Universität Koblenz-Landau

FB 4 Informatik

Prof. Dr. Viorica Sofronie-Stokkermans
November 5, 2013

Exercises for "Decision Procedures for Verification"
 Exercise sheet 3

Exercise 3.1: (3 P)

Use the resolution calculus to prove that the following set of clauses is unsatisfiable:
(1) $\neg P \vee \neg Q \vee R$
(2) $\quad \neg P \vee \neg Q \vee S$
(3) P
(4) $\quad \neg S \vee \neg R$
(5) Q

Exercise 3.2: (1 P)
Find a total ordering on the propositional variables A, B, C, D, E, such that the associated clause ordering \succ_{C} orders the clauses like this:

$$
B \vee C \succ_{C} A \vee A \vee \neg C \succ_{C} C \vee E \succ_{C} C \vee D \succ_{C} \neg A \vee D \succ_{C} \neg E
$$

Exercise 3.3: (4 P)
Let N be the following set of clauses:

(1)	$\neg P_{3} \vee P_{1} \vee P_{1}$
(2)	$\neg P_{2} \vee P_{1}$
(3)	$P_{4} \vee P_{4}$
(4)	P_{4}
(5)	$P_{3} \vee \neg P_{2}$
(6)	$P_{4} \vee P_{3}$

(1) Let \succ be the ordering on propositional variables defined by $P_{4} \succ P_{3} \succ P_{2} \succ P_{1}$. Sort the clauses in N according to \succ_{C}. Which literals are maximal in the clauses of N ?
(2) Define a selection function S such that N is saturated under $R e s_{S}^{\succ}$.
(3) Construct a model of N using the canonical construction presented in the lecture.

Exercise 3.4: (2 P)
Use a DPLL procedure to find a model of each of the following formulae, or prove that the particular formula has no model:
(1) $(P \vee \neg Q) \wedge(\neg P \vee Q) \wedge(Q \vee \neg R) \wedge(\neg Q \vee \neg R)$
(2) $(P \vee Q \vee \neg R) \wedge(P \vee \neg Q) \wedge(P \vee Q \vee R) \wedge(R \vee Q) \wedge(R \vee \neg Q) \wedge(\neg P \vee \neg R) \wedge \neg U$

Exercise 3.5: ($L P$)
et $\Sigma=(\Omega, \Pi)$ be a signature, where $\Omega=\{f / 3, g / 1, a / 0, b / 0\}$ and $\Pi=\{p / 2\}$; let X be the set of variables $\{x, y, z\}$. Which of the following expressions are terms over Σ and X, which are atoms/literals/clauses/formulae (in first-order logic with equality), which are neither?
(a) $\neg p(g(a), f(x, y, g(a)))$
(b) $f(x, x, x) \approx x$
(c) $p(f(x, x, a), x) \vee p(a, b)$
(d) $p(\neg g(x), g(y))$
(e) $\neg p(f(x, y, y))$
(f) $\neg p(f(x, y), y) \vee p(x, y)$
(g) $p(a, b) \wedge p(x, y) \wedge y$
(h) $\exists y(\neg p(f(y, y, y), y))$
(i) $\forall x \forall y(f(p(x, y), x, x) \approx g(x))$

Additional Exercise

Let F be the following formula:

$$
(\neg((Q \wedge \neg P) \wedge(\neg Q \vee \neg R)) \vee(Q \wedge(\neg Q \vee P))) \wedge(P \vee R)
$$

Use the satisfiability preserving CNF translation (possibly optimized using the polarity of the subformulae) to compute a set N_{F} of clauses such that F is satisfiable if and only if N_{F} is satisfiable.

Please submit your solution until Monday, November 11, 2013 at 14:00. Joint solutions prepared by up to three persons are allowed. Please do not forget to write your name on your solution.

Submission possibilities:

- By e-mail to sofronie@uni-koblenz.de with the keyword "Homework DP" in the subject.
- Put it in the box in front of Room B 222 .

