Universität Koblenz-Landau FB 4 Informatik

Prof. Dr. Viorica Sofronie-Stokkermans

19.12.2013

Collection of exercises: Part 1

Exercise 1. Assume $R \succ Q \succ P$. Let N_1 be the following set of clauses:

(C_1)	$\neg R \vee \neg P$
(C_2)	$Q \vee P$
(C_3)	$\neg Q$
(C_4)	$R \vee \neg P \vee Q$

Use the ordered resolution calculus Res^{\succ} described in the lecture for checking the satisfiability of the set N_1 of clauses.

Exercise 2. Assume $P \succ Q \succ R \succ S$. Let N_2 be the following set of clauses:

(C_1)	$\neg Q \lor P$
(C_2)	$R \vee \neg P$
(C_3)	$Q \vee \neg S$
(C_4)	$\neg Q \vee S$

- (1) Define a selection function S such that this set of clauses is saturated w.r.t. the ordered resolution calculus with selection Res_S^{\succ} . Justify your choice.
- (2) Sort the clauses according to \succ_C .
- (3) Construct a model of N_2 using the canonical construction presented in the lecture.

Exercise 3. Give the definition of redundancy of a clause w.r.t. a set N of clauses. Assume $P \succ S \succ Q \succ R$.

(1) Is the clause $P \lor \neg S$ redundant w.r.t. the set of clauses $\{\neg Q \lor P, R \lor \neg P, Q \lor \neg S\}$?

(2) Is the clause $\neg Q \lor R$ redundant w.r.t. the set of clauses $\{\neg Q \lor P, R \lor \neg P, Q \lor \neg S\}$?

Justify your answers.

Exercise 4. Let $\Sigma = (\{f/1, g/1, h/1, a\}, \{p/2, q/1, r/2\})$. Let X be a set of variables, and assume that $\{x, y, z, u, v, w, s, t\} \subseteq X$.

Let \succ an ordering on ground atoms with the property that for all ground terms t_1, \ldots, t_{12} , $\neg p(t_1, t_2) \succ p(t_3, t_4) \succ \neg q(t_5, t_6) \succ q(t_7, t_8) \succ \neg r(t_9, t_{10}) \succ r(t_{11}, t_{12}).$

Let N be the following set of clauses:

$$\begin{array}{ll} (1) & \neg r(f(x),y) \lor p(g(x),x) \\ (2) & \neg q(h(g(z))) \lor \neg p(z,u) \\ (3) & q(h(v)) \\ (4) & r(w,g(s)) \lor p(t,f(s)) \end{array}$$

Use the ordered resolution calculus Res^{\succ} described in the lecture for checking the satisfiability of the set N of clauses.

Exercise 5. Consider the following formulae over a signature containing function symbols $\Omega = \{c/0, f/1\}$ and predicate symbols $\Pi = \{P/1\}$:

- $F_1 := P(c)$
- $F_2 := \forall x (P(x) \to P(f(x)))$
- $F_3 := P(f(f(f(c)))).$

Use resolution to prove that $\{F_1, F_2\} \models F_3$.

Exercise 6.

- (a) Give definitions for the following fragments of first-order logic:
 - The Bernays-Schönfinkel class;
 - The Ackermann class.
 - The monadic class.
- (b) What is the idea in the proof of decidability for the Bernays-Schönfinkel class?
- (c) To which of these classes do the following formulae belong (note that they can be in more than one, or in none of the classes above):
 - (1) $\exists y \forall x \ ((p(x) \lor r(x,y)) \land q(y))$
 - (2) $\forall x \exists y \forall z \exists u ((p(x) \lor q(y)) \land (q(y) \lor p(u)))$
 - (3) $\exists z \forall x \exists y (p(x) \lor q(y)) \land q(z)$
 - (4) $\exists x \forall y (p(x) \lor r(y)) \land q(y)$
 - (5) $\forall x \exists y \forall z \exists u ((p(x) \lor r(x, y)) \land (q(y) \lor p(u)))$
 - (6) $\exists z \forall x \exists y (p(x) \lor r(x,y)) \land q(z)$

Exercise 7. Check the satisfiability of the following formulae using the DAG version of the Congruence Closure algorithm presented in the class:

- 1. $f(a,b) \approx f(b,a) \wedge f(c,a) \not\approx f(b,c)$
- 2. $f(g(a)) \approx g(f(a)) \wedge f(g(f(b))) \approx a \wedge f(b) \approx a \wedge g(f(a)) \not\approx a$

3.
$$f(f(f(a))) \approx f(a) \wedge f(f(a)) \approx a \wedge f(a) \not\approx a$$

Exercise 8.

(1a) Check the satisfiability over \mathbb{Z} of the following set of constraints in positive difference logic using the method presented in the lecture. In case of satisfiability find a satisfiable assignment.

(a)
$$x - y \le 4 \land y - z \le 2 \land x - z \le 2 \land z - x \le -3$$

(b) $x - y \le 4 \land y - z \le 0 \land x - z \le 4 \land z - x \le -3 \land x - u \le -4$

- (1b) Check the satisfiability over \mathbb{Z} of the following set of constraints in difference logic using the method presented in the lecture. In case of satisfiability find a satisfiable assignment.
 - (a) $x y \le 4 \land y z \le 0 \land x z < 4 \land z x \le -3 \land x u \le -4$ (a) $x - y \le 4 \land y - z \le 0 \land x - z < 4 \land z - x < -3 \land x - u \le -4$
- (2a) Check the satisfiability over \mathbb{Q} of the following sets of constraints in positive difference logic. In case of satisfiability find a satisfiable assignment.
 - (a) $x-y \leq 5 \land y-u \leq 4 \land x-z \leq -1 \land z-x \leq 1$.
 - (b) $x-y \le 5 \land y-u \le 4 \land x-z \le -1 \land z-x \le 1 \land z-y \le -5.$
- (2a) Check the satisfiability over \mathbb{Q} of the following sets of constraints in difference logic. In case of satisfiability find a satisfiable assignment.
 - (a) $x y \le 5 \land y u \le 4 \land x z < -1 \land z x \le 1.$
 - (b) $x-y \leq 5 \wedge y-u \leq 4 \wedge x-z < -0.5 \wedge z-x < 1 \wedge z-y \leq -5.$