Literature (also for first-order logic)

Schöning: Logik für Informatiker, Spektrum Fitting: First-Order Logic and Automated Theorem Proving, Springer

Last time

- 1.1 Syntax
- **1.2 Semantics**
- 1.3 Models, Validity, and Satisfiability
- 1.4 Normal forms: CNF; DNF

Conversion to CNF/DNF

Proposition 1.8:

For every formula there is an equivalent formula in CNF (and also an equivalent formula in DNF).

Proof:

We consider the case of CNF.

Apply the following rules as long as possible (modulo associativity and commutativity of \land and \lor):

Step 1: Eliminate equivalences:

$$(F \leftrightarrow G) \Rightarrow_{\mathcal{K}} (F \rightarrow G) \land (G \rightarrow F)$$

Conversion to CNF/DNF

Step 2: Eliminate implications:

$$(F \rightarrow G) \Rightarrow_{\kappa} (\neg F \lor G)$$

Step 3: Push negations downward:

$$eg (F \lor G) \Rightarrow_{\mathcal{K}} (\neg F \land \neg G)$$

 $eg (F \land G) \Rightarrow_{\mathcal{K}} (\neg F \lor \neg G)$

Step 4: Eliminate multiple negations:

$$\neg\neg F \Rightarrow_{\mathcal{K}} F$$

The formula obtained from a formula F after applying steps 1-4 is called the negation normal form (NNF) of F

Conversion to CNF/DNF

Step 5: Push disjunctions downward:

$$(F \wedge G) \vee H \Rightarrow_{\mathcal{K}} (F \vee H) \wedge (G \vee H)$$

Step 6: Eliminate \top and \bot :

$$(F \land \top) \Rightarrow_{\mathcal{K}} F$$
$$(F \land \bot) \Rightarrow_{\mathcal{K}} \bot$$
$$(F \lor \top) \Rightarrow_{\mathcal{K}} \top$$
$$(F \lor \bot) \Rightarrow_{\mathcal{K}} F$$
$$\neg \bot \Rightarrow_{\mathcal{K}} T$$
$$\neg \top \Rightarrow_{\mathcal{K}} \bot$$

Proving termination is easy for most of the steps; only steps 1, 3 and 5 are a bit more complicated.

The resulting formula is equivalent to the original one and in CNF.

The conversion of a formula to DNF works in the same way, except that disjunctions have to be pushed downward in step 5.

Conversion to CNF (or DNF) may produce a formula whose size is exponential in the size of the original one.

Satisfiability-preserving Transformations

The goal

"" "find a formula G in CNF such that $\models F \leftrightarrow G$ " is unpractical.

But if we relax the requirement to

"ifind a formula G in CNF such that $F \models \bot$ iff $G \models \bot$ "

we can get an efficient transformation.

Satisfiability-preserving Transformations

Idea:

A formula F[F'] is satisfiable iff $F[P] \land (P \leftrightarrow F')$ is satisfiable (where P new propositional variable that works as abbreviation for F').

We can use this rule recursively for all subformulas in the original formula (this introduces a linear number of new propositional variables).

Conversion of the resulting formula to CNF increases the size only by an additional factor (each formula $P \leftrightarrow F'$ gives rise to at most one application of the distributivity law).

Optimized Transformations

A further improvement is possible by taking the polarity of the subformula F into account.

Assume that F contains neither \rightarrow nor \leftrightarrow . A subformula F' of F has positive polarity in F, if it occurs below an even number of negation signs; it has negative polarity in F, if it occurs below an odd number of negation signs.

Optimized Transformations

Proposition 1.9:

Let F[F'] be a formula containing neither \rightarrow nor \leftrightarrow ; let P be a propositional variable not occurring in F[F'].

If F' has positive polarity in F, then F[F'] is satisfiable if and only if $F[P] \land (P \rightarrow F')$ is satisfiable.

If F' has negative polarity in F, then F[F'] is satisfiable if and only if $F[P] \wedge (F' \rightarrow P)$ is satisfiable.

Proof:

Exercise.

This satisfiability-preserving transformation to clause form is also called structure-preserving transformation to clause form.

Optimized Transformations

Example: Let $F = (Q_1 \land Q_2) \lor (R_1 \land R_2)$.

The following are equivalent:

• $F \models \perp$

•
$$P_F \land (P_F \leftrightarrow (P_{Q_1 \land Q_2} \lor P_{R_1 \land R_2}) \land (P_{Q_1 \land Q_2} \leftrightarrow (Q_1 \land Q_2))$$

 $\land (P_{R_1 \land R_2} \leftrightarrow (R_1 \land R_2)) \models \bot$
• $P_F \land (P_F \rightarrow (P_{Q_1 \land Q_2} \lor P_{R_1 \land R_2}) \land (P_{Q_1 \land Q_2} \rightarrow (Q_1 \land Q_2))$
 $\land (P_{R_1 \land R_2} \rightarrow (R_1 \land R_2)) \models \bot$
• $P_F \land (\neg P_F \lor P_{Q_1 \land Q_2} \lor P_{R_1 \land R_2}) \land (\neg P_{Q_1 \land Q_2} \lor Q_1) \land (\neg P_{Q_1 \land Q_2} \lor Q_2)$
 $\land (\neg P_{R_1 \land R_2} \lor R_1) \land (\neg P_{R_1 \land R_2} \lor R_2)) \models \bot$

Decision Procedures for Satisfiability

• Simple Decision Procedures truth table method

• The Resolution Procedure

• The Davis-Putnam-Logemann-Loveland Algorithm

1.5 Inference Systems and Proofs

Inference systems Γ (proof calculi) are sets of tuples

 $(F_1, \ldots, F_n, F_{n+1}), n \ge 0,$

called inferences or inference rules, and written

Clausal inference system: premises and conclusions are clauses. One also considers inference systems over other data structures.

A proof in Γ of a formula F from a a set of formulas N (called assumptions) is a sequence F_1, \ldots, F_k of formulas where

- (i) $F_k = F$,
- (ii) for all $1 \le i \le k$: $F_i \in N$, or else there exists an inference $(F_{i_1}, \ldots, F_{i_{n_i}}, F_i)$ in Γ , such that $0 \le i_j < i$, for $1 \le j \le n_i$.

Soundness and Completeness

Provability \vdash_{Γ} of F from N in Γ : $N \vdash_{\Gamma} F : \Leftrightarrow$ there exists a proof Γ of F from N.

 $\Gamma \text{ is called sound } :\Leftrightarrow$

$$\frac{F_1 \ldots F_n}{F} \in \Gamma \quad \Rightarrow \quad F_1, \ldots, F_n \models F$$

 Γ is called complete : \Leftrightarrow

$$N \models F \Rightarrow N \vdash_{\Gamma} F$$

 Γ is called refutationally complete $:\Leftrightarrow$

$$N \models \bot \Rightarrow N \vdash_{\Gamma} \bot$$

1.6 The Propositional Resolution Calculus

Resolution inference rule:

$$\frac{C \lor A \qquad \neg A \lor D}{C \lor D}$$

Terminology: $C \lor D$: resolvent; A: resolved atom

(Positive) factorisation inference rule:

$$\frac{C \lor A \lor A}{C \lor A}$$

These are schematic inference rules; for each substitution of the schematic variables C, D, and A, respectively, by propositional clauses and atoms we obtain an inference rule.

As " \lor " is considered associative and commutative, we assume that A and $\neg A$ can occur anywhere in their respective clauses.

1.	$ eg P \lor eg P \lor Q$	(given)
2.	$P \lor Q$	(given)
3.	$ eg R \lor eg Q$	(given)
4.	R	(given)
5.	$ eg P \lor Q \lor Q$	(Res. 2. into 1.)
6.	$ eg P \lor Q$	(Fact. 5.)
7.	$Q \lor Q$	(Res. 2. into 6.)
8.	Q	(Fact. 7.)
9.	$\neg R$	(Res. 8. into 3.)
10.	\perp	(Res. 4. into 9.)

Resolution with Implicit Factorization *RIF*

	$C \lor A \lor \ldots \lor A$	$\neg A \lor D$
-	$C \lor D$	
$\neg P \lor \neg P \lor$	Q (giv	en)
$P \lor Q$	(giv	en)
$ eg R \lor eg Q$	(giv	en)
R	(giv	en)
$ eg P \lor Q \lor G$	(Res. 2. into	1.)
$Q \lor Q \lor Q$	(Res. 2. into	5.)
$\neg R$	(Res. 6. into	3.)
\perp	(Res. 4. into	7.)
	$\neg P \lor \neg P \lor$ $P \lor Q$ $\neg R \lor \neg Q$ R $\neg P \lor Q \lor Q$ $Q \lor Q \lor Q$ $\neg R$ \bot	$\frac{C \lor A \lor \ldots \lor A}{C \lor D}$ $\neg P \lor \neg P \lor Q \qquad (giv)$ $P \lor Q \qquad (giv)$ $\neg R \lor \neg Q \qquad (giv)$ $R \qquad (giv)$ $R \qquad (giv)$ $R \qquad (giv)$ $\neg P \lor Q \lor Q \qquad (Res. 2. into)$ $Q \lor Q \lor Q \qquad (Res. 2. into)$ $\Box \qquad (Res. 6. into)$ $\bot \qquad (Res. 4. into)$

Theorem 1.10. Propositional resolution is sound.

Proof:

Let \mathcal{A} valuation. To be shown:

- (i) for resolution: $\mathcal{A} \models \mathcal{C} \lor \mathcal{A}$, $\mathcal{A} \models \mathcal{D} \lor \neg \mathcal{A} \Rightarrow \mathcal{A} \models \mathcal{C} \lor \mathcal{D}$
- (ii) for factorization: $\mathcal{A} \models \mathcal{C} \lor \mathcal{A} \lor \mathcal{A} \Rightarrow \mathcal{A} \models \mathcal{C} \lor \mathcal{A}$

(i): Assume $\mathcal{A}^*(C \lor A) = 1$, $\mathcal{A}^*(D \lor \neg A) = 1$. Two cases need to be considered: (a) $\mathcal{A}^*(A) = 1$, or (b) $\mathcal{A}^*(\neg A) = 1$. (a) $\mathcal{A} \models A \Rightarrow \mathcal{A} \models D \Rightarrow \mathcal{A} \models C \lor D$ (b) $\mathcal{A} \models \neg A \Rightarrow \mathcal{A} \models C \Rightarrow \mathcal{A} \models C \lor D$

(ii): Assume $\mathcal{A} \models C \lor A \lor A$. Note that $\mathcal{A}^*(C \lor A \lor A) = \mathcal{A}^*(C \lor A)$, i.e. the conclusion is also true in \mathcal{A} .

Soundness of Resolution

Note: In propositional logic we have:

1.
$$\mathcal{A} \models L_1 \lor \ldots \lor L_n \iff$$
 there exists *i*: $\mathcal{A} \models L_i$.

2.
$$\mathcal{A} \models \mathcal{A}$$
 or $\mathcal{A} \models \neg \mathcal{A}$.

How to show refutational completeness of propositional resolution:

- We have to show: $N \models \bot \Rightarrow N \vdash_{Res} \bot$, or equivalently: If $N \not\vdash_{Res} \bot$, then N has a model.
- Idea: Suppose that we have computed sufficiently many inferences (and not derived \perp).

Now order the clauses in N according to some appropriate ordering, inspect the clauses in ascending order, and construct a series of valuations.

• The limit valuation can be shown to be a model of N.

Clause Orderings

- 1. We assume that \succ is any fixed ordering on propositional variables that is *total* and well-founded.
- 2. Extend \succ to an ordering \succ_L on literals:

$$[\neg]P \succ_L [\neg]Q , \text{ if } P \succ Q$$
$$\neg P \succ_L P$$

3. Extend \succ_L to an ordering \succ_C on clauses: $\succ_C = (\succ_L)_{mul}$, the multi-set extension of \succ_L . *Notation:* \succ also for \succ_L and \succ_C . Let (M, \succ) be a partial ordering. The multi-set extension of \succ to multi-sets over M is defined by

$$\begin{array}{l} S_1 \succ_{\mathsf{mul}} S_2 :\Leftrightarrow S_1 \neq S_2 \\ \text{and } \forall m \in M : [S_2(m) > S_1(m) \\ \Rightarrow \quad \exists m' \in M : (m' \succ m \text{ and } S_1(m') > S_2(m'))] \end{array}$$

Theorem 1.11:

a) ≻_{mul} is a partial ordering.
b) ≻ well-founded ⇒ ≻_{mul} well-founded
c) ≻ total ⇒ ≻_{mul} total

Proof:

see Baader and Nipkow, page 22-24.

Suppose $P_5 \succ P_4 \succ P_3 \succ P_2 \succ P_1 \succ P_0$. Then:

 $P_{0} \lor P_{1}$ $\prec P_{1} \lor P_{2}$ $\prec \neg P_{1} \lor P_{2}$ $\prec \neg P_{1} \lor P_{4} \lor P_{3}$ $\prec \neg P_{1} \lor \neg P_{4} \lor P_{3}$ $\prec \neg P_{5} \lor P_{5}$

Stratified Structure of Clause Sets

Let $A \succ B$. Clause sets are then stratified in this form:

Closure of Clause Sets under *Res*

$$Res(N) = \{C \mid C \text{ is concl. of a rule in } Res w/ \text{ premises in } N\}$$

 $Res^0(N) = N$
 $Res^{n+1}(N) = Res(Res^n(N)) \cup Res^n(N), \text{ for } n \ge 0$
 $Res^*(N) = \bigcup_{n \ge 0} Res^n(N)$

N is called saturated (wrt. resolution), if $Res(N) \subseteq N$.

Proposition 1.12

- (i) $Res^*(N)$ is saturated.
- (ii) *Res* is refutationally complete, iff for each set *N* of ground clauses:

$$N \models \bot \Leftrightarrow \bot \in \operatorname{Res}^*(N)$$

Construction of Interpretations

Given: set N of clauses, atom ordering \succ . Wanted: Valuation \mathcal{A} such that

- "many" clauses from N are valid in A;
- $\mathcal{A} \models N$, if N is saturated and $\perp \not\in N$.

Construction according to \succ , starting with the minimal clause.

Main Ideas of the Construction

- Clauses are considered in the order given by ≺. We construct a model for N incrementally.
- When considering C, one already has a partial interpretation I_C (initially $I_C = \emptyset$) available.

In what follows, instead of referring to partial valuations $\mathcal{A}_{\mathcal{C}}$ we will refer to partial interpretations $I_{\mathcal{C}}$ (the set of atoms which are true in the valuation $\mathcal{A}_{\mathcal{C}}$).

- If C is true in the partial interpretation I_C , nothing is done. $(\Delta_C = \emptyset).$
- If *C* is false, one would like to change *I_C* such that *C* becomes true.

Let $P_5 \succ P_4 \succ P_3 \succ P_2 \succ P_1 \succ P_0$ (max. literals in red)

	clauses C	$I_{\mathcal{C}}=\mathcal{A}_{\mathcal{C}}^{-1}(1)$	Δ_{C}	Remarks
1	$\neg P_0$			
2	$P_0 \lor P_1$			
3	$P_1 \lor P_2$			
4	$ eg P_1 \lor P_2$			
5	$\neg P_1 \lor P_4 \lor P_3 \lor P_0$			
6	$ eg P_1 \lor \neg P_4 \lor P_3$			
7	$ eg P_1 \lor P_5$			

Let $P_5 \succ P_4 \succ P_3 \succ P_2 \succ P_1 \succ P_0$ (max. literals in red)

	clauses C	$I_{\mathcal{C}}=\mathcal{A}_{\mathcal{C}}^{-1}(1)$	Δ_{C}	Remarks
1	$\neg P_0$	Ø	Ø	true in $\mathcal{A}_{\mathcal{C}}$
2	$P_0 \lor P_1$			
3	$P_1 \lor P_2$			
4	$ eg P_1 \lor P_2$			
5	$ eg P_1 \lor P_4 \lor P_3 \lor P_0$			
6	$ eg P_1 \lor \neg P_4 \lor P_3$			
7	$ eg P_1 \lor P_5$			

Let $P_5 \succ P_4 \succ P_3 \succ P_2 \succ P_1 \succ P_0$ (max. literals in red)

	clauses C	$I_C = \mathcal{A}_C^{-1}(1)$	Δ_{C}	Remarks
1	$\neg P_0$	Ø	Ø	true in $\mathcal{A}_{\mathcal{C}}$
2	$P_0 \lor P_1$	Ø	$\{P_1\}$	P_1 maximal
3	$P_1 \lor P_2$			
4	$ eg P_1 \lor P_2$			
5	$\neg P_1 \lor P_4 \lor P_3 \lor P_0$			
6	$ eg P_1 \lor \neg P_4 \lor P_3$			
7	$ eg P_1 \lor P_5$			

Let $P_5 \succ P_4 \succ P_3 \succ P_2 \succ P_1 \succ P_0$ (max. literals in red)

	clauses C	$I_C = \mathcal{A}_C^{-1}(1)$	Δ_{C}	Remarks
1	$\neg P_0$	Ø	Ø	true in $\mathcal{A}_{\mathcal{C}}$
2	$P_0 \lor P_1$	Ø	$\{P_1\}$	P_1 maximal
3	$P_1 \lor P_2$	$\{P_1\}$	Ø	true in $\mathcal{A}_{\mathcal{C}}$
4	$ eg P_1 \lor P_2$			
5	$\neg P_1 \lor P_4 \lor P_3 \lor P_0$			
6	$ eg P_1 \lor \neg P_4 \lor P_3$			
7	$ eg P_1 \lor P_5$			

Let $P_5 \succ P_4 \succ P_3 \succ P_2 \succ P_1 \succ P_0$ (max. literals in red)

	clauses C	$I_C = \mathcal{A}_C^{-1}(1)$	Δ_C	Remarks
1	$\neg P_0$	Ø	Ø	true in $\mathcal{A}_{\mathcal{C}}$
2	$P_0 \lor P_1$	Ø	$\{P_1\}$	P_1 maximal
3	$P_1 \lor P_2$	$\{P_1\}$	Ø	true in $\mathcal{A}_{\mathcal{C}}$
4	$ eg P_1 \lor P_2$	$\{P_1\}$	$\{P_2\}$	P_2 maximal
5	$\neg P_1 \lor P_4 \lor P_3 \lor P_0$			
6	$ eg P_1 \lor \neg P_4 \lor P_3$			
7	$ eg P_1 \lor P_5$			

Let $P_5 \succ P_4 \succ P_3 \succ P_2 \succ P_1 \succ P_0$ (max. literals in red)

	clauses C	$I_C = \mathcal{A}_C^{-1}(1)$	Δ_{C}	Remarks
1	$\neg P_0$	Ø	Ø	true in $\mathcal{A}_{\mathcal{C}}$
2	$P_0 \lor P_1$	Ø	$\{P_1\}$	P_1 maximal
3	$P_1 \lor P_2$	$\{P_1\}$	Ø	true in $\mathcal{A}_{\mathcal{C}}$
4	$ eg P_1 \lor P_2$	$\{P_1\}$	$\{P_2\}$	P_2 maximal
5	$\neg P_1 \lor P_4 \lor P_3 \lor P_0$	$\{P_1,P_2\}$	$\{P_4\}$	P ₄ maximal
6	$ eg P_1 \lor \neg P_4 \lor P_3$			
7	$ eg P_1 \lor P_5$			

Let $P_5 \succ P_4 \succ P_3 \succ P_2 \succ P_1 \succ P_0$ (max. literals in red)

	clauses C	$I_C = \mathcal{A}_C^{-1}(1)$	Δ_{C}	Remarks	
1	$\neg P_0$	Ø	Ø	true in $\mathcal{A}_{\mathcal{C}}$	
2	$P_0 \lor P_1$	Ø	$\{P_1\}$	P_1 maximal	
3	$P_1 \lor P_2$	$\{P_1\}$	Ø	true in $\mathcal{A}_{\mathcal{C}}$	
4	$ eg P_1 \lor P_2$	$\{P_1\}$	$\{P_2\}$	P_2 maximal	
5	$\neg P_1 \lor P_4 \lor P_3 \lor P_0$	$\{P_1,P_2\}$	$\{P_4\}$	P ₄ maximal	
6	$\neg P_1 \lor \neg P_4 \lor P_3$	$\{P_1, P_2, P_4\}$	Ø	P_3 not maximal;	
				min. counter-ex.	
7	$\neg P_1 \lor P_5$	$\{P_1, P_2, P_4\}$	$\{P_5\}$		
1 =	$I = \{P_1, P_2, P_4, P_5\} = \mathcal{A}^{-1}(1)$: \mathcal{A} is not a model of the clause set				

 \Rightarrow there exists a counterexample.

Main Ideas of the Construction

- Clauses are considered in the order given by \prec .
- When considering C, one already has a partial interpretation I_C (initially $I_C = \emptyset$) available.
- If C is true in the partial interpretation I_C , nothing is done. $(\Delta_C = \emptyset).$
- If *C* is false, one would like to change *I_C* such that *C* becomes true.

Main Ideas of the Construction

- Changes should, however, be *monotone*. One never deletes anything from I_C and the truth value of clauses smaller than C should be maintained the way it was in I_C .
- Hence, one chooses Δ_C = {A} if, and only if, C is false in I_C, if A occurs positively in C (adding A will make C become true) and if this occurrence in C is strictly maximal in the ordering on literals (changing the truth value of A has no effect on smaller clauses).

Resolution Reduces Counterexamples

$$\frac{\neg P_1 \lor P_4 \lor P_3 \lor P_0 \quad \neg P_1 \lor \neg P_4 \lor P_3}{\neg P_1 \lor \neg P_1 \lor P_3 \lor P_3 \lor P_0}$$

Construction of *I* for the extended clause set:

	clauses C	Ι _C	Δ_C	Remarks
1	$\neg P_0$	Ø	Ø	
2	$P_0 \lor P_1$	Ø	$\{P_1\}$	
3	$P_1 ee P_2$	$\{P_1\}$	Ø	
4	$ eg P_1 \lor P_2$	$\{P_1\}$	${P_2}$	
8	$ eg P_1 \lor \neg P_1 \lor P_3 \lor P_3 \lor P_0$	$\{P_1, P_2\}$	Ø	P_3 occurs twice
				minimal counter-ex.
5	$ eg P_1 \lor P_4 \lor P_3 \lor P_0$	$\{P_1, P_2\}$	$\{P_4\}$	
6	$ eg P_1 \lor \neg P_4 \lor P_3$	$\{P_1, P_2, P_4\}$	Ø	counterexample
7	$ eg P_1 \lor P_5$	$\{P_1, P_2, P_4\}$	$\{P_5\}$	

The same *I*, but smaller counterexample, hence some progress was made.

Factorization Reduces Counterexamples

$$\frac{\neg P_1 \lor \neg P_1 \lor P_3 \lor P_3 \lor P_0}{\neg P_1 \lor \neg P_1 \lor P_3 \lor P_0}$$

Construction of *I* for the extended clause set:

	clauses C	Ι _C	Δ_C	Remarks
1	$\neg P_0$	Ø	Ø	
2	$P_0 ee P_1$	Ø	$\{P_1\}$	
3	$P_1 \lor P_2$	$\{P_1\}$	Ø	
4	$ eg P_1 \lor P_2$	$\{P_1\}$	${P_2}$	
9	$ eg P_1 \lor eg P_1 \lor P_3 \lor P_0$	$\{P_1, P_2\}$	$\{P_3\}$	
8	$ eg P_1 \lor \neg P_1 \lor P_3 \lor P_3 \lor P_0$	$\{P_1, P_2, P_3\}$	Ø	true in $\mathcal{A}_{\mathcal{C}}$
5	$ eg P_1 \lor P_4 \lor P_3 \lor P_0$	$\{P_1, P_2, P_3\}$	Ø	
6	$ eg P_1 \lor \neg P_4 \lor P_3$	$\{P_1, P_2, P_3\}$	Ø	true in $\mathcal{A}_{\mathcal{C}}$
7	$\neg P_3 \lor P_5$	$\{P_1, P_2, P_3\}$	$\{P_5\}$	

The resulting $I = \{P_1, P_2, P_3, P_5\}$ is a model of the clause set.

Construction of Candidate Models Formally

Let N, \succ be given. We define sets I_C and Δ_C for all ground clauses C over the given signature inductively over \succ :

$$\begin{split} I_C &:= \bigcup_{C \succ D} \Delta_D \\ \Delta_C &:= \begin{cases} \{A\}, & \text{if } C \in N, \ C = C' \lor A, \ A \succ C', \ I_C \not\models C \\ & \emptyset, & \text{otherwise} \end{cases} \end{split}$$

We say that C produces A, if $\Delta_C = \{A\}$.

The candidate model for N (wrt. \succ) is given as $I_N^{\succ} := \bigcup_C \Delta_C$. We also simply write I_N , or I, for I_N^{\succ} if \succ is either irrelevant or known from the context.

Structure of N, \succ

Let $A \succ B$; producing a new atom does not affect smaller clauses.

