Universität Koblenz-Landau FB 4 Informatik

Prof. Dr. Viorica Sofronie-Stokkermans

November 14, 2013

Exercises for "Decision Procedures for Verification" Exercise sheet 4

Exercise 4.1: (2 P) Assume $P \succ Q \succ R$. Let N be the following set of clauses:

$$\begin{array}{ll} (1) & \neg R \lor P \\ (2) & \neg Q \lor \neg P \\ (3) & Q \\ (4) & R \lor P \end{array}$$

Let S be the selection function which selects $\neg R$ in clause (1) and $\neg Q$ in clause (2).

Use the ordered resolution calculus with selection $\operatorname{\mathsf{Res}}_S^{\succ}$ described in the lecture for checking the satisfiability of the set N of clauses.

Exercise 4.2: (2 P) Assume $S \succ P \succ Q \succ R$. Let N be the following set of clauses:

(1)	$\neg Q \vee \neg P$
(2)	$R \vee P$
(3)	$Q \vee S$
(4)	$\neg Q \vee \neg S$

- (a) Define a selection function S such that this set of clauses is saturated w.r.t. the ordered resolution calculus with selection Res_S^{\succ} . Justify your choice.
- (b) Sort the clauses according to \succ_C .
- (c) Construct a model of N using the canonical construction presented in the lecture.

Exercise 4.3: (2 P)

Compute the results of the following substitutions:

(a)	f(g(x), x)[g(a)/x]	(c)	orall y(p(f(y,x),x))[y/x]
(b)	p(f(y,x),g(x))[x/y]	(d)	$\forall y (p(f(z,g(y)),g(x)) \lor \exists z (g(z) \approx y)) [g(b)/z]$
(c)	$\forall y (p(f(y,x),g(y)))[x/y]$	(e)	$\exists y \big(f(x,y) \approx x \to \forall x (f(x,y) \approx x) \big) [g(y)/y, g(z)/x]$

Exercise 4.4: (3 P) **Reminder:** A formula F is valid in a Σ -algebra (Σ -structure) \mathcal{A} under assignment β (Notation: $\mathcal{A}, \beta \models F$) if $\mathcal{A}(\beta)(F) = 1$. F is valid in \mathcal{A} (Notation: $\mathcal{A} \models F$) iff $\mathcal{A}, \beta \models F$, for all $\beta \in X \to U_{\mathcal{A}}$.

Let $\Sigma = \{0, s, +\}$. Consider the following formulae in the signature Σ :

- 1. $F_1 = \forall x \ (x + 0 \approx x)$
- 2. $F_2 = \forall x, y \ (x + s(y) \approx s(x + y))$
- 3. $F_3 = \forall x, y \ (x + y \approx y + x).$

Find a Σ -structure in which F_1 and F_2 are valid but F_3 is not.

Exercise 4.5: (2 P) What is the clausal normal form of

$$\exists x \,\forall y \,(\forall z \,(p(y,z) \vee \neg \, x \approx y) \to (\forall z \,q(y,z) \wedge \neg \, r(x,y)))$$

Supplementary exercise (will be discussed in the exercise session)

Exercise 4.6: (5 P)

Let H be a set of propositional Horn clauses. The size of H is the number of all literals which occur in H.

Prove that the resolution calculus $\operatorname{\mathsf{Res}}_S^{\succ}$ (or the marking algorithm discussed in the lecture "Logik für Informatiker") can check the satisfiability of H in time polynomial in the size of H.

Can you give an algorithm for check the satisfiability of H in time linear in the size of H?

Please submit your solution until Monday, November 18, 2013 at 16:00. Joint solutions prepared by up to three persons are allowed. Please do not forget to write your name on your solution.

Submission possibilities:

- By e-mail to sofronie@uni-koblenz.de with the keyword "Homework DP" in the subject.
- Put it in the box in front of Room B 222.