Universität Koblenz-Landau

FB 4 Informatik

Prof. Dr. Viorica Sofronie-Stokkermans
November 14, 2013

Exercises for "Decision Procedures for Verification" Exercise sheet 4

Exercise 4.1: (2 P)
Assume $P \succ Q \succ R$. Let N be the following set of clauses:

(1)	$\neg R \vee P$
(2)	$\neg Q \vee \neg P$
(3)	Q
(4)	$R \vee P$

Let S be the selection function which selects $\neg R$ in clause (1) and $\neg Q$ in clause (2).
Use the ordered resolution calculus with selection $\operatorname{Res}_{S}^{\succ}$ described in the lecture for checking the satisfiability of the set N of clauses.

Exercise 4.2: (2 P)
Assume $S \succ P \succ Q \succ R$. Let N be the following set of clauses:

(a) Define a selection function S such that this set of clauses is saturated w.r.t. the ordered resolution calculus with selection $\operatorname{Res}_{S}^{\succ}$. Justify your choice.
(b) Sort the clauses according to \succ_{C}.
(c) Construct a model of N using the canonical construction presented in the lecture.

Exercise 4.3: (2 P)
Compute the results of the following substitutions:
(a) $f(g(x), x)[g(a) / x]$
(c) $\forall y(p(f(y, x), x))[y / x]$
(b) $p(f(y, x), g(x))[x / y]$
(d) $\forall y(p(f(z, g(y)), g(x)) \vee \exists z(g(z) \approx y))[g(b) / z]$
(c) $\forall y(p(f(y, x), g(y)))[x / y]$
(e) $\exists y(f(x, y) \approx x \rightarrow \forall x(f(x, y) \approx x))[g(y) / y, g(z) / x]$

Exercise 4.4: (3 P)
Reminder: A formula F is valid in a Σ-algebra (Σ-structure) \mathcal{A} under assignment β (Nota-
tion: $\mathcal{A}, \beta \models F)$ if $\mathcal{A}(\beta)(F)=1$. F is valid in \mathcal{A} (Notation: $\mathcal{A} \models F$) iff $\mathcal{A}, \beta \models F$, for all $\beta \in$ $X \rightarrow U_{\mathcal{A}}$.

Let $\Sigma=\{0, s,+\}$. Consider the following formulae in the signature Σ :

1. $F_{1}=\forall x(x+0 \approx x)$
2. $F_{2}=\forall x, y(x+s(y) \approx s(x+y))$
3. $F_{3}=\forall x, y \quad(x+y \approx y+x)$.

Find a Σ-structure in which F_{1} and F_{2} are valid but F_{3} is not.

Exercise 4.5: (2 P)
What is the clausal normal form of

$$
\exists x \forall y(\forall z(p(y, z) \vee \neg x \approx y) \rightarrow(\forall z q(y, z) \wedge \neg r(x, y)))
$$

Supplementary exercise (will be discussed in the exercise session)

Exercise 4.6: (5 P)
Let H be a set of propositional Horn clauses. The size of H is the number of all literals which occur in H.

Prove that the resolution calculus $\operatorname{Res}_{S}^{\succ}$ (or the marking algorithm discussed in the lecture "Logik für Informatiker") can check the satisfiability of H in time polynomial in the size of H.

Can you give an algorithm for check the satisfiability of H in time linear in the size of H ?

Please submit your solution until Monday, November 18, 2013 at 16:00. Joint solutions prepared by up to three persons are allowed. Please do not forget to write your name on your solution.

Submission possibilities:

- By e-mail to sofronie@uni-koblenz.de with the keyword "Homework DP" in the subject.
- Put it in the box in front of Room B 222.

