1} \vee P_{2} \\
\prec & \neg P_{1} \vee P_{2} \\
\prec & \neg P_{1} \vee P_{4} \vee P_{3} \\
\prec & \neg P_{1} \vee \neg P_{4} \vee P_{3} \\
\prec & \quad \neg P_{5} \vee P_{5}
\end{array}
$$

Stratified Structure of Clause Sets

Let $A \succ B$. Clause sets are then stratified in this form:

Closure of Clause Sets under Res

$$
\begin{aligned}
& \operatorname{Res}(N)=\{C \mid C \text { is concl. of a rule in } \operatorname{Res} w / \text { premises in } N\} \\
& \operatorname{Res}^{0}(N)=N \\
& \operatorname{Res}^{n+1}(N)=\operatorname{Res}\left(\operatorname{Res}^{n}(N)\right) \cup \operatorname{Res}^{n}(N), \text { for } n \geq 0 \\
& \operatorname{Res}^{*}(N)=\bigcup_{n \geq 0} \operatorname{Res}^{n}(N) \\
& N \text { is called saturated (wrt. resolution), if } \operatorname{Res}(N) \subseteq N .
\end{aligned}
$$

Proposition 1.12

(i) $\operatorname{Res}^{*}(N)$ is saturated.
(ii) Res is refutationally complete, iff for each set N of ground clauses:

$$
N \models \perp \Leftrightarrow \perp \in \operatorname{Res}^{*}(N)
$$

Construction of Interpretations

Given: set N of clauses, atom ordering \succ.
Wanted: Valuation \mathcal{A} such that

- "many" clauses from N are valid in \mathcal{A};
- $\mathcal{A} \models N$, if N is saturated and $\perp \notin N$.

Construction according to \succ, starting with the minimal clause.

Main Ideas of the Construction

- Clauses are considered in the order given by \prec. We construct a model for N incrementally.
- When considering C, one already has a partial interpretation I_{C} (initially $I_{C}=\emptyset$) available.

In what follows, instead of referring to partial valuations \mathcal{A}_{C} we will refer to partial interpretations I_{C} (the set of atoms which are true in the valuation \mathcal{A}_{C}).

- If C is true in the partial interpretation I_{C}, nothing is done. $\left(\Delta_{C}=\emptyset\right)$.
- If C is false, one would like to change I_{C} such that C becomes true.

Example

Let $P_{5} \succ P_{4} \succ P_{3} \succ P_{2} \succ P_{1} \succ P_{0}$ (max. literals in red)

	clauses C	$I_{C}=\mathcal{A}_{C}^{-1}(1)$	Δ_{C}	Remarks
1	$\neg P_{0}$			
2	$P_{0} \vee P_{1}$			
3	$P_{1} \vee P_{2}$			
4	$\neg P_{1} \vee P_{2}$			
5	$\neg P_{1} \vee P_{4} \vee P_{3} \vee P_{0}$			
6	$\neg P_{1} \vee \neg P_{4} \vee P_{3}$			
	$\neg P_{1} \vee P_{5}$			
7				

Example

Let $P_{5} \succ P_{4} \succ P_{3} \succ P_{2} \succ P_{1} \succ P_{0}$ (max. literals in red)

	clauses C	$I_{C}=\mathcal{A}_{C}^{-1}(1)$	Δ_{C}	Remarks
1	$\neg P_{0}$	\emptyset	\emptyset	true in \mathcal{A}_{C}
2	$P_{0} \vee P_{1}$			
3	$P_{1} \vee P_{2}$			
4	$\neg P_{1} \vee P_{2}$			
5	$\neg P_{1} \vee P_{4} \vee P_{3} \vee P_{0}$			
6	$\neg P_{1} \vee \neg P_{4} \vee P_{3}$			
	$\neg P_{1} \vee P_{5}$			
7				

Example

Let $P_{5} \succ P_{4} \succ P_{3} \succ P_{2} \succ P_{1} \succ P_{0}$ (max. literals in red)

	clauses C	$I_{C}=\mathcal{A}_{C}^{-1}(1)$	Δ_{C}	Remarks
1	$\neg P_{0}$	\emptyset	\emptyset	true in \mathcal{A}_{C}
2	$P_{0} \vee P_{1}$	\emptyset	$\left\{P_{1}\right\}$	P_{1} maximal
3	$P_{1} \vee P_{2}$			
4	$\neg P_{1} \vee P_{2}$			
5	$\neg P_{1} \vee P_{4} \vee P_{3} \vee P_{0}$			
6	$\neg P_{1} \vee \neg P_{4} \vee P_{3}$			
7	$\neg P_{1} \vee P_{5}$			

Example

Let $P_{5} \succ P_{4} \succ P_{3} \succ P_{2} \succ P_{1} \succ P_{0}$ (max. literals in red)

	clauses C	$I_{C}=\mathcal{A}_{C}^{-1}(1)$	Δ_{C}	Remarks
1	$\neg P_{0}$	\emptyset	\emptyset	true in \mathcal{A}_{C}
2	$P_{0} \vee P_{1}$	\emptyset	$\left\{P_{1}\right\}$	P_{1} maximal
3	$P_{1} \vee P_{2}$	$\left\{P_{1}\right\}$	\emptyset	true in \mathcal{A}_{C}
4	$\neg P_{1} \vee P_{2}$			
5	$\neg P_{1} \vee P_{4} \vee P_{3} \vee P_{0}$			
6	$\neg P_{1} \vee \neg P_{4} \vee P_{3}$			
7	$\neg P_{1} \vee P_{5}$			

Example

Let $P_{5} \succ P_{4} \succ P_{3} \succ P_{2} \succ P_{1} \succ P_{0}$ (max. literals in red)

	clauses C	$I_{C}=\mathcal{A}_{C}^{-1}(1)$	Δ_{C}	Remarks
1	$\neg P_{0}$	\emptyset	\emptyset	true in \mathcal{A}_{C}
2	$P_{0} \vee P_{1}$	\emptyset	$\left\{P_{1}\right\}$	P_{1} maximal
3	$P_{1} \vee P_{2}$	$\left\{P_{1}\right\}$	\emptyset	true in \mathcal{A}_{C}
4	$\neg P_{1} \vee P_{2}$	$\left\{P_{1}\right\}$	$\left\{P_{2}\right\}$	P_{2} maximal
5	$\neg P_{1} \vee P_{4} \vee P_{3} \vee P_{0}$			
6	$\neg P_{1} \vee \neg P_{4} \vee P_{3}$			
7	$\neg P_{1} \vee P_{5}$			

Example

Let $P_{5} \succ P_{4} \succ P_{3} \succ P_{2} \succ P_{1} \succ P_{0}$ (max. literals in red)

	clauses C	$I_{C}=\mathcal{A}_{C}^{-1}(1)$	Δ_{C}	Remarks
1	$\neg P_{0}$	\emptyset	\emptyset	true in \mathcal{A}_{C}
2	$P_{0} \vee P_{1}$	\emptyset	$\left\{P_{1}\right\}$	P_{1} maximal
3	$P_{1} \vee P_{2}$	$\left\{P_{1}\right\}$	\emptyset	true in \mathcal{A}_{C}
4	$\neg P_{1} \vee P_{2}$	$\left\{P_{1}\right\}$	$\left\{P_{2}\right\}$	P_{2} maximal
5	$\neg P_{1} \vee P_{4} \vee P_{3} \vee P_{0}$	$\left\{P_{1}, P_{2}\right\}$	$\left\{P_{4}\right\}$	P_{4} maximal
6	$\neg P_{1} \vee \neg P_{4} \vee P_{3}$			
7	$\neg P_{1} \vee P_{5}$			

Example

Let $P_{5} \succ P_{4} \succ P_{3} \succ P_{2} \succ P_{1} \succ P_{0}$ (max. literals in red)

	clauses C	$I_{C}=\mathcal{A}_{C}^{-1}(1)$	Δ_{C}	Remarks
1	$\neg P_{0}$	\emptyset	\emptyset	true in \mathcal{A}_{C}
2	$P_{0} \vee P_{1}$	\emptyset	$\left\{P_{1}\right\}$	P_{1} maximal
3	$P_{1} \vee P_{2}$	$\left\{P_{1}\right\}$	\emptyset	true in \mathcal{A}_{C}
4	$\neg P_{1} \vee P_{2}$	$\left\{P_{1}\right\}$	$\left\{P_{2}\right\}$	P_{2} maximal
5	$\neg P_{1} \vee P_{4} \vee P_{3} \vee P_{0}$	$\left\{P_{1}, P_{2}\right\}$	$\left\{P_{4}\right\}$	P_{4} maximal
6	$\neg P_{1} \vee \neg P_{4} \vee P_{3}$	$\left\{P_{1}, P_{2}, P_{4}\right\}$	\emptyset	P_{3} not maximal; min. counter-ex.
7	$\neg P_{1} \vee P_{5}$	$\left\{P_{1}, P_{2}, P_{4}\right\}$	$\left\{P_{5}\right\}$	

Main Ideas of the Construction

- Clauses are considered in the order given by \prec.
- When considering C, one already has a partial interpretation I_{C} (initially $I_{C}=\emptyset$) available.
- If C is true in the partial interpretation I_{C}, nothing is done. $\left(\Delta_{C}=\emptyset\right)$.
- If C is false, one would like to change I_{C} such that C becomes true.

Main Ideas of the Construction

- Changes should, however, be monotone. One never deletes anything from I_{C} and the truth value of clauses smaller than C should be maintained the way it was in I_{C}.
- Hence, one chooses $\Delta_{C}=\{A\}$ if, and only if, C is false in I_{C}, if A occurs positively in C (adding A will make C become true) and if this occurrence in C is strictly maximal in the ordering on literals (changing the truth value of A has no effect on smaller clauses).

Resolution Reduces Counterexamples

$$
\frac{\neg P_{1} \vee P_{4} \vee P_{3} \vee P_{0} \neg P_{1} \vee \neg P_{4} \vee P_{3}}{\neg P_{1} \vee \neg P_{1} \vee P_{3} \vee P_{3} \vee P_{0}}
$$

Construction of I for the extended clause set:

	clauses C	I_{C}	Δ_{C}	Remarks
1	$\neg P_{0}$	\emptyset	\emptyset	
2	$P_{0} \vee P_{1}$	\emptyset	$\left\{P_{1}\right\}$	
3	$P_{1} \vee P_{2}$	$\left\{P_{1}\right\}$	\emptyset	
4	$\neg P_{1} \vee P_{2}$	$\left\{P_{1}\right\}$	$\left\{P_{2}\right\}$	
8	$\neg P_{1} \vee \neg P_{1} \vee P_{3} \vee P_{3} \vee P_{0}$	$\left\{P_{1}, P_{2}\right\}$	\emptyset	P_{3} occurs twice
				minimal counter-ex.
5	$\neg P_{1} \vee P_{4} \vee P_{3} \vee P_{0}$	$\left\{P_{1}, P_{2}\right\}$	$\left\{P_{4}\right\}$	
6	$\neg P_{1} \vee \neg P_{4} \vee P_{3}$	$\left\{P_{1}, P_{2}, P_{4}\right\}$	\emptyset	counterexample
7	$\neg P_{1} \vee P_{5}$	$\left\{P_{1}, P_{2}, P_{4}\right\}$	$\left\{P_{5}\right\}$	

The same I, but smaller counterexample, hence some progress was made.

Factorization Reduces Counterexamples

$$
\frac{\neg P_{1} \vee \neg P_{1} \vee P_{3} \vee P_{3} \vee P_{0}}{\neg P_{1} \vee \neg P_{1} \vee P_{3} \vee P_{0}}
$$

Construction of I for the extended clause set:

	clauses C	I_{C}	Δ_{C}	Remarks
1	$\neg P_{0}$	\emptyset	\emptyset	
2	$P_{0} \vee P_{1}$	\emptyset	$\left\{P_{1}\right\}$	
3	$P_{1} \vee P_{2}$	$\left\{P_{1}\right\}$	\emptyset	
4	$\neg P_{1} \vee P_{2}$	$\left\{P_{1}\right\}$	$\left\{P_{2}\right\}$	
9	$\neg P_{1} \vee \neg P_{1} \vee P_{3} \vee P_{0}$	$\left\{P_{1}, P_{2}\right\}$	$\left\{P_{3}\right\}$	
8	$\neg P_{1} \vee \neg P_{1} \vee P_{3} \vee P_{3} \vee P_{0}$	$\left\{P_{1}, P_{2}, P_{3}\right\}$	\emptyset	true in \mathcal{A}_{C}
5	$\neg P_{1} \vee P_{4} \vee P_{3} \vee P_{0}$	$\left\{P_{1}, P_{2}, P_{3}\right\}$	\emptyset	
6	$\neg P_{1} \vee \neg P_{4} \vee P_{3}$	$\left\{P_{1}, P_{2}, P_{3}\right\}$	\emptyset	true in \mathcal{A}_{C}
7	$\neg P_{3} \vee P_{5}$	$\left\{P_{1}, P_{2}, P_{3}\right\}$	$\left\{P_{5}\right\}$	

The resulting $I=\left\{P_{1}, P_{2}, P_{3}, P_{5}\right\}$ is a model of the clause set.

Construction of Candidate Models Formally

Let N, \succ be given. We define sets I_{C} and Δ_{C} for all ground clauses C over the given signature inductively over \succ :

$$
\begin{aligned}
I_{C} & :=\bigcup_{C \succ D} \Delta_{D} \\
\Delta_{C} & := \begin{cases}\{A\}, & \text { if } C \in N, C=C^{\prime} \vee A, A \succ C^{\prime}, I_{C} \not \models C \\
\emptyset, & \text { otherwise }\end{cases}
\end{aligned}
$$

We say that C produces A, if $\Delta_{C}=\{A\}$.

The candidate model for $N(w r t . \succ)$ is given as $I_{N}^{\succ}:=\bigcup_{C} \Delta_{C}$.
We also simply write I_{N}, or I, for I_{N}^{\succ} if \succ is either irrelevant or known from the context.

Structure of N, \succ

Let $A \succ B$; producing a new atom does not affect smaller clauses.

