Universität Koblenz-Landau

FB 4 Informatik

Prof. Dr. Viorica Sofronie-Stokkermans

30.1.2014

Collection of exercises: Part 2

Exercise 1. Use the Nelson-Oppen procedure for checking the satisfiability of the following formulae:

- 1. $1 \le c \land c \le 3 \land f(c) \not\approx f(1) \land f(c) \not\approx f(3) \land f(1) \not\approx f(2)$ in the combination $LI(\mathbb{Z}) \cup UIF_{\{f\}}$.
- 2. $f(c) \approx c + d \wedge c \leq d + e \wedge c + e \leq d \wedge d = 1 \wedge f(c) \not\approx f(2)$ in the combination $LI(\mathbb{Z}) \cup UIF_{\{f\}}$.
- 3. $c + d \approx e \wedge f(e) \approx e \wedge f(c + d) \not\approx e$ in the combination $LI(\mathbb{Q}) \cup UIF_{\{f\}}$.

Exercise 2. Let $\mathcal{T} = LI(\mathbb{Q})$, and let $Q := x \ge 1, R := x \le y, P := x + x \le 2$. Use a DPLL (\mathcal{T}) method to check the satisfiability w.r.t. \mathcal{T} of the following set of clauses:

$$(C_1) \qquad \neg R \lor P$$

$$(C_2) \qquad \neg Q \lor \neg P$$

$$(C_4) \qquad R \lor P$$

$$(C_2)$$
 $\neg O \lor \neg P$

$$(C_4)$$
 $R \vee P$

Exercise 3. In what follows we consider the theory of arrays defined in the lecture. We assume that the theory of indices \mathcal{T}_i is $LI(\mathbb{Z})$, and the theory of elements \mathcal{T}_e is $LI(\mathbb{Q})$.

Which of the formulae below are in the array property fragment and which are not? Justify your answer. (The universally quantified variables i, j are of sort index; the indices $k, l_i, u_i, i = 1, 2$ which are not universally quantified are considered to be constants of sort index)

- (1) $\forall i \ (a[a[i]] > a[i])$
- (2) $\forall i \ (i > a[i])$
- (3) $\forall i \ (a[i] > b[i])$
- (4) $\forall i \ (i < a[k] \rightarrow a[i] = a[k])$
- (5) $\forall i, j \ (l_1 < i < u_1 < l_2 < j < u_2 \rightarrow a[i] \le a[j])$
- (6) $\forall i, j \ (l_1 < i < j < u_2 \rightarrow a[i] \le a[j])$
- (7) $\forall i, j \ (l_1 < i \le j < u_2 \to a[i] \le a[j])$

Exercise 4. Consider the array property formula:

$$F: write(a,l,v_1)[k] = b[k] \land b[k] = v_2 \land a[k] = v_1 \land v_1 \neq v_2 \land \forall i (i \leq l-1 \rightarrow a[i] = b[i]) \land \forall i (i \geq l+1 \rightarrow a[i] = b[i]) \land \forall i (i \leq l-1 \rightarrow a[i] = b[i] = b[i]) \land \forall i (i \leq l-1 \rightarrow a[i] = b[i] = b[i]) \land \forall i (i \leq l-1 \rightarrow a[i] = b[i] = b[i]) \land \forall i (i \leq l-1 \rightarrow a[i] = b[i] = b[i]) \land \forall i (i \leq l-1 \rightarrow a[i] = b[i] = b[i]) \land i (i \leq l-1 \rightarrow a[i] = b[i]) \land i (i \leq l-1 \rightarrow a[i] = b[i]) \land i (i \leq l-1 \rightarrow a[i] = b[i]) \land i (i \leq l-1 \rightarrow a[i] = b[i] = b[i]) \land i (i \leq l-1 \rightarrow a[i] = b[i] = b[i]) \land i (i \leq l-1 \rightarrow a[i] = b[i] = b[i]) \land i (i \leq l-1 \rightarrow a[i] = b[i] = b[i]) \land i (i \leq l-1 \rightarrow a[i] = b[i] = b[i]) \land i (i \leq l-1 \rightarrow a[i] = b[i] = b[i]) \land i (i \leq l-1 \rightarrow a[i] = b[i] = b[i]) \land i (i \leq l-1 \rightarrow a[i] = b[i] = b[i] = b[i] \land i (i \leq l-1 \rightarrow a[i] = b[i] = b[i] \land i (i \leq l-1 \rightarrow a[i] = b[i] = b[i] \land i (i \leq l-1 \rightarrow a[i] = b[i] = b[i] \land i (i \leq l-1 \rightarrow a[i] = b[i] = b[i] \land i (i \leq l-1 \rightarrow a[i] = b[i] = b[i] \land i (i \leq l-1 \rightarrow a[i] = b[i] = b[i] \land i (i \leq l-1 \rightarrow a[i] = b[i] = b[i] \land i (i \leq l-1 \rightarrow a[i] = b[i] = b[i] \land i (i \leq l-1 \rightarrow a[i] = b[i] = b[i] \land i (i \leq l-1 \rightarrow a[i] = b[i] = b[i] \land i (i \leq l-1 \rightarrow a[i] = b[i] = b[i] \land i (i \leq l-1 \rightarrow a[i] = b[i] \land i (i \leq l-1 \rightarrow a[i] = b[i] = b[i] \land i (i \leq l-1 \rightarrow a[i] = b[i] = b[i] \land i (i \leq l-1 \rightarrow a[i] = b[$$

- (1) Apply Steps 1–6 described in the lecture to F. Let F_6 be the formula obtained after Step 6.
- (2) Check the satisfiability of F_6 using one of the versions of the $DPLL(\mathcal{T})$ procedure presented in the class. For theory reasoning in combinations of theories use the Nelson-Oppen procedure.