Universität Koblenz-Landau

FB 4 Informatik

Prof. Dr. Viorica Sofronie-Stokkermans

November 28, 2013

Exercises for "Decision Procedures for Verification" Exercise sheet 6

Exercise 6.1: (2 P)

- (1) Redundant clauses remain redundant, if the theorem prover derives new clauses and adds them to the current set of clauses. Prove:
 - If N and M are sets of clauses and $N \subseteq M$, then $Red(N) \subseteq Red(M)$.
- (2) Redundant clauses remain redundant, if the theorem prover deletes redundant clauses.

If N and M are sets of clauses and $M \subseteq \text{Red}(N)$, then $\text{Red}(N) \subseteq \text{Red}(N \setminus M)$.

Exercise 6.2: (2 P)

Assume $S \succ P \succ Q \succ R$. Let N be the following set of clauses:

- (1) $\neg Q \lor \neg P$
- (2) $R \vee P$
- (3) $Q \vee S$
- $(4) \qquad \neg Q \lor \neg S$

Give the definition of redundancy of a clause w.r.t. a set of clauses. Is the clause $\neg P \lor S$ redundant w.r.t. the set N above? Justify your answer.

Exercise 6.3: (2 P)

To which of the classes discussed in the lecture (the Bernays-Schönfinkel class, the Ackermann class or the monadic class) do the following formulae belong:

- (1) $\exists y \forall x \ ((p(x) \lor r(x,y)) \land q(y))$
- (2) $\forall x \exists y \forall z \exists u ((p(x) \lor q(y)) \land (q(y) \lor p(u))$
- $(3) \ \exists z \forall x \exists y (p(x) \lor q(y)) \land q(z)$
- (4) $\exists x \forall y (P(x) \lor R(y)) \land Q(y)$

Note that they can be in more than one, or in none of the classes above.

Exercise 6.4: (7 P)

Let $\Sigma = (\{c_1/0, \dots, c_n/0, f_1/1, \dots, f_n/1\}, \Pi)$ be a signature. Consider the following classes of clauses:

- G (denoted in the lecture also $G(c_1, \ldots, c_n)$) is the class of all ground clauses in the signature Σ which do not contain any occurrence of a unary function symbol.
- V (denoted in the lecture also $V(x, c_1, \ldots, c_n)$) is the class of all clauses with one variable (x) in the signature Σ which do not contain any occurrence of a unary function symbol.
- G_f (denoted in the lecture also $G(c_1, \ldots, c_n, f_k(c_j))$) is the class of all ground clauses in the signature Σ which contain at least one occurrence of a unary function symbol (having as argument a constant); no nested applications of unary function symbols are allowed.

Example: Assume $p/3.q/2 \in \Pi$ Then:

```
C_1: p(c_1, c_2, c_3) \vee \neg q(c_2, c_1) \notin G_f
C_2: q(c_1, c_2) \vee \neg q(f_1(c_3), c_4) \in G_f
C_3: q(c_1, c_2) \vee \neg q(f_1(c_3), f_2(f_3(c_4))) \notin G_f.
```

• V_f (denoted in the lecture also $V(x, c_1, \ldots, c_n, f_j(x))$) is the class of all ground clauses in the signature Σ which contain only one variable (x), at least one occurrence of a unary function symbol (having as argument the variable x), no occurrences of terms of the form $f_k(c_j)$; in addition no nested applications of unary function symbols are allowed.

Example: Assume $p/3.q/2 \in \Pi$ Then:

```
C_1': p(x, c_2, x) \vee \neg q(c_2, c_1) \not\in G_f
C_2': q(x, c_2) \vee \neg q(f_1(c_3), x) \not\in G_f
C_3': q(c_1, x) \vee \neg q(x, f_2(f_3(x))) \not\in G_f \ C_4': p(x, c_2, x) \vee \neg p(c_2, x, f(x)) \in G_f.
```

Consider a term ordering \succ in which $f(t) \succ t$ for every term t and terms containing function symbols of arity 1 are larger than those who do not. Consider the general ordered resolution calculus Res^{\succ} . Prove that in this calculus:

- (1) The resolvent of a clause in G_f and a clause in V_f is a clause in G_f of G.
- (2) The resolvent of two clauses in V_f is a clause in G, G_f , V or V_f .

Please submit your solution until Monday, December 2, 2013 at 16:00. Joint solutions prepared by up to three persons are allowed. Please do not forget to write your name on your solution. Submission possibilities:

- By e-mail to sofronie@uni-koblenz.de with the keyword "Homework DP" in the subject.
- Put it in the box in front of Room B 222.