Universität Koblenz-Landau

FB 4 Informatik

Prof. Dr. Viorica Sofronie-Stokkermans
December 5, 2013

Exercises for "Decision Procedures for Verification" Exercise sheet 7

Exercise 7.1: (2 P)
Assume $S \succ P \succ Q \succ R$. Let N be the following set of clauses:

(1)	$\neg Q \vee P \vee R$
(2)	$\neg R \vee P$
(3)	$Q \vee S \vee \neg P$
(4)	$\neg Q \vee \neg S$

Give the definition of redundancy of a clause w.r.t. a set of clauses.

- Is the clause $\neg Q \vee P \vee S$ redundant w.r.t. the set N above?
- Is the clause $\neg Q \vee P$ redundant w.r.t. the set N above?

Justify your answer.

Exercise 7.2: (2 P)
Assume $U \succ S \succ P \succ Q \succ R$. Let N be the following set of clauses:
(1) $\quad \neg Q \vee P \vee R$
(2) $\quad \neg R \vee P$
(3) $\quad \neg Q \vee P \vee S$
(4) $\quad Q \vee S \vee \neg P$
(5) $\neg Q \vee \neg S$

- Is the clause $\neg Q \vee P \vee S \vee U$ redundant w.r.t. the set consisting of the clauses (1), (2), (4) and (5)?

Justify your answer.

Exercise 7.3: (2 P)
Let ϕ be the following (ground) formula:

$$
f(f(c)) \approx f(c) \wedge f(f(c)) \approx f(d) \wedge d \not \approx f(c)
$$

(1) Compute $F L A T(\phi)$ (the formula obtained by recursively replacing, in a bottom-up fashion, any term of the form $f\left(c^{\prime}\right)$, where c^{\prime} is a constant, with a new constant).
(2) Compute $F C(\phi)$ (the set of functional consistency axioms associated with the flattening above):

$$
F C(\phi)=\left\{c_{1} \approx c_{2} \rightarrow d_{1} \approx d_{2} \mid d_{i} \text { is introduced as an abbreviation for } f\left(c_{i}\right)\right\} .
$$

(3) Check whether $F L A T(\phi) \wedge F C(\phi)$ is satisfiable.
(4) Is ϕ is satisfiable? Justify your answer.

Supplementary exercises

Exercise 7.4: (A P)

set of Horn clauses in first-order logic without equality is called superficial if for every clause

$$
A_{1} \wedge \cdots \wedge A_{n} \rightarrow A \quad\left(\text { alternatively written also: } \neg A_{1} \vee \cdots \vee \neg A_{n} \vee A\right)
$$

in H (where A_{1}, \ldots, A_{n}, A are atoms), for every term t occurring in A there exists $j \in$ $\{1, \ldots, n\}$ such that t occurs in A_{j}.
Let H be a superficial set of Horn clauses and let G be a conjunction of ground literals.
Prove that $H \cup G$ is satisfiable if and only if $H[G] \cup G$ is satisfiable, where $H[G]$ is the set of all ground instances of H which contain only ground terms occurring in G or which already occur in H.

Exercise 7.5: (2 P)
Let F be a closed first-order formula with equality over a signature $\Sigma=(\Omega, \Pi)$. Let $\sim \notin \Omega$ be a new binary relation symbol (written as an infix operator). Let the set $E q(\Sigma)$ contain the formulas

$$
\begin{gathered}
\forall x(x \sim x) \\
\forall x, y(x \sim y \rightarrow y \sim x) \\
\forall x, y, z(x \sim y \wedge y \sim z \rightarrow x \sim z)
\end{gathered}
$$

and for every $f / n \in \Omega$ the formula

$$
\forall x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\left(x_{1} \sim y_{1} \wedge \cdots \wedge x_{n} \sim y_{n} \rightarrow f\left(x_{1}, \ldots, x_{n}\right) \sim f\left(y_{1}, \ldots, y_{n}\right)\right)
$$

and for every $p / n \in \Pi$ the formula

$$
\forall x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\left(x_{1} \sim y_{1} \wedge \cdots \wedge x_{n} \sim y_{n} \wedge p\left(x_{1}, \ldots, x_{n}\right) \rightarrow p\left(y_{1}, \ldots, y_{n}\right)\right) .
$$

Let \tilde{F} be the formula that one obtains from F if every occurrence of the equality symbol \approx is replaced by the relation symbol \sim.
(a) Definition. A binary relation \sim on the support of a Σ-algebra satisfying all properties in $E q(\Sigma)$ is called a congruence relation.
Let \mathcal{A} be a model of $\tilde{F} \cup E q(\Sigma)$. Show that the interpretation $\sim_{\mathcal{A}}$ of \sim in \mathcal{A} is a congruence relation. (It is enough if you prove one of the properties of congruence relations, say symmetry; the other properties are proved analogously.)
(b) Let \mathcal{A} be a model of $\tilde{F} \cup E q(\Sigma)$. Use the congruence relation $\sim_{\mathcal{A}}$ to construct a model of F and prove that it is a model of F.
Hint: Construct the quotient $\hat{\mathcal{A}}=\mathcal{A} / \sim_{\mathcal{A}}$ of \mathcal{A} as follows:

- $U_{\hat{\mathcal{A}}}=\left\{[x] \mid x \in U_{\mathcal{A}}\right\}$, where $[x]=\left\{y \in U_{\mathcal{A}} \mid y \sim_{\mathcal{A}} x\right\}$ is the equivalence class of x w.r.t. $\sim_{\mathcal{A}}$.
- for every $f / n \in \Omega$, define $f_{\hat{\mathcal{A}}}: U_{\hat{\mathcal{A}}}^{n} \rightarrow U_{\hat{\mathcal{A}}}$ by $f_{\hat{\mathcal{A}}}\left(\left[x_{1}\right], \ldots,\left[x_{n}\right]\right)=\left[f_{\mathcal{A}}\left(x_{1}, \ldots, x_{n}\right)\right]$.
- for every $p / m \in \Pi$, define $p_{\hat{\mathcal{A}}} \subseteq U_{\hat{\mathcal{A}}}^{m}$ by: $\left(\left[x_{1}\right], \ldots,\left[x_{n}\right]\right) \in p_{\hat{\mathcal{A}}}$ iff $\left(x_{1}, \ldots, x_{n}\right) \in p_{\mathcal{A}}$.
(c) Prove that a formula F is satisfiable if and only if $E q(\Sigma) \cup\{\tilde{F}\}$ is satisfiable.

Please submit your solution until Monday, December 9, 2013 at 16:00. Joint solutions prepared by up to three persons are allowed. Please do not forget to write your name on your solution. Submission possibilities:

- By e-mail to sofronie@uni-koblenz.de with the keyword "Homework DP" in the subject.
- Put it in the box in front of Room B 222.

