Part 1: Propositional Logic

Literature (also for first-order logic)

Schoning: Logik fir Informatiker, Spektrum

Fitting: First-Order Logic and Automated Theorem Proving, Springer

Last time

1.1 Syntax

1.2 Semantics

1.3 Models, Validity, and Satisfiability
1.4 Normal forms: CNF; DNF

Conversion to CNF/DNF

Proposition 1.8:
For every formula there is an equivalent formula in CNF (and also an

equivalent formula in DNF).

Proof:
We consider the case of CNF.

Apply the following rules as long as possible (modulo associativity

and commutativity of A and V):

Step 1: Eliminate equivalences:

(F—G) =k (F—=G)AN(G — F)

Conversion to CNF/DNF

Step 2: Eliminate implications:

(F— G) =« (-FVG)

Step 3: Push negations downward:

—(FV G) =k (=-F AN=G)
—(FAG) =k (=FV-G)

Step 4: Eliminate multiple negations:

——F =k F

The formula obtained from a formula F after applying steps 1-4 is called

the negation normal form (NNF) of F

Conversion to CNF/DNF

Step 5: Push disjunctions downward:

(FAG)VH =k (FVH)A(GVH)

Step 6: Eliminate T and _L:

(FAT) =«
(FAL) =«
(FVT) =«
(FV 1) =«

-l =k

— 4 T o+ o

- =k

Conversion to CNF/DNF

Proving termination is easy for most of the steps; only steps 1, 3 and

5 are a bit more complicated.

The resulting formula is equivalent to the original one and in CNF.

The conversion of a formula to DNF works in the same way, except

that disjunctions have to be pushed downward in step 5.

Complexity

Conversion to CNF (or DNF) may produce a formula whose size is

exponential in the size of the original one.

Satisfiability-preserving Transformations

The goal
“find a formula G in CNF such that = F <~ G"

is unpractical.

But if we relax the requirement to
“find a formula G in CNF such that F = L iff G = L"

we can get an efficient transformation.

Satisfiability-preserving Transformations

Idea:
A formula F[F’] is satisfiable iff F[P] A (P < F’) is satisfiable
(where P new propositional variable that works as abbreviation for F’).

We can use this rule recursively for all subformulas in the original formula
(this introduces a linear number of new propositional variables).

Conversion of the resulting formula to CNF increases the size only by an
additional factor (each formula P <~ F’ gives rise to at most one application
of the distributivity law).

Optimized Transformations

A further improvement is possible by taking the polarity of the

subformula F into account.

Assume that F contains neither — nor «<». A subformula F’ of F has
positive polarity in F, if it occurs below an even number of negation
signs; it has negative polarity in F, if it occurs below an odd number

of negation signs.

10

Optimized Transformations

Proposition 1.9:
Let F[F’] be a formula containing neither — nor «; let P be a
propositional variable not occurring in F[F’].

If F' has positive polarity in F, then F[F’] is satisfiable if and only if
F[P] A (P — F’) is satisfiable.

If F' has negative polarity in F, then F[F’] is satisfiable if and only if
F[P] A (F" — P) is satisfiable.

Proof:

Exercise.

This satisfiability-preserving transformation to clause form is also called

structure-preserving transformation to clause form.

11

Optimized Transformations

Example: Let F = (Q1 A Q) V (R1 A R2).
The following are equivalent:
o FEL
o Pr A (Pr = (Por@, V Prinry) A (Pane, < (QL A Q2))
A (Priar, « (R1NR)) EL
o Pr A (PF— (Po,r@, V Priary,) N (Poirg, — (Q1 A Q2))
A (Priar, — (RN R)) EL

® Pe N (=PrV Porn@, V Prinry,) A (mPoing, V Q1) A (—Poing, V Q2)
A (_"DR1/\R2 \% Rl) A (_"DR1/\R2 \% R2)) |:J—

12

Decision Procedures for Satisfiability

e Simple Decision Procedures
truth table method

e [he Resolution Procedure

e The Davis-Putnam-Logemann-Loveland Algorithm

13

1.5 Inference Systems and Proofs

Inference systems ' (proof calculi) are sets of tuples
(F]J"'anrFrH—l)v nZO,

called inferences or inference rules, and written

premises

_/N

Fi ... Fj

Fn—l—l
——

conclusion

Clausal inference system: premises and conclusions are clauses. One

also considers inference systems over other data structures.

14

Proofs

A proof in I of a formula F from a a set of formulas N (called

assumptions) is a sequence Fi, ..., Fx of formulas where
(i) Fo=F,

(i) for all 1 < i < k: F; € N, or else there exists an inference
(Fiy, ..., Fi,. Fi) in I, such that 0 < j; < i, for 1 < j < n;.

15

Soundness and Completeness

Provability Fr of F from N in I:
N Hr F < there exists a proof [of F from N.

[is called sound &

Fi ... F,
F

[is called complete &

N=EF = NbirF

[is called refutationally complete &

N|=J_ = Nk L

el = F,....,F,EF

16

1.6 The Propositional Resolution Calculus

Resolution inference rule:

CVA —-AV D
cCvD

Terminology: C V D: resolvent; A: resolved atom

(Positive) factorisation inference rule:

CVAVA
CVA

17

The Resolution Calculus Res

These are schematic inference rules: for each substitution of the
schematic variables C, D, and A, respectively, by propositional clauses

and atoms we obtain an inference rule.

As “V" Is considered associative and commutative, we assume that

A and —A can occur anywhere in their respective clauses.

18

Sample Refutation

| —
I

© o N o ok w b=

~PV-PVQ
PVQ

~RV =Q

R
-PVQVQ
-PV Q@
RV

Q

R

il

(Res

(Res

(Res
(Res

(given)
(given)
(given)

(given)
.2, into 1.)

(Fact. 5.)
. 2. into 6.)
(Fact. 7.)
. 8. into 3.)
. 4. into 9.)

19

Resolution with Implicit Factorization RIF

CVAV...VA —AvV D

cCvD
1. =PV-PVQ (given)
2. PVQ@ (given)
3. -RV-Q (given)
4. R (given)
5. 2 PVQRV QKR (Res. 2. into 1))
6. QVQERVAQ (Res. 2. into 5.)
7. —R (Res. 6. into 3.)
8. L (Res. 4. into 7.)

Soundness of Resolution

Theorem 1.10. Propositional resolution is sound.

Proof:
Let A valuation. To be shown:

(i) for resolutiont: A=CVA AE DV-A = A=CVD
(ii) for factorization: A=CVAVA = AE=CVA

(i): Assume A*(CVA)=1,A"(DV-A)=1.

Two cases need to be considered: (a) A*(A) =1, or (b) A" (—A) = 1.
() AEA=AED=AE=CVD
(b)) A A= A=C=A=CVD

(ii): Assume A = CV AV A. Note that A*(CVAVA) = A" (CVA),

i.e. the conclusion is also true in A.

21

Soundness of Resolution

Note: In propositional logic we have:

1. AELiV...VL, & thereexistsi: A= L.

2. .A:AOF.A‘:ﬁA.

22

Completeness of Resolution

How to show refutational completeness of propositional resolution:

e We have to show: N1 = Ntge L,
or equivalently: If N /ges L, then N has a model.

e |ldea: Suppose that we have computed sufficiently many
inferences (and not derived 1).

Now order the clauses in N according to some appropriate
ordering, inspect the clauses in ascending order, and construct a

series of valuations.

e [he limit valuation can be shown to be a model of N.

23

Clause Orderings

1. We assume that > is any fixed ordering on propositional
variables that is total and well-founded.

2. Extend > to an ordering >, on literals:

-P =, [FlQ . ifP>Q
-P ~ P

3. Extend >; to an ordering > on clauses:
~c = (>)mul, the multi-set extension of .

Notation: = also for =; and >.

24

Multi-Set Orderings

Let (M, >) be a partial ordering. The multi-set extension of > to
multi-sets over M is defined by

Sl > mul 52 = Sl 7& 52
and Vm € M : [S2(m) > 51(m)
= dm’' e M- (m’ >~ m and 51(m,) > 52(”7,))]

Theorem 1.11:
a) >=mul is a partial ordering.

b) > well-founded = >, well-founded
c) > total = »nu total

Proof:
see Baader and Nipkow, page 22-24.

25

Example

Suppose Ps = P, = P3 = P> = P; = Py. Then:

PoV Py
PV P,
~Py V P;

—PyV PV Ps

~Py V —P4 V Ps
~Ps V Py

A A A A A

26

Stratified Structure of Clause Sets

Let A >~ B. Clause sets are then stratified in this form:

..V B
...VBVEB
—-BV...

all D where max(D) = B

.. VA
A JyVAVA
—-AV...

all C where max(C) = A

Closure of Clause Sets under Res

Res(N) = {C | C is concl. of a rule in Res w/ premises in N}
Res’(N) = N
Res"™(N) = Res(Res"(N)) U Res"(N), for n >0
Res™(N) = U, > Res"(N)

N is called saturated (wrt. resolution), if Res(N) C N.

Proposition 1.12
(i) Res™(N) is saturated.

(ii)) Res is refutationally complete, iff for each set N of ground
clauses:
NE1l & 1 € Res"(N)

28

Construction of Interpretations

Given: set N of clauses, atom ordering >.
Wanted: Valuation A such that

e “many” clauses from N are valid in A;
e AE N, if N is saturated and 1. & N.

Construction according to >, starting with the minimal clause.

29

Main ldeas of the Construction

e Clauses are considered in the order given by <. We construct a
model for N incrementally.

e When considering C, one already has a partial interpretation /¢
(initially Ic = @) available.
In what follows, instead of referring to partial valuations

Ac we will refer to partial interpretations /¢ (the set of
atoms which are true in the valuation Ac).

e If C is true in the partial interpretation /¢, nothing is done.

(Ac =0).

o If C is false, one would like to change /¢ such that C becomes

true.

30

Example

Let Ps = Py > P3 = P> = P1 > Py (max. literals in red)

clauses C

Ic =A

—1
C

(1)

Ac

Remarks

S 1 B~ W N -

—-Py

Po VvV P

P1V P

P11V P
P11V PV PV Py
PV =Py V P3

PV Ps

31

Example

Let Ps = Py > P3 = P> = P1 > Py (max. literals in red)

clauses C

Ic =A

—1
C

(1)

Ac

Remarks

S 1 B~ W N -

—-Py

Po VvV P

P1V P

P11V P
P11V PV PV Py
PV =Py V P3

PV Ps

0

0

true in Ac

32

Example

Let Ps = Py > P3 = P> = P1 > Py (max. literals in red)

clauses C

Ic =A

—1
C

(1)

Ac

Remarks

S 1 B~ W N -

—-Py

Po VvV P

P1V P

P11V P
P11V PV PV Py
PV =Py V P3

PV Ps

0
0

0
{P1}

true in Ac

P; maximal

33

Example

Let Ps = Py > P3 = P> = P1 > Py (max. literals in red)

clauses C | I = Agl(l) Ac Remarks
1 - P 0 0 true in A¢
2 Py vV P,] {Pl} P; maximal
3 PV P {Pl}] true in Ac
4 PV P
5| =Pi1VPsV P3V Py
6 —P1V =P,V P3
! -P; V Ps

34

Example

Let Ps = Py > P3 = P> = P1 > Py (max. literals in red)

clauses C | I = Agl(l) Ac Remarks
1 - Py 0 0 true in Ac
2 Py Vv P;] {Pl} P; maximal
3 PV P {Pl}] true in Ac
4 —IP1 V P2 {Pl} {PQ} P2 maximal
5| =Pi1VPsV P3V Py
6 -P1V =P,V P3
! -P; V Ps

35

Example

Let Ps = Py > P3 = P> = P1 > Py (max. literals in red)

clauses C | I = Agl(l) Ac Remarks

1 - P,) 0 true in Ac
2 Po VvV Py 0 {P1} | P1 maximal
3 PV P {Pl}] true in Ac
4 =PV P {Pl} {PQ} P> maximal
5 -P1V P,V P3V Py {Pl, Pz} {P4} P, maximal
6 -P1V =P,V P3

! -P; V Ps

36

Example

Let Ps = Py > P3 = P> = P1 > Py (max. literals in red)

clauses C | Ic = Agl(l) Ac Remarks

1 - P,) 0 true in Ac

2 Po VvV Py 0 {P1} | P1 maximal

3 PV P; {P} 0 true in Ac

4 -P1V P, {P:} {P,} | P> maximal

5| P11V PV PV Py {P1, P2} {Ps} | Ps maximal

6 —P1V=PsV Ps | {P1, P2, Ps}) Ps not maximal;
min. counter-ex.

7 —P1V Ps | {P1,P2, Ps} | {Ps}

| = {P1, P2, Py, Ps} = A *(1): Ais not a model of the clause set
= there exists a counterexample.

37

Main ldeas of the Construction

Clauses are considered in the order given by <.

When considering C, one already has a partial interpretation /¢
(initially Ic = @) available.

If C is true in the partial interpretation I, nothing is done.

(Ac =0).

If C is false, one would like to change /¢ such that C becomes

true.

38

Main ldeas of the Construction

e Changes should, however, be monotone. One never deletes
anything from Ic and the truth value of clauses smaller than C
should be maintained the way it was in /Ic.

e Hence, one chooses A¢c = {A} if, and only if, C is false in I¢, if
A occurs positively in C (adding A will make C become true)
and if this occurrence in C is strictly maximal in the ordering on
literals (changing the truth value of A has no effect on smaller
clauses).

39

Resolution Reduces Counterexamples

—P1V Py V P3V Py

—P1V P4V P3

-P1V-P1VP;V PV P

Construction of | for the extended clause set:

clauses C Ic Ac Remarks

1 - Py 0 0

2 Po Vv P 0 {P1}

3 PV P> {P1} 0

4 —P1V P {P1} {P>}

8 | =-P1V—-PiVP3VP3V P {P1, P} 0 P3 occurs twice

minimal counter-ex.

5 —P1V P,V P33V Py {P1, P>} {P4}

6 —P1V =Py V P3| {P1, P>, Py} 0 counterexample

7 —P1V Ps | {P1,P2, Py} | {Ps}

The same /[, but smaller counterexample, hence some progress was made.

40

Factorization Reduces Counterexamples

-P1V-P1VP;V PV P

Py V=PV P3V Py

Construction of | for the extended clause set:

clauses C Ic Ac Remarks

1 —Po 0 0

2 Po VvV P 0 {P1}

3 Pi1V P> {Pl} 0

4 —P1V P> {Pl} {PQ}

9 -P1V-P1V P3V Py {P1, P>} {Ps3}

8 | =PV —-P1VP3VP3VPy | {P1,P, P3} 0 true in Ac
5 —P1V PysV P3V Py {Pl,PQ,P3} 0

6 —P1V =Py V P3 {Pl, P>, P3} 0 true in A¢
7 —=P3V Ps | {P1,P2,P3} | {Ps}

The resulting | = {P1, P2, P3, Ps} is a model of the clause set.

41

Construction of Candidate Models Formally

Let N, > be given. We define sets Ic and A¢ for all ground clauses
C over the given signature inductively over >:

Ic = UC>D Ap

.

{A}, fCeN C=CVA A-C IcEC
NAc = |

\ 0, otherwise

We say that C produces A, if A¢c = {A}.

The candidate model for N (wrt.) is given as I = |J. Ac.

We also simply write Iy, or I, for I if = is either irrelevant or known

from the context.

42

Structure of N, >~

Let A > B; producing a new atom does not affect smaller clauses.

poxssibly productive

y
....\/B

::....\/B B
-BV..|

y
. VA

A L..VAVA
”—.lA\/...

all D with max(D) = B

all C with max(C) =A

