Universität Koblenz-Landau FB 4 Informatik

Prof. Dr. Viorica Sofronie-Stokkermans

December 5, 2013

Exercises for "Decision Procedures for Verification" Exercise sheet 7

Exercise 7.1: (2 P) Assume $S \succ P \succ Q \succ R$. Let N be the following set of clauses:

$$\begin{array}{ll} (1) & \neg Q \lor P \lor R \\ (2) & \neg R \lor P \\ (3) & Q \lor S \lor \neg P \\ (4) & \neg Q \lor \neg S \end{array}$$

Give the definition of redundancy of a clause w.r.t. a set of clauses.

- Is the clause $\neg Q \lor P \lor S$ redundant w.r.t. the set N above?
- Is the clause $\neg Q \lor P$ redundant w.r.t. the set N above?

Justify your answer.

Exercise 7.2: (2 P) Assume $U \succ S \succ P \succ Q \succ R$. Let N be the following set of clauses:

(1)	$\neg Q \vee P \vee R$
(2)	$\neg R \lor P$
(3)	$\neg Q \lor P \lor S$
(4)	$Q \vee S \vee \neg P$
(5)	$\neg Q \vee \neg S$

• Is the clause $\neg Q \lor P \lor S \lor U$ redundant w.r.t. the set consisting of the clauses (1), (2), (4) and (5)?

Justify your answer.

Exercise 7.3: (2 P)

Let ϕ be the following (ground) formula:

$$f(f(c)) \approx f(c) \wedge f(f(c)) \approx f(d) \wedge d \not\approx f(c)$$

(1) Compute $FLAT(\phi)$ (the formula obtained by recursively replacing, in a bottom-up fashion, any term of the form f(c'), where c' is a constant, with a new constant).

(2) Compute $FC(\phi)$ (the set of functional consistency axioms associated with the flattening above):

 $FC(\phi) = \{c_1 \approx c_2 \rightarrow d_1 \approx d_2 \mid d_i \text{ is introduced as an abbreviation for } f(c_i)\}.$

- (3) Check whether $FLAT(\phi) \wedge FC(\phi)$ is satisfiable.
- (4) Is ϕ is satisfiable? Justify your answer.

Supplementary exercises

Exercise 7.4: (A P)

set of Horn clauses in first-order logic without equality is called *superficial* if for every clause

 $A_1 \wedge \dots \wedge A_n \to A$ (alternatively written also: $\neg A_1 \vee \dots \vee \neg A_n \vee A$)

in *H* (where A_1, \ldots, A_n, A are atoms), for every term *t* occurring in *A* there exists $j \in \{1, \ldots, n\}$ such that *t* occurs in A_j .

Let H be a superficial set of Horn clauses and let G be a conjunction of ground literals.

Prove that $H \cup G$ is satisfiable if and only if $H[G] \cup G$ is satisfiable, where H[G] is the set of all ground instances of H which contain only ground terms occurring in G or which already occur in H.

Exercise 7.5: (2 P)

Let F be a closed first-order formula with equality over a signature $\Sigma = (\Omega, \Pi)$. Let $\sim \notin \Omega$ be a new binary relation symbol (written as an infix operator). Let the set $Eq(\Sigma)$ contain the formulas

$$\begin{array}{c} \forall x \ (x \sim x) \\ \forall x, y \ (x \sim y \rightarrow y \sim x) \\ \forall x, y, z \ (x \sim y \wedge y \sim z \rightarrow x \sim z) \end{array}$$

and for every $f/n \in \Omega$ the formula

 $\forall x_1, \dots, x_n, y_1, \dots, y_n \left(x_1 \sim y_1 \land \dots \land x_n \sim y_n \to f(x_1, \dots, x_n) \sim f(y_1, \dots, y_n) \right)$

and for every $p/n \in \Pi$ the formula

 $\forall x_1, \ldots, x_n, y_1, \ldots, y_n \, (x_1 \sim y_1 \land \cdots \land x_n \sim y_n \land p(x_1, \ldots, x_n) \to p(y_1, \ldots, y_n)).$

Let \tilde{F} be the formula that one obtains from F if every occurrence of the equality symbol \approx is replaced by the relation symbol \sim .

(a) Definition. A binary relation ~ on the support of a Σ -algebra satisfying all properties in $Eq(\Sigma)$ is called a congruence relation.

Let \mathcal{A} be a model of $\tilde{F} \cup Eq(\Sigma)$. Show that the interpretation $\sim_{\mathcal{A}}$ of \sim in \mathcal{A} is a congruence relation. (It is enough if you prove *one* of the properties of congruence relations, say symmetry; the other properties are proved analogously.)

(b) Let \mathcal{A} be a model of $\tilde{F} \cup Eq(\Sigma)$. Use the congruence relation $\sim_{\mathcal{A}}$ to construct a model of F and prove that it is a model of F.

Hint: Construct the quotient $\hat{\mathcal{A}} = \mathcal{A} / \sim_{\mathcal{A}}$ of \mathcal{A} as follows:

- $U_{\hat{\mathcal{A}}} = \{ [x] \mid x \in U_{\mathcal{A}} \}$, where $[x] = \{ y \in U_{\mathcal{A}} \mid y \sim_{\mathcal{A}} x \}$ is the equivalence class of x w.r.t. $\sim_{\mathcal{A}}$.
- for every $f/n \in \Omega$, define $f_{\hat{\mathcal{A}}} : U_{\hat{\mathcal{A}}}^n \to U_{\hat{\mathcal{A}}}$ by $f_{\hat{\mathcal{A}}}([x_1], \dots, [x_n]) = [f_{\mathcal{A}}(x_1, \dots, x_n)].$
- for every $p/m \in \Pi$, define $p_{\hat{\mathcal{A}}} \subseteq U^m_{\hat{\mathcal{A}}}$ by: $([x_1], \ldots, [x_n]) \in p_{\hat{\mathcal{A}}}$ iff $(x_1, \ldots, x_n) \in p_{\mathcal{A}}$.
- (c) Prove that a formula F is satisfiable if and only if $Eq(\Sigma) \cup \{\tilde{F}\}$ is satisfiable.

Please submit your solution until Monday, December 9, 2013 at 16:00. Joint solutions prepared by up to three persons are allowed. Please do not forget to write your name on your solution. Submission possibilities:

- By e-mail to sofronie@uni-koblenz.de with the keyword "Homework DP" in the subject.
- Put it in the box in front of Room B 222.